1
|
Muhar MF, Farnung J, Cernakova M, Hofmann R, Henneberg LT, Pfleiderer MM, Denoth-Lippuner A, Kalčic F, Nievergelt AS, Peters Al-Bayati M, Sidiropoulos ND, Beier V, Mann M, Jessberger S, Jinek M, Schulman BA, Bode JW, Corn JE. C-terminal amides mark proteins for degradation via SCF-FBXO31. Nature 2025; 638:519-527. [PMID: 39880951 PMCID: PMC11821526 DOI: 10.1038/s41586-024-08475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts1. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites2,3. Such modifications have been proposed to trigger the selective removal of chemically marked proteins3-6; however, identifying modifications that are sufficient to induce protein degradation has remained challenging. Here, using a semi-synthetic chemical biology approach coupled to cellular assays, we found that C-terminal amide-bearing proteins (CTAPs) are rapidly cleared from human cells. A CRISPR screen identified FBXO31 as a reader of C-terminal amides. FBXO31 is a substrate receptor for the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase SCF-FBXO31, which ubiquitylates CTAPs for subsequent proteasomal degradation. A conserved binding pocket enables FBXO31 to bind to almost any C-terminal peptide bearing an amide while retaining exquisite selectivity over non-modified clients. This mechanism facilitates binding and turnover of endogenous CTAPs that are formed after oxidative stress. A dominant human mutation found in neurodevelopmental disorders reverses CTAP recognition, such that non-amidated neosubstrates are now degraded and FBXO31 becomes markedly toxic. We propose that CTAPs may represent the vanguard of a largely unexplored class of modified amino acid degrons that could provide a general strategy for selective yet broad surveillance of chemically damaged proteins.
Collapse
Affiliation(s)
- Matthias F Muhar
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Jakob Farnung
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Raphael Hofmann
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Filip Kalčic
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ajse S Nievergelt
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marwa Peters Al-Bayati
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nikolaos D Sidiropoulos
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jeffrey W Bode
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y, Tang J. SKP1-CUL1-F-box: Key molecular targets affecting disease progression. FASEB J 2025; 39:e70326. [PMID: 39812503 PMCID: PMC11734646 DOI: 10.1096/fj.202402816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors. This paper provides a comprehensive overview of the functional characteristics of SCF complexes, encompassing their assembly, disassembly, and regulatory factors. Furthermore, we discuss the diverse effects of SCF on crucial cellular processes such as cell cycle progression, DNA replication, oxidative stress response, cell proliferation, apoptosis, cell differentiation, maintenance of stem cell characteristics, tissue development, circadian rhythm regulation, and immune response modulation. Additionally, we summarize the associations between SCF and the onset, progression, and prognosis of malignant tumors. By synthesizing current knowledge, this review aims to offer a novel perspective for a holistic and systematic understanding of SCF complexes and their multifaceted functions in cellular physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Xiangrong Zeng
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Juan Xu
- Department of Critical Care MedicinThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Hunan Cancer HospitalChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiChina
| | - Chen Long
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingqiong Tang
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
4
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
5
|
Fang M, Wu HK, Pei Y, Zhang Y, Gao X, He Y, Chen G, Lv F, Jiang P, Li Y, Li W, Jiang P, Wang L, Ji J, Hu X, Xiao RP. E3 ligase MG53 suppresses tumor growth by degrading cyclin D1. Signal Transduct Target Ther 2023; 8:263. [PMID: 37414783 PMCID: PMC10326024 DOI: 10.1038/s41392-023-01458-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.
Collapse
Affiliation(s)
- Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Hong-Kun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, 310003, Hangzhou, China
| | - Yumeng Pei
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yanyun He
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Peng Jiang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Yumei Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Wenwen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
6
|
Simoneschi D. Uncovering the degrader of D-type cyclins. Science 2022; 378:845. [DOI: 10.1126/science.adf4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AMBRA1 is identified as the long-sought, major controller of D-type cyclins
Collapse
Affiliation(s)
- Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
7
|
Aldaalis A, Bengoechea-Alonso MT, Ericsson J. The SREBP-dependent regulation of cyclin D1 coordinates cell proliferation and lipid synthesis. Front Oncol 2022; 12:942386. [PMID: 36091143 PMCID: PMC9451027 DOI: 10.3389/fonc.2022.942386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
The sterol regulatory-element binding protein (SREBP) family of transcription factors regulates cholesterol, fatty acid, and triglyceride synthesis and metabolism. However, they are also targeted by the ubiquitin ligase Fbw7, a major tumor suppressor, suggesting that they could regulate cell growth. Indeed, enhanced lipid synthesis is a hallmark of many human tumors. Thus, the SREBP pathway has recently emerged as a potential target for cancer therapy. We have previously demonstrated that one of these transcription factors, SREBP1, is stabilized and remains associated with target promoters during mitosis, suggesting that the expression of these target genes could be important as cells enter G1 and transcription is restored. Activation of cyclin D-cdk4/6 complexes is critical for the phosphorylation and inactivation of the retinoblastoma protein (Rb) family of transcriptional repressors and progression through the G1 phase of the cell cycle. Importantly, the cyclin D-cdk4/6-Rb regulatory axis is frequently dysregulated in human cancer. In the current manuscript, we demonstrate that SREBP1 activates the expression of cyclin D1, a coactivator of cdk4 and cdk6, by binding to an E-box in the cyclin D1 promoter. Consequently, inactivation of SREBP1 in human liver and breast cancer cell lines reduces the expression of cyclin D1 and attenuates Rb phosphorylation. Rb phosphorylation in these cells can be rescued by restoring cyclin D1 expression. On the other hand, expression of active SREBP1 induced the expression of cyclin D1 and increased the phosphorylation of Rb in a manner dependent on cyclin D1 and cdk4/6 activity. Inactivation of SREBP1 resulted in reduced expression of cyclin D1, attenuated phosphorylation of Rb, and reduced proliferation. Inactivation of SREBP1 also reduced the insulin-dependent regulation of the cyclin D1 gene. At the same time, SREBP1 is known to play an important role in supporting lipid synthesis in cancer cells. Thus, we propose that the SREBP1-dependent regulation of cyclin D1 coordinates cell proliferation with the enhanced lipid synthesis required to support cell growth.
Collapse
Affiliation(s)
- Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
8
|
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) and their activating partners, D-type cyclins, link the extracellular environment with the core cell cycle machinery. Constitutive activation of cyclin D–CDK4/6 represents the driving force of tumorigenesis in several cancer types. Small-molecule inhibitors of CDK4/6 have been used with great success in the treatment of hormone receptor–positive breast cancers and are in clinical trials for many other tumor types. Unexpectedly, recent work indicates that inhibition of CDK4/6 affects a wide range of cellular functions such as tumor cell metabolism and antitumor immunity. We discuss how recent advances in understanding CDK4/6 biology are opening new avenues for the future use of cyclin D–CDK4/6 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Chaikovsky AC, Sage J, Pagano M, Simoneschi D. The Long-Lost Ligase: CRL4 AMBRA1 Regulates the Stability of D-Type Cyclins. DNA Cell Biol 2021; 40:1457-1461. [PMID: 34495753 PMCID: PMC8742259 DOI: 10.1089/dna.2021.0659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
D-type cyclins (cyclin D1, D2, and D3, together cyclin D) are central drivers of the cell division cycle and well-described proto-oncoproteins. Rapid turnover of cyclin D is critical for its regulation, but the underlying mechanism has remained a matter of debate. Recently, AMBRA1 was identified as the major regulator of the stability of all three D-type cyclins. AMBRA1 serves as the substrate receptor for one of ∼40 CUL4-RING E3 ubiquitin ligase (CRL4) complexes to mediate the polyubiquitylation and subsequent degradation of cyclin D. Consequently, AMBRA1 regulates cell proliferation to impact tumor growth and the cellular response to cell cycle-targeted cancer therapies. Here we discuss the findings that implicate AMBRA1 as a core member of the cell cycle machinery.
Collapse
Affiliation(s)
- Andrea C. Chaikovsky
- Department of Pediatrics and Stanford University, Stanford, California, USA.,Department of Genetics, Stanford University, Stanford, California, USA
| | - Julien Sage
- Department of Pediatrics and Stanford University, Stanford, California, USA.,Department of Genetics, Stanford University, Stanford, California, USA.,Address correspondence to: Julien Sage, PhD, Department of Pediatrics, Stanford University, 265 Campus Drive, Room G2078, Stanford, CA 94305, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, and NYU Grossman School of Medicine, New York, New York, USA.,Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, and NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Duan S, Moro L, Qu R, Simoneschi D, Cho H, Jiang S, Zhao H, Chang Q, de Stanchina E, Arbini AA, Pagano M. Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep 2021; 37:109870. [PMID: 34686346 PMCID: PMC8577224 DOI: 10.1016/j.celrep.2021.109870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
FBXO31 is the substrate receptor of one of many CUL1-RING ubiquitin ligase (CRL1) complexes. Here, we show that low FBXO31 mRNA levels are associated with high pre-operative prostate-specific antigen (PSA) levels and Gleason grade in human prostate cancer. Mechanistically, the ubiquitin ligase CRL1FBXO31 promotes the ubiquitylation-mediated degradation of DUSP6, a dual specificity phosphatase that dephosphorylates and inactivates the extracellular-signal-regulated kinase-1 and -2 (ERK1/2). Depletion of FBXO31 stabilizes DUSP6, suppresses ERK signaling, and activates the PI3K-AKT signaling cascade. Moreover, deletion of FBXO31 promotes tumor development in a mouse orthotopic model of prostate cancer. Treatment with BCI, a small molecule inhibitor of DUSP6, suppresses AKT activation and prevents tumor formation, suggesting that the FBXO31 tumor suppressor activity is dependent on DUSP6. Taken together, our studies highlight the relevance of the FBXO31-DUSP6 axis in the regulation of ERK- and PI3K-AKT-mediated signaling pathways, as well as its therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Loredana Moro
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Rui Qu
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Hyunwoo Cho
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Huiyong Zhao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qing Chang
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Elisa de Stanchina
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arnaldo A Arbini
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, New York, NY 10016, USA.
| |
Collapse
|
11
|
Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol 2021; 28:918-933. [PMID: 33974914 PMCID: PMC8286310 DOI: 10.1016/j.chembiol.2021.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitylation, a highly regulated post-translational modification, controls many cellular pathways that are critical to cell homeostasis. Ubiquitin ligases recruit substrates and promote ubiquitin transfer onto targets, inducing proteasomal degradation or non-degradative signaling. Accumulating evidence highlights the critical role of dysregulated ubiquitin ligases in processes associated with the initiation and progression of cancer. Depending on the substrate specificity and biological context, a ubiquitin ligase can act either as a tumor promoter or as a tumor suppressor. In this review, we focus on the regulatory roles of ubiquitin ligases and how perturbations of their functions contribute to cancer pathogenesis. We also briefly discuss current strategies for targeting or exploiting ubiquitin ligases for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
|
13
|
Simoneschi D, Rona G, Zhou N, Jeong YT, Jiang S, Milletti G, Arbini AA, O'Sullivan A, Wang AA, Nithikasem S, Keegan S, Siu Y, Cianfanelli V, Maiani E, Nazio F, Cecconi F, Boccalatte F, Fenyö D, Jones DR, Busino L, Pagano M. CRL4 AMBRA1 is a master regulator of D-type cyclins. Nature 2021; 592:789-793. [PMID: 33854235 DOI: 10.1038/s41586-021-03445-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
D-type cyclins are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer1, but the mechanisms that regulate their turnover are still being debated2,3. Here, by combining biochemical and genetics studies in somatic cells, we identify CRL4AMBRA1 (also known as CRL4DCAF3) as the ubiquitin ligase that targets all three D-type cyclins for degradation. During development, loss of Ambra1 induces the accumulation of D-type cyclins and retinoblastoma (RB) hyperphosphorylation and hyperproliferation, and results in defects of the nervous system that are reduced by treating pregnant mice with the FDA-approved CDK4 and CDK6 (CDK4/6) inhibitor abemaciclib. Moreover, AMBRA1 acts as a tumour suppressor in mouse models and low AMBRA1 mRNA levels are predictive of poor survival in cancer patients. Cancer hotspot mutations in D-type cyclins abrogate their binding to AMBRA1 and induce their stabilization. Finally, a whole-genome, CRISPR-Cas9 screen identified AMBRA1 as a regulator of the response to CDK4/6 inhibition. Loss of AMBRA1 reduces sensitivity to CDK4/6 inhibitors by promoting the formation of complexes of D-type cyclins with CDK2. Collectively, our results reveal the molecular mechanism that controls the stability of D-type cyclins during cell-cycle progression, in development and in human cancer, and implicate AMBRA1 as a critical regulator of the RB pathway.
Collapse
Affiliation(s)
- Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Nan Zhou
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yeon-Tae Jeong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Giacomo Milletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Arnaldo A Arbini
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Alfie O'Sullivan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew A Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Sorasicha Nithikasem
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Yik Siu
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesca Nazio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Cecconi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Boccalatte
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA. .,Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Chaikovsky AC, Li C, Jeng EE, Loebell S, Lee MC, Murray CW, Cheng R, Demeter J, Swaney DL, Chen SH, Newton BW, Johnson JR, Drainas AP, Shue YT, Seoane JA, Srinivasan P, He A, Yoshida A, Hipkins SQ, McCrea E, Poltorack CD, Krogan NJ, Diehl JA, Kong C, Jackson PK, Curtis C, Petrov DA, Bassik MC, Winslow MM, Sage J. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 2021; 592:794-798. [PMID: 33854239 PMCID: PMC8246597 DOI: 10.1038/s41586-021-03474-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/08/2022]
Abstract
The initiation of cell division integrates a large number of intra- and extracellular inputs. D-type cyclins (hereafter, cyclin D) couple these inputs to the initiation of DNA replication1. Increased levels of cyclin D promote cell division by activating cyclin-dependent kinases 4 and 6 (hereafter, CDK4/6), which in turn phosphorylate and inactivate the retinoblastoma tumour suppressor. Accordingly, increased levels and activity of cyclin D-CDK4/6 complexes are strongly linked to unchecked cell proliferation and cancer2,3. However, the mechanisms that regulate levels of cyclin D are incompletely understood4,5. Here we show that autophagy and beclin 1 regulator 1 (AMBRA1) is the main regulator of the degradation of cyclin D. We identified AMBRA1 in a genome-wide screen to investigate the genetic basis of the response to CDK4/6 inhibition. Loss of AMBRA1 results in high levels of cyclin D in cells and in mice, which promotes proliferation and decreases sensitivity to CDK4/6 inhibition. Mechanistically, AMBRA1 mediates ubiquitylation and proteasomal degradation of cyclin D as a substrate receptor for the cullin 4 E3 ligase complex. Loss of AMBRA1 enhances the growth of lung adenocarcinoma in a mouse model, and low levels of AMBRA1 correlate with worse survival in patients with lung adenocarcinoma. Thus, AMBRA1 regulates cellular levels of cyclin D, and contributes to cancer development and the response of cancer cells to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Andrea C Chaikovsky
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Edwin E Jeng
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Samuel Loebell
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher W Murray
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ran Cheng
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Janos Demeter
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jose A Seoane
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Preethi Srinivasan
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Akihiro Yoshida
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Susan Q Hipkins
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Edel McCrea
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carson D Poltorack
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - J Alan Diehl
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Kong
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Monte M Winslow
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Xu M, Wang Y, Chen M, Hu H, Xia T, Deng D. F-Box protein 4 inhibits progression of papillary thyroid cancer. Steroids 2021; 166:108773. [PMID: 33285173 DOI: 10.1016/j.steroids.2020.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/08/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE We aimed to investigate the role of F-Box protein 4 (FBXO4) in the progression of papillary thyroid cancer (PTC) and to reveal the underlying signaling pathways responsible for FBXO4 action in PTC. METHODS FBXO4 expression was evaluated in tissues from PTC patients as well as in cell lines. Overexpression of FBXO4 was re-introduced into PTC cell line B-CPAP, followed by analysis of cell migration, invasion, apoptosis and epithelial-mesenchymal transition (EMT) marker profile. An in vivo xenograft tumor mouse model was employed to address the role of FBXO4 in tumorigenesis as well. RESULTS Endogenous FBXO4 was downregulated in PTC patient tissues and cell lines. Upon re-introducing its expression, FBXO4 suppressed migration and invasion and induced apoptosis of PTC cells, as well as inhibited EMT. Using a xenograft tumor mouse model, the pro-apoptotic and anti-EMT functions of FBXO4 are also validated in vivo, resulting in considerably slowed tumor growth rate of inoculated FBXO4-expressing PTC cells. CONCLUSION Our results therefore propose the potential therapeutic value of FBXO4 in targeted treatments against PTC.
Collapse
Affiliation(s)
- Min Xu
- Department of Endocrinology, The First Affiliated Hospital of AnHui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Youmin Wang
- Department of Endocrinology, The First Affiliated Hospital of AnHui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of AnHui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Honglin Hu
- Department of Endocrinology, The First Affiliated Hospital of AnHui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Tongjia Xia
- Department of Endocrinology, The First Affiliated Hospital of AnHui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of AnHui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
16
|
The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis 2020; 9:98. [PMID: 33130829 PMCID: PMC7603503 DOI: 10.1038/s41389-020-00276-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
Collapse
|
17
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
18
|
Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2020; 49:100673. [PMID: 31877405 DOI: 10.1016/j.drup.2019.100673] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy continues to be a major treatment strategy for various human malignancies. However, the frequent emergence of chemoresistance compromises chemotherapy efficacy leading to poor prognosis. Thus, overcoming drug resistance is pivotal to achieve enhanced therapy efficacy in various cancers. Although increased evidence has revealed that reduced drug uptake, increased drug efflux, drug target protein alterations, drug sequestration in organelles, enhanced drug metabolism, impaired DNA repair systems, and anti-apoptotic mechanisms, are critically involved in drug resistance, the detailed resistance mechanisms have not been fully elucidated in distinct cancers. Recently, F-box protein (FBPs), key subunits in Skp1-Cullin1-F-box protein (SCF) E3 ligase complexes, have been found to play critical roles in carcinogenesis, tumor progression, and drug resistance through degradation of their downstream substrates. Therefore, in this review, we describe the functions of FBPs that are involved in drug resistance and discuss how FBPs contribute to the development of cancer drug resistance. Furthermore, we propose that targeting FBPs might be a promising strategy to overcome drug resistance and achieve better treatment outcome in cancer patients. Lastly, we state the limitations and challenges of using FBPs to overcome chemotherapeutic drug resistance in various cancers.
Collapse
Affiliation(s)
- Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
19
|
Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 2020; 67:159-170. [PMID: 32006569 DOI: 10.1016/j.semcancer.2020.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
D cyclins include three isoforms: D1, D2, and D3. D cyclins heterodimerize with cyclin-dependent kinase 4/6 (CDK4/6) to form kinase complexes that can phosphorylate and inactivate Rb. Inactivation of Rb triggers the activation of E2F transcription factors, which in turn regulate the expression of genes whose products drive cell cycle progression. Because D-type cyclins function as mitogenic sensors that link growth factor signaling directly with G1 phase progression, it is not surprising that D cyclin accumulation is dysregulated in a variety of human tumors. Elevated expression of D cyclins results from gene amplification, increased gene transcription and protein translation, decreased microRNA levels, and inefficiency or loss of ubiquitylation-mediated protein degradation. This review focuses on the clinicopathological importance of D cyclins, how dysregulation of Ubiquitin-Proteasome System (UPS) contributes to the overexpression of D cyclins, and the therapeutic potential through targeting D cyclin-related machinery in human tumors.
Collapse
|
20
|
Nakagawa T, Nakayama K, Nakayama KI. Knockout Mouse Models Provide Insight into the Biological Functions of CRL1 Components. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:147-171. [PMID: 31898227 DOI: 10.1007/978-981-15-1025-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CRL1 complex, also known as the SCF complex, is a ubiquitin ligase that in mammals consists of an adaptor protein (SKP1), a scaffold protein (CUL1), a RING finger protein (RBX1, also known as ROC1), and one of about 70 F-box proteins. Given that the F-box proteins determine the substrate specificity of the CRL1 complex, the variety of these proteins allows the generation of a large number of ubiquitin ligases that promote the degradation or regulate the function of many substrate proteins and thereby control numerous key cellular processes. The physiological and pathological functions of these many CRL1 ubiquitin ligases have been studied by the generation and characterization of knockout mouse models that lack specific CRL1 components. In this chapter, we provide a comprehensive overview of these mouse models and discuss the role of each CRL1 component in mouse physiology and pathology.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Pan ZQ. Cullin-RING E3 Ubiquitin Ligase 7 in Growth Control and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:285-296. [PMID: 31898234 PMCID: PMC8343956 DOI: 10.1007/978-981-15-1025-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CRL7Fbxw8 is an E3 ubiquitin ligase complex, containing cullin7 (CUL7) as a scaffold, the F-box protein Fbxw8 as a substrate receptor, the Skp1 adaptor, and the ROC1/Rbx1 RING finger protein for working with E2 enzyme to facilitate ubiquitin transfer. This chapter provides an update on studies linking CRL7Fbxw8 to hereditary human growth retardation disease, as at least 64 cul7 germ line mutations were found in patients with autosomal recessive 3-M syndrome. CRL7Fbxw8 interacts with two additional 3-M associated proteins OBSL1 and CCDC8, leading to subcellular localization of the E3 complex to regions including plasma membrane, centrosome, and Golgi. At least ten mammalian cellular proteins were identified or implicated as CRL7Fbxw8 substrates. Discussion focuses on the possible impact of CRL7Fbxw8-mediated proteolytic or non-proteolytic pathways in growth control and cancer.
Collapse
Affiliation(s)
- Zhen-Qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front Pharmacol 2019; 10:1148. [PMID: 31649532 PMCID: PMC6794426 DOI: 10.3389/fphar.2019.01148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
Collapse
Affiliation(s)
- Hui Min Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
Masclef L, Dehennaut V, Mortuaire M, Schulz C, Leturcq M, Lefebvre T, Vercoutter-Edouart AS. Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation. Front Endocrinol (Lausanne) 2019; 10:106. [PMID: 30853938 PMCID: PMC6395391 DOI: 10.3389/fendo.2019.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is the regulatory partner of the cyclin-dependent kinases (CDKs) CDK4 or CDK6. Once associated and activated, the cyclin D1/CDK complexes drive the cell cycle entry and G1 phase progression in response to extracellular signals. To ensure their timely and accurate activation during cell cycle progression, cyclin D1 turnover is finely controlled by phosphorylation and ubiquitination. Here we show that the dynamic and reversible O-linked β-N-Acetyl-glucosaminylation (O-GlcNAcylation) regulates also cyclin D1 half-life. High O-GlcNAc levels increase the stability of cyclin D1, while reduction of O-GlcNAcylation strongly decreases it. Moreover, elevation of O-GlcNAc levels through O-GlcNAcase (OGA) inhibition significantly slows down the ubiquitination of cyclin D1. Finally, biochemical and cell imaging experiments in human cancer cells reveal that the O-GlcNAc transferase (OGT) binds to and glycosylates cyclin D1. We conclude that O-GlcNAcylation promotes the stability of cyclin D1 through modulating its ubiquitination.
Collapse
Affiliation(s)
- Louis Masclef
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Institut Pasteur de Lille, Université de Lille, CNRS, UMR 8161, M3T: Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Marlène Mortuaire
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maïté Leturcq
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Anne-Sophie Vercoutter-Edouart
| |
Collapse
|
24
|
Tan Y, Liu D, Gong J, Liu J, Huo J. The role of F-box only protein 31 in cancer. Oncol Lett 2018; 15:4047-4052. [PMID: 29556284 PMCID: PMC5844145 DOI: 10.3892/ol.2018.7816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
F-box only protein 31 (FBXO31), initially identified in 2005, is a novel subunit of the S-phase kinase associated protein 1-Cullin 1-F-box ubiquitin ligase. As with other F-box proteins, FBXO31 may interact with several proteins to promote their ubquitination and subsequent degradation in an F-box-dependent manner. It has been revealed that FBXO31 serves a crucial role in DNA damage response and tumorigenesis. However, the expression and function of FBXO31 varies in different types of human cancer. To the best of our knowledge, the present review is the first to summarize the role of FBXO31 in different types of human cancer and determine its underlying mechanisms, thereby paving the road for the design of FBXO31-targeted anticancer therapies.
Collapse
Affiliation(s)
- Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jia Liu
- Center of Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
25
|
Nonstructural Protein σ1s Is Required for Optimal Reovirus Protein Expression. J Virol 2018; 92:JVI.02259-17. [PMID: 29321319 DOI: 10.1128/jvi.02259-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Reovirus nonstructural protein σ1s is required for the establishment of viremia and hematogenous viral dissemination. However, the function of σ1s during the reovirus replication cycle is not known. In this study, we found that σ1s was required for efficient reovirus replication in simian virus 40 (SV40)-immortalized endothelial cells (SVECs), mouse embryonic fibroblasts, human umbilical vein endothelial cells (HUVECs), and T84 human colonic epithelial cells. In each of these cell lines, wild-type reovirus produced substantially higher viral titers than a σ1s-deficient mutant. The σ1s protein was not required for early events in reovirus infection, as evidenced by the fact that no difference in infectivity between the wild-type and σ1s-null viruses was observed. However, the wild-type virus produced markedly higher viral protein levels than the σ1s-deficient strain. The disparity in viral replication did not result from differences in viral transcription or protein stability. We further found that the σ1s protein was dispensable for cell killing and the induction of type I interferon responses. In the absence of σ1s, viral factory (VF) maturation was impaired but sufficient to support low levels of reovirus replication. Together, our results indicate that σ1s is not absolutely essential for viral protein production but rather potentiates reovirus protein expression to facilitate reovirus replication. Our findings suggest that σ1s enables hematogenous reovirus dissemination by promoting efficient viral protein synthesis, and thereby reovirus replication, in cells that are required for reovirus spread to the blood.IMPORTANCE Hematogenous dissemination is a critical step in the pathogenesis of many viruses. For reovirus, nonstructural protein σ1s is required for viral spread via the blood. However, the mechanism by which σ1s promotes reovirus dissemination is unknown. In this study, we identified σ1s as a viral mediator of reovirus protein expression. We found several cultured cell lines in which σ1s is required for efficient reovirus replication. In these cells, wild-type virus produced substantially higher levels of viral protein than a σ1s-deficient mutant. The σ1s protein was not required for viral mRNA transcription or viral protein stability. Since reduced levels of viral protein were synthesized in the absence of σ1s, the maturation of viral factories was impaired, and significantly fewer viral progeny were produced. Taken together, our findings indicate that σ1s is required for optimal reovirus protein production, and thereby viral replication, in cells required for hematogenous reovirus dissemination.
Collapse
|
26
|
Li Y, Jin K, Bunker E, Zhang X, Luo X, Liu X, Hao B. Structural basis of the phosphorylation-independent recognition of cyclin D1 by the SCF FBXO31 ubiquitin ligase. Proc Natl Acad Sci U S A 2018; 115:319-324. [PMID: 29279382 PMCID: PMC5777030 DOI: 10.1073/pnas.1708677115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin-dependent proteolysis of cyclin D1 is associated with normal and tumor cell proliferation and survival. The SCFFBXO31 (Skp1-Cul1-Rbx1-FBXO31) ubiquitin ligase complex mediates genotoxic stress-induced cyclin D1 degradation. Previous studies have suggested that cyclin D1 levels are maintained at steady state by phosphorylation-dependent nuclear export and subsequent proteolysis in the cytoplasm. Here we present the crystal structures of the Skp1-FBXO31 complex alone and bound to a phosphorylated cyclin D1 C-terminal peptide. FBXO31 possesses a unique substrate-binding domain consisting of two β-barrel motifs, whereas cyclin D1 binds to FBXO31 by tucking its free C-terminal carboxylate tail into an open cavity of the C-terminal FBXO31 β-barrel. Biophysical and functional studies demonstrate that SCFFBXO31 is capable of recruiting and ubiquitinating cyclin D1 in a phosphorylation-independent manner. Our findings provide a conceptual framework for understanding the substrate specificity of the F-box protein FBXO31 and the mechanism of FBXO31-regulated cyclin D1 protein turnover.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030
| | - Kai Jin
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030
| | - Eric Bunker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Xiaojuan Zhang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Xuemei Luo
- Biomolecular Resource Facility, University of Texas Medical Branch, Galveston, TX 77555
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030;
| |
Collapse
|
27
|
Liu J, Lv L, Gong J, Tan Y, Zhu Y, Dai Y, Pan X, Huen MSY, Li B, Tsao SW, Huo J, Cheung ALM. Overexpression of F-box only protein 31 predicts poor prognosis and deregulates p38α- and JNK-mediated apoptosis in esophageal squamous cell carcinoma. Int J Cancer 2018; 142:145-155. [PMID: 28905993 DOI: 10.1002/ijc.31040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 11/07/2022]
Abstract
F-box only protein 31 (FBXO31), a subunit of the Skp1-Cul1-F box ubiquitin ligase, plays a crucial role in DNA damage response and tumorigenesis. Yet its expression and function vary in different types of human cancer. The expression of FBXO31 in esophageal squamous cell carcinoma (ESCC) and its association with clinicopathological features is not well studied. The underlying mechanism by which deregulated FBXO31 contributes to ESCC tumorigenesis is largely unknown. By immunohistochemical analysis of a tissue microarray containing 85 cases of ESCC and matched adjacent noncancerous tissue and an additional 10 cases of ESCC tissue samples, we found that FBXO31 was overexpressed in ESCC, and that its expression was significantly correlated with histological grade (p = 0.04) and clinical stage (p = 0.022). Higher expression of FBXO31 was associated with poor prognosis in univariate (p = 0.013) and multivariate (p = 0.014) analyses. We found that FBXO31 functioned as an antiapoptotic molecule in ESCC cells exposed to different types of genotoxic stress. Knockdown of FBXO31 inhibited serum-starved cell viability and decreased tumorigenicity of ESCC cells. In addition, the antiapoptotic effects of FBXO31 were associated with deactivation of stress-induced MAPK p38α and JNK. Furthermore, in vitro and in vivo data showed that silencing of FBXO31-sensitized ESCC cells and tumors to cisplatin treatment. Taken together, in addition to revealing that FBXO31 is an independent prognostic marker for ESCC, our findings substantiate a novel regulatory role of FBXO31 in tumorigenesis and drug resistance of ESCC.
Collapse
Affiliation(s)
- Jia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
- Center of Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yun Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yinghuan Dai
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Tai-Ping Road 27, Beijing, 100850, People's Republic of China
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, People's Republic of China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Annie L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, People's Republic of China
| |
Collapse
|
28
|
Ben Younes K, Body S, Costé É, Viailly PJ, Miloudi H, Coudre C, Jardin F, Ben Aissa-Fennira F, Sola B. A lowered 26S proteasome activity correlates with mantle lymphoma cell lines resistance to genotoxic stress. BMC Cancer 2017; 17:538. [PMID: 28797244 PMCID: PMC5553741 DOI: 10.1186/s12885-017-3530-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Mantle cell lymphoma (MCL) is a B-cell hemopathy characterized by the t(11;14) translocation and the aberrant overexpression of cyclin D1. This results in an unrestrained cell proliferation. Other genetic alterations are common in MCL cells such as SOX11 expression, mutations of ATM and/or TP53 genes, activation of the NF-κB signaling pathway and NOTCH receptors. These alterations lead to the deregulation of the apoptotic machinery and resistance to drugs. We observed that among a panel of MCL cell lines, REC1 cells were resistant towards genotoxic stress. We studied the molecular basis of this resistance. Methods We analyzed the cell response regarding apoptosis, senescence, cell cycle arrest, DNA damage response and finally the 26S proteasome activity following a genotoxic treatment that causes double strand DNA breaks. Results MCL cell lines displayed various sensitivity/resistance towards genotoxic stress and, in particular, REC1 cells did not enter apoptosis or senescence after an etoposide treatment. Moreover, the G2/M cell cycle checkpoint was deficient in REC1 cells. We observed that three main actors of apoptosis, senescence and cell cycle regulation (cyclin D1, MCL1 and CDC25A) failed to be degraded by the proteasome machinery in REC1 cells. We ruled out a default of the βTrCP E3-ubiquitine ligase but detected a lowered 26S proteasome activity in REC1 cells compared to other cell lines. Conclusion The resistance of MCL cells to genotoxic stress correlates with a low 26S proteasome activity. This could represent a relevant biomarker for a subtype of MCL patients with a poor response to therapies and a high risk of relapse. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3530-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khaoula Ben Younes
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Faculté de médecine, Laboratoire de Génétique, d'Immunologie et de Pathologie humaines, Université de Tunis El Manar, Tunis, Tunisia
| | - Simon Body
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Élodie Costé
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Pierre-Julien Viailly
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Département d'Hématologie Clinique, Centre de Lutte contre le Cancer Henri Becquerel, Rouen, France
| | - Hadjer Miloudi
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Clémence Coudre
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France
| | - Fabrice Jardin
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France.,Département d'Hématologie Clinique, Centre de Lutte contre le Cancer Henri Becquerel, Rouen, France
| | - Fatma Ben Aissa-Fennira
- Faculté de médecine, Laboratoire de Génétique, d'Immunologie et de Pathologie humaines, Université de Tunis El Manar, Tunis, Tunisia
| | - Brigitte Sola
- Normandie Univ, INSERM UMR 1245, UNIROUEN, UNICAEN, Caen, France. .,MICAH, UFR Santé, CHU Côte de Nacre, 14032, Caen Cedex, France.
| |
Collapse
|
29
|
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94:1313-1326. [PMID: 27695879 PMCID: PMC5145738 DOI: 10.1007/s00109-016-1475-3] [Citation(s) in RCA: 490] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Mammalian cells encode three D cyclins (D1, D2, and D3) that coordinately function as allosteric regulators of cyclin-dependent kinase 4 (CDK4) and CDK6 to regulate cell cycle transition from G1 to S phase. Cyclin expression, accumulation, and degradation, as well as assembly and activation of CDK4/CDK6 are governed by growth factor stimulation. Cyclin D1 is more frequently dysregulated than cyclin D2 or D3 in human cancers, and as such, it has been more extensively characterized. Overexpression of cyclin D1 results in dysregulated CDK activity, rapid cell growth under conditions of restricted mitogenic signaling, bypass of key cellular checkpoints, and ultimately, neoplastic growth. This review discusses cyclin D1 transcriptional, translational, and post-translational regulations and its biological function with a particular focus on the mechanisms that result in its dysregulation in human cancers.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA.
| |
Collapse
|
30
|
Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta Rev Cancer 2016; 1866:12-22. [PMID: 27156687 DOI: 10.1016/j.bbcan.2016.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/09/2022]
Abstract
F-box proteins, which are subunit recruiting modules of SCF (SKP1-Cullin 1-F-box protein) E3 ligase complexes, play critical roles in the development and progression of human malignancies through governing multiple cellular processes including cell proliferation, apoptosis, invasion and metastasis. Moreover, there are emerging studies that lead to the development of F-box proteins inhibitors with promising therapeutic potential. In this article, we describe how F-box proteins including but not restricted to well-established Fbw7, Skp2 and β-TRCP, are involved in tumorigenesis. However, in-depth investigation is required to further explore the mechanism and the physiological contribution of undetermined F-box proteins in carcinogenesis. Lastly, we suggest that targeting F-box proteins could possibly open new avenues for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Quansheng Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| |
Collapse
|
31
|
Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol 2016; 73:99-110. [PMID: 26860958 PMCID: PMC4798898 DOI: 10.1016/j.biocel.2016.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|
32
|
Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis. Sci Rep 2016; 6:21721. [PMID: 26883167 PMCID: PMC4756298 DOI: 10.1038/srep21721] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
Although obesity is undoubtedly major risk for non-alcoholic steatohepatitis (NASH), the presence of lean NASH patients with normal body mass index has been recognized. Here, we report that the insufficiency of phosphatidylethanolamine N-methyltransferase (PEMT) is a risk for the lean NASH. The Pemt−/− mice fed high fat-high sucrose (HFHS) diet were protected from diet-induced obesity and diabetes, while they demonstrated prominent steatohepatitis and developed multiple liver tumors. Pemt exerted inhibitory effects on p53-driven transcription by forming the complex with clathrin heavy chain and p53, and Pemt−/− mice fed HFHS diet demonstrated prominent apoptosis of hepatocytes. Furthermore, hypermethylation and suppressed mRNA expression of F-box protein 31 and hepatocyte nuclear factor 4α resulted in the prominent activation of cyclin D1. PEMT mRNA expression in liver tissues of NASH patients was significantly lower than those with simple steatosis and we postulated the distinct clinical entity of lean NASH with insufficiency of PEMT activities.
Collapse
|
33
|
Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol 2015; 44:172-6.e1. [PMID: 26700326 DOI: 10.1016/j.exphem.2015.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
Recent progress in deep sequencing technologies has revealed many novel mutations in a variety of genes in patients with myelodysplastic syndromes (MDS). Most of these mutations are thought to be loss-of-function mutations, with some exceptions, such as the gain-of-function IDH1/2 and SRSF2 mutations. Among the mutations, ASXL1 mutations attract much attention; the ASXL1 mutations are identified in a variety of hematologic malignancies and always predicts poor prognosis. It was found that the C-terminal truncating mutants of the ASXL1 or ASXL1 deletion induced MDS-like diseases in mouse. In addition, it has recently been reported that ASXL1 mutations are frequently found in clonal hematopoiesis in healthy elderly people, who frequently progress to hematologic malignancies. However, the underlying molecular mechanisms by which ASXL1 mutations induce hematologic malignancies are not fully understood. Moreover, whether ASXL1 mutations are loss-of-function mutations or dominant-negative or gain-of-function mutations remains a matter of controversy. We here present solid evidence indicating that the C-terminal truncating ASXL1 protein is indeed expressed in cells harboring homozygous mutations of ASXL1, indicating the ASXL1 mutations are dominant-negative or gain-of-function mutations; for the first time, we detected the truncated ASXL1 proteins in two cell lines lacking the intact ASXL1 gene by mass spectrometry and Western blot analyses. Thus, together with our previous results, the present results indicate that the truncating ASXL1 mutant is indeed expressed in MDS cells and may play a role in MDS pathogenesis not previously considered.
Collapse
|
34
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Wang H, Maitra A, Wang H. The emerging roles of F-box proteins in pancreatic tumorigenesis. Semin Cancer Biol 2015; 36:88-94. [PMID: 26384530 DOI: 10.1016/j.semcancer.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 11/24/2022]
Abstract
The role of F-box proteins in pancreatic tumorigenesis is emerging owing to their pivotal and indispensable roles in cell differentiation, cell cycle regulation and proliferation. In this review, we will focus on β-TrCP (β-transducin repeat-containing protein) and two other prototypical mammalian F-box proteins, Fbxw7 and Fbxw8, in pancreatic tumorigenesis and progression. We will highlight the functions and regulation of these F-box proteins, their respective substrates and cross-talks with other key signaling pathways, such as the Ras-Raf-Mek-Erk, Hedgehog, NFκB, TGF-β, Myc and HPK1 signaling pathways in pancreatic cancer.
Collapse
Affiliation(s)
- Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States
| | - Anirban Maitra
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States
| | - Huamin Wang
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
36
|
CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc Natl Acad Sci U S A 2015; 112:5875-82. [PMID: 25883264 PMCID: PMC4434708 DOI: 10.1073/pnas.1505787112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitosis is commonly thought to be associated with reduced cap-dependent protein translation. Here we show an alternative control mechanism for maintaining cap-dependent translation during mitosis revealed by a viral oncoprotein, Merkel cell polyomavirus small T (MCV sT). We find MCV sT to be a promiscuous E3 ligase inhibitor targeting the anaphase-promoting complex, which increases cell mitogenesis. MCV sT binds through its Large T stabilization domain region to cell division cycle protein 20 (Cdc20) and, possibly, cdc20 homolog 1 (Cdh1) E3 ligase adapters. This activates cyclin-dependent kinase 1/cyclin B1 (CDK1/CYCB1) to directly hyperphosphorylate eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) at authentic sites, generating a mitosis-specific, mechanistic target of rapamycin (mTOR) inhibitor-resistant δ phospho-isoform not present in G1-arrested cells. Recombinant 4E-BP1 inhibits capped mRNA reticulocyte translation, which is partially reversed by CDK1/CYCB1 phosphorylation of 4E-BP1. eIF4G binding to the eIF4E-m(7)GTP cap complex is resistant to mTOR inhibition during mitosis but sensitive during interphase. Flow cytometry, with and without sT, reveals an orthogonal pH3(S10+) mitotic cell population having higher inactive p4E-BP1(T37/T46+) saturation levels than pH3(S10-) interphase cells. Using a Click-iT flow cytometric assay to directly measure mitotic protein synthesis, we find that most new protein synthesis during mitosis is cap-dependent, a result confirmed using the eIF4E/4G inhibitor drug 4E1RCat. For most cell lines tested, cap-dependent translation levels were generally similar between mitotic and interphase cells, and the majority of new mitotic protein synthesis was cap-dependent. These findings suggest that mitotic cap-dependent translation is generally sustained during mitosis by CDK1 phosphorylation of 4E-BP1 even under conditions of reduced mTOR signaling.
Collapse
|
37
|
Gong Y, Chan TA. Molecular mechanisms orchestrating cyclin stability. Cell Cycle 2014; 13:2487-8. [PMID: 25486187 DOI: 10.4161/15384101.2014.946376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yongxing Gong
- a Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center ; New York , NY USA
| | | |
Collapse
|
38
|
Gong J, Lv L, Huo J. Roles of F-box proteins in human digestive system tumors (Review). Int J Oncol 2014; 45:2199-207. [PMID: 25270675 DOI: 10.3892/ijo.2014.2684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2022] Open
Abstract
F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.
Collapse
Affiliation(s)
- Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
39
|
Harada M, Kotake Y, Ohhata T, Kitagawa K, Niida H, Matsuura S, Funai K, Sugimura H, Suda T, Kitagawa M. YB-1 promotes transcription of cyclin D1 in human non-small-cell lung cancers. Genes Cells 2014; 19:504-516. [PMID: 24774443 DOI: 10.1111/gtc.12150] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/07/2014] [Indexed: 12/27/2022]
Abstract
Cyclin D1, an oncogenic G1 cyclin, and YB-1, a transcription factor involved in cell growth, are both over-expressed in several human cancers. In human lung cancer, the functional association between YB-1 and cyclin D1 has never been elucidated. In this study, we show YB-1 is involved in the transcription of cyclin D1 in human lung cancer. Depletion of endogenous YB-1 by siRNA inhibited progression of G1 phase and down-regulated both the protein and mRNA levels of cyclin D1 in human lung cancer cells. Forced over-expression of YB-1 with a cyclin D1 reporter plasmid increased luciferase activity, and ChIP assay results showed YB-1 bound to the cyclin D1 promoter. Moreover, the amount of YB-1 mRNA positively correlated with cyclin D1 mRNA levels in clinical non-small-cell lung cancer (NSCLC) specimens. Immunohistochemical analysis also indicated YB-1 expression correlated with cyclin D1 expression in NSCLC specimens. In addition, most of the cases expressing both cyclin D1 and CDC6, another molecule controlled by YB-1, had co-existing YB-1 over-expression. Together, our results suggest that aberrant expression of both cyclin D1 and CDC6 by YB-1 over-expression may collaboratively participate in lung carcinogenesis.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Female
- Gene Knockdown Techniques
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Y-Box-Binding Protein 1/genetics
- Y-Box-Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Masanori Harada
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Second Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Johansson P, Jeffery J, Al-Ejeh F, Schulz RB, Callen DF, Kumar R, Khanna KK. SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem 2014; 289:18514-25. [PMID: 24828503 DOI: 10.1074/jbc.m114.559930] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FBXO31 was originally identified as a putative tumor suppressor gene in breast, ovarian, hepatocellular, and prostate cancers. By screening a set of cell cycle-regulated proteins as potential FBXO31 interaction partners, we have now identified Cdt1 as a novel substrate. Cdt1 DNA replication licensing factor is part of the pre-replication complex and essential for the maintenance of genomic integrity. We show that FBXO31 specifically interacts with Cdt1 and regulates its abundance by ubiquitylation leading to subsequent degradation. We also show that Cdt1 regulation by FBXO31 is limited to the G2 phase of the cell cycle and is independent of the pathways previously described for Cdt1 proteolysis in S and G2 phase. FBXO31 targeting of Cdt1 is mediated through the N terminus of Cdt1, a region previously shown to be responsible for its cell cycle regulation. Finally, we show that Cdt1 stabilization due to FBXO31 depletion results in re-replication. Our data present an additional pathway that contributes to the FBXO31 function as a tumor suppressor.
Collapse
Affiliation(s)
- Pegah Johansson
- From the Sahlgrenska University Hospital, Department of Clinical Chemistry, Bruna Stråket 16, 41345 Gothenburg, Sweden
| | - Jessie Jeffery
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Fares Al-Ejeh
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Renèe B Schulz
- Centre for Personalised Cancer Medicine and Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - David F Callen
- Centre for Personalised Cancer Medicine and Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Raman Kumar
- School of Paediatrics and Reproductive Health and Discipline of Medicine, University of Adelaide, Adelaide and Women's and Children's Health Research Institute, North Adelaide, South Australia 5006, Australia, and
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| |
Collapse
|
41
|
Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet 2014; 46:588-94. [PMID: 24793136 DOI: 10.1038/ng.2981] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
Abstract
Coordinate control of different classes of cyclins is fundamentally important for cell cycle regulation and tumor suppression, yet the underlying mechanisms are incompletely understood. Here we show that the PARK2 tumor suppressor mediates this coordination. The PARK2 E3 ubiquitin ligase coordinately controls the stability of both cyclin D and cyclin E. Analysis of approximately 5,000 tumor genomes shows that PARK2 is a very frequently deleted gene in human cancer and uncovers a striking pattern of mutual exclusivity between PARK2 deletion and amplification of CCND1, CCNE1 or CDK4-implicating these genes in a common pathway. Inactivation of PARK2 results in the accumulation of cyclin D and acceleration of cell cycle progression. Furthermore, PARK2 is a component of a new class of cullin-RING-containing ubiquitin ligases targeting both cyclin D and cyclin E for degradation. Thus, PARK2 regulates cyclin-CDK complexes, as does the CDK inhibitor p16, but acts as a master regulator of the stability of G1/S cyclins.
Collapse
|
42
|
Abstract
F-box proteins, which are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes, have pivotal roles in multiple cellular processes through ubiquitylation and subsequent degradation of target proteins. Dysregulation of F-box protein-mediated proteolysis leads to human malignancies. Notably, inhibitors that target F-box proteins have shown promising therapeutic potential, urging us to review the current understanding of how F-box proteins contribute to tumorigenesis. As the physiological functions for many of the 69 putative F-box proteins remain elusive, additional genetic and mechanistic studies will help to define the role of each F-box protein in tumorigenesis, thereby paving the road for the rational design of F-box protein-targeted anticancer therapies.
Collapse
Affiliation(s)
- Zhiwei Wang
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [2] The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, P. R. China. [3]
| | - Pengda Liu
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [2]
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
43
|
Takrouri K, Chen T, Papadopoulos E, Sahoo R, Kabha E, Chen H, Cantel S, Wagner G, Halperin JA, Aktas BH, Chorev M. Structure-activity relationship study of 4EGI-1, small molecule eIF4E/eIF4G protein-protein interaction inhibitors. Eur J Med Chem 2014; 77:361-77. [PMID: 24675136 DOI: 10.1016/j.ejmech.2014.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
Abstract
Protein-protein interactions are critical for regulating the activity of translation initiation factors and multitude of other cellular process, and form the largest block of untapped albeit most challenging targets for drug development. 4EGI-1, (E/Z)-2-(2-(4-(3,4-dichlorophenyl)thiazol-2-yl)hydrazono)-3-(2-nitrophenyl)propanoic acid, is a hit compound discovered in a screening campaign of small molecule libraries as an inhibitor of translation initiation factors eIF4E and eIF4G protein-protein interaction; it inhibits translation initiation in vitro and in vivo. A series of 4EGI-1-derived thiazol-2-yl hydrazones have been designed and synthesized in order to delineate the structural latitude and improve its binding affinity to eIF4E, and increase its potency in inhibiting the eIF4E/eIF4G interaction. Probing a wide range of substituents on both phenyl rings comprising the 3-phenylpropionic acid and 4-phenylthiazolidine moieties in the context of both E- and Z-isomers of 4EGI-1 led to analogs with enhanced binding affinity and translation initiation inhibitory activities.
Collapse
Affiliation(s)
- Khuloud Takrouri
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Ting Chen
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Rupam Sahoo
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Eihab Kabha
- Laboratory for Translational Research, Harvard Medical School, USA
| | - Han Chen
- Laboratory for Translational Research, Harvard Medical School, USA
| | - Sonia Cantel
- Laboratory for Translational Research, Harvard Medical School, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Jose A Halperin
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Bertal H Aktas
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Michael Chorev
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Mir A, Sritharan K, Mittal K, Vasli N, Araujo C, Jamil T, Rafiq MA, Anwar Z, Mikhailov A, Rauf S, Mahmood H, Shakoor A, Ali S, So J, Naeem F, Ayub M, Vincent JB. Truncation of the E3 ubiquitin ligase component FBXO31 causes non-syndromic autosomal recessive intellectual disability in a Pakistani family. Hum Genet 2014; 133:975-84. [DOI: 10.1007/s00439-014-1438-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022]
|
45
|
|
46
|
Yuan X, Srividhya J, De Luca T, Lee JHE, Pomerening JR. Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset. Mol Biol Cell 2013; 25:441-56. [PMID: 24356446 PMCID: PMC3923637 DOI: 10.1091/mbc.e13-08-0480] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Premature S-phase entry due to Cdh1 ablation results from premature loss of the CDK inhibitor p27 and a reduced requirement for cyclin E1. This prolonged S phase coincides with slowed replication fork elongation and fewer replication terminations, both of which could contribute to genome instability. Cdh1, a coactivator of the anaphase-promoting complex (APC), is a potential tumor suppressor. Cdh1 ablation promotes precocious S-phase entry, but it was unclear how this affects DNA replication dynamics while contributing to genomic instability and tumorigenesis. We find that Cdh1 depletion causes early S-phase onset in conjunction with increase in Rb/E2F1-mediated cyclin E1 expression, but reduced levels of cyclin E1 protein promote this transition. We hypothesize that this is due to a weakened cyclin-dependent kinase inhibitor (CKI)–cyclin-dependent kinase 2 positive-feedback loop, normally generated by APC-Cdh1–mediated proteolysis of Skp2. Indeed, Cdh1 depletion increases Skp2 abundance while diminishing levels of the CKI p27. This lowers the level of cyclin E1 needed for S-phase entry and delays cyclin E1 proteolysis during S-phase progression while corresponding to slowed replication fork movement and reduced frequency of termination events. In summary, using both experimental and computational approaches, we show that APC-Cdh1 establishes a stimulus–response relationship that promotes S phase by ensuring that proper levels of p27 accumulate during G1 phase, and defects in its activation accelerate the timing of S-phase onset while prolonging its progression.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Biology, Indiana University, Bloomington, IN 47405-7003 Biocomplexity Institute, Department of Physics, Indiana University, Bloomington, IN 47405-7003 Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN 47408-2671 Department of Statistics, Indiana University, Bloomington, IN 47408-3825
| | | | | | | | | |
Collapse
|
47
|
The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-dependent metastatic melanoma. Mol Cell Biol 2013; 33:4422-33. [PMID: 24019069 DOI: 10.1128/mcb.00706-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cyclin D1-cyclin-dependent kinase 4/6 (CDK4/6) dysregulation is a major contributor to melanomagenesis. Clinical evidence has revealed that p16(INK4A), an allosteric inhibitor of CDK4/6, is inactivated in over half of human melanomas, and numerous animal models have demonstrated that p16(INK4A) deletion promotes melanoma. FBXO4, a specificity factor for the E3 ligase that directs timely cyclin D1 proteolysis, has not been studied in melanoma. We demonstrate that Fbxo4 deficiency induces Braf-driven melanoma and that this phenotype depends on cyclin D1 accumulation in mice, underscoring the importance of this ubiquitin ligase in tumor suppression. Furthermore, we have identified a substrate-binding mutation, FBXO4 I377M, that selectively disrupts cyclin D1 degradation while preserving proteolysis of the other known FBXO4 substrate, TRF1. The I377M mutation and Fbxo4 deficiency result in nuclear accumulation of cyclin D1, a key transforming neoplastic event. Collectively, these data provide evidence that FBXO4 dysfunction, as a mechanism for cyclin D1 overexpression, is a contributor to human malignancy.
Collapse
|
48
|
Teixeira FR, Manfiolli AO, Soares CS, Baqui MMA, Koide T, Gomes MD. The F-box protein FBXO25 promotes the proteasome-dependent degradation of ELK-1 protein. J Biol Chem 2013; 288:28152-62. [PMID: 23940030 DOI: 10.1074/jbc.m113.504308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
FBXO25 is one of the 69 known human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of SKP1, Rbx1, Cullin1, and F-box protein (SCF1) that are involved in targeting proteins for degradation across the ubiquitin proteasome system. However, the substrates of most SCF E3 ligases remain unknown. Here, we applied an in chip ubiquitination screen using a human protein microarray to uncover putative substrates for the FBXO25 protein. Among several novel putative targets identified, the c-fos protooncogene regulator ELK-1 was characterized as the first endogenous substrate for SCF1(FBXO25) E3 ligase. FBXO25 interacted with and mediated the ubiquitination and proteasomal degradation of ELK-1 in HEK293T cells. In addition, FBXO25 overexpression suppressed induction of two ELK-1 target genes, c-fos and egr-1, in response to phorbol 12-myristate 13-acetate. Together, our findings show that FBXO25 mediates ELK-1 degradation through the ubiquitin proteasome system and thereby plays a role in regulating the activation of ELK-1 pathway in response to mitogens.
Collapse
|
49
|
Abstract
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication ("origin licensing") to active DNA synthesis ("origin firing"). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells.
Collapse
Affiliation(s)
- Lindsay F Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
50
|
Williamson A, Werner A, Rape M. The Colossus of ubiquitylation: decrypting a cellular code. Mol Cell 2013; 49:591-600. [PMID: 23438855 DOI: 10.1016/j.molcel.2013.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 11/20/2022]
Abstract
Ubiquitylation is an essential posttranslational modification that can regulate the stability, activity, and localization of thousands of proteins. The reversible attachment of ubiquitin as well as interpretation of the ubiquitin signal depends on dynamic protein networks that are challenging to analyze. In this perspective, we discuss tools of the trade that have recently been developed to dissect mechanisms of ubiquitin-dependent signaling, thereby revealing the critical features of an important cellular code.
Collapse
Affiliation(s)
- Adam Williamson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|