1
|
Friend LR, Landsberg MJ, Nouwens AS, Wei Y, Rothnagel JA, Smith R. Arginine methylation of hnRNP A2 does not directly govern its subcellular localization. PLoS One 2013; 8:e75669. [PMID: 24098712 PMCID: PMC3787039 DOI: 10.1371/journal.pone.0075669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
The hnRNP A/B paralogs A1, A2/B1 and A3 are key components of the nuclear 40S hnRNP core particles. Despite a high degree of sequence similarity, increasing evidence suggests they perform additional, functionally distinct roles in RNA metabolism. Here we identify and study the functional consequences of differential post-translational modification of hnRNPs A1, A2 and A3. We show that while arginine residues in the RGG box domain of hnRNP A1 and A3 are almost exhaustively, asymmetrically dimethylated, hnRNP A2 is dimethylated at only a single residue (Arg-254) and this modification is conserved across cell types. It has been suggested that arginine methylation regulates the nucleocytoplasmic distribution of hnRNP A/B proteins. However, we show that transfected cells expressing an A2R254A point mutant exhibit no difference in subcellular localization. Similarly, immunostaining and mass spectrometry of endogenous hnRNP A2 in transformed cells reveals a naturally-occurring pool of unmethylated protein but an exclusively nuclear pattern of localization. Our results suggest an alternative role for post-translational arginine methylation of hnRNPs and offer further evidence that the hnRNP A/B paralogs are not functionally redundant.
Collapse
Affiliation(s)
- Lexie R. Friend
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Michael J. Landsberg
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Amanda S. Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ying Wei
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Joseph A. Rothnagel
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
2
|
König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 2010; 17:909-15. [PMID: 20601959 PMCID: PMC3000544 DOI: 10.1038/nsmb.1838] [Citation(s) in RCA: 892] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 04/22/2010] [Indexed: 01/27/2023]
Abstract
In the nucleus of eukaryotic cells, nascent transcripts are associated with heterogeneous nuclear ribonucleoprotein (hnRNP) particles that are nucleated by hnRNP C. Despite their abundance, however, it remained unclear whether these particles control pre-mRNA processing. Here, we developed individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) to study the role of hnRNP C in splicing regulation. iCLIP data show that hnRNP C recognizes uridine tracts with a defined long-range spacing consistent with hnRNP particle organization. hnRNP particles assemble on both introns and exons but remain generally excluded from splice sites. Integration of transcriptome-wide iCLIP data and alternative splicing profiles into an 'RNA map' indicates how the positioning of hnRNP particles determines their effect on the inclusion of alternative exons. The ability of high-resolution iCLIP data to provide insights into the mechanism of this regulation holds promise for studies of other higher-order ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Julian König
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol 1994. [PMID: 8264621 DOI: 10.1128/mcb.14.1.518] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of in vitro protein-RNA binding studies using purified native (C1)3C2 and (A2)3B1 tetramers, total soluble heterogeneous nuclear ribonucleoprotein (hnRNP), and pre-mRNA molecules differing in length and sequence have revealed that a single C-protein tetramer has an RNA site size of 230 to 240 nucleotides (nt). Two tetramers bind twice this RNA length, and three tetramers fold monoparticle lengths of RNA (700 nt) into a unique 19S triangular complex. In the absence of this unique structure, the basic A- and B-group proteins bind RNA to form several different artifactual structures which are not present in preparations of native hnRNP and which do not function in hnRNP assembly. Three (A2)3B1 tetramers bind the 19S complex to form a 35S assembly intermediate. Following UV irradiation to immobilize the C proteins on the packaged RNA, the 19S triangular complex is recovered as a remnant structure from both native and reconstituted hnRNP particles. C protein-RNA complexes composed of three, six, or nine tetramers (one, two, or three triangular complexes) nucleate the stoichiometric assembly of monomer, dimer, and trimer hnRNP particles. The binding of C-protein tetramers to RNAs longer than 230 nt is through a self-cooperative combinatorial mode. RNA packaged in the 19S complex and in 40S hnRNP particles is efficiently spliced in vitro. These findings demonstrate that formation of the triangular C protein-RNA complex is an obligate first event in the in vitro and probably the in vivo assembly the 40S hnRNP core particle, and they provide insight into the mechanism through which the core proteins package 700-nt increments of RNA. These findings also demonstrate that unless excluded by other factors, the C proteins are likely to be located along the length of nascent transcripts.
Collapse
|
4
|
Huang M, Rech JE, Northington SJ, Flicker PF, Mayeda A, Krainer AR, LeStourgeon WM. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol 1994; 14:518-33. [PMID: 8264621 PMCID: PMC358402 DOI: 10.1128/mcb.14.1.518-533.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A series of in vitro protein-RNA binding studies using purified native (C1)3C2 and (A2)3B1 tetramers, total soluble heterogeneous nuclear ribonucleoprotein (hnRNP), and pre-mRNA molecules differing in length and sequence have revealed that a single C-protein tetramer has an RNA site size of 230 to 240 nucleotides (nt). Two tetramers bind twice this RNA length, and three tetramers fold monoparticle lengths of RNA (700 nt) into a unique 19S triangular complex. In the absence of this unique structure, the basic A- and B-group proteins bind RNA to form several different artifactual structures which are not present in preparations of native hnRNP and which do not function in hnRNP assembly. Three (A2)3B1 tetramers bind the 19S complex to form a 35S assembly intermediate. Following UV irradiation to immobilize the C proteins on the packaged RNA, the 19S triangular complex is recovered as a remnant structure from both native and reconstituted hnRNP particles. C protein-RNA complexes composed of three, six, or nine tetramers (one, two, or three triangular complexes) nucleate the stoichiometric assembly of monomer, dimer, and trimer hnRNP particles. The binding of C-protein tetramers to RNAs longer than 230 nt is through a self-cooperative combinatorial mode. RNA packaged in the 19S complex and in 40S hnRNP particles is efficiently spliced in vitro. These findings demonstrate that formation of the triangular C protein-RNA complex is an obligate first event in the in vitro and probably the in vivo assembly the 40S hnRNP core particle, and they provide insight into the mechanism through which the core proteins package 700-nt increments of RNA. These findings also demonstrate that unless excluded by other factors, the C proteins are likely to be located along the length of nascent transcripts.
Collapse
Affiliation(s)
- M Huang
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235
| | | | | | | | | | | | | |
Collapse
|
5
|
A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol 1991. [PMID: 1701018 DOI: 10.1128/mcb.10.12.6397] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Every RNA added to an in vitro polyadenylation extract became stably associated with both the heterogeneous nuclear ribonucleoprotein (hnRNP) A and C proteins, as assayed by immunoprecipitation analysis using specific monoclonal antibodies. UV-cross-linking analysis, however, which assays the specific spatial relationship of certain amino acids and RNA bases, indicated that the hnRNP C proteins, but not the A proteins, were associated with downstream sequences of the simian virus 40 late polyadenylation signal in a sequence-mediated manner. A tract of five consecutive uridylate residues was required for this interaction. The insertion of a five-base U tract into a pGEM4 polylinker-derived transcript was sufficient to direct sequence-specific cross-linking of the C proteins to RNA. Finally, the five-base uridylate tract restored efficient in vitro processing to several independent poly(A) signals in which it substituted for downstream element sequences. The role of the downstream element in polyadenylation efficiency, therefore, may be mediated by sequence-directed alignment or phasing of an hnRNP complex.
Collapse
|
6
|
Wilusz J, Shenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol 1990; 10:6397-407. [PMID: 1701018 PMCID: PMC362916 DOI: 10.1128/mcb.10.12.6397-6407.1990] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Every RNA added to an in vitro polyadenylation extract became stably associated with both the heterogeneous nuclear ribonucleoprotein (hnRNP) A and C proteins, as assayed by immunoprecipitation analysis using specific monoclonal antibodies. UV-cross-linking analysis, however, which assays the specific spatial relationship of certain amino acids and RNA bases, indicated that the hnRNP C proteins, but not the A proteins, were associated with downstream sequences of the simian virus 40 late polyadenylation signal in a sequence-mediated manner. A tract of five consecutive uridylate residues was required for this interaction. The insertion of a five-base U tract into a pGEM4 polylinker-derived transcript was sufficient to direct sequence-specific cross-linking of the C proteins to RNA. Finally, the five-base uridylate tract restored efficient in vitro processing to several independent poly(A) signals in which it substituted for downstream element sequences. The role of the downstream element in polyadenylation efficiency, therefore, may be mediated by sequence-directed alignment or phasing of an hnRNP complex.
Collapse
Affiliation(s)
- J Wilusz
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark 07103
| | | |
Collapse
|
7
|
Nakagawa TY, Swanson MS, Wold BJ, Dreyfuss G. Molecular cloning of cDNA for the nuclear ribonucleoprotein particle C proteins: a conserved gene family. Proc Natl Acad Sci U S A 1986; 83:2007-11. [PMID: 3457372 PMCID: PMC323219 DOI: 10.1073/pnas.83.7.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The C proteins, C1 and C2, are major constituents of the heterogeneous nuclear RNA (hnRNA) ribonucleoprotein (hnRNP) complex in vertebrates. C1 and C2 are antigenically related phosphoproteins that are in contact with hnRNA in intact cells and bind to RNA tightly in vitro. A cDNA clone for the C proteins was isolated by immunological screening of a human lambda gt11 expression vector cDNA library with monoclonal antibodies. The lacZ-cDNA fusion protein is recognized by two different anti-C protein monoclonal antibodies. HeLa cell mRNA that was hybrid-selected with the cDNA clone (1.1 kilobases long) was translated in vitro and yielded both the C1 and C2 proteins (41 and 43 kDa, respectively). RNA blot analysis showed strong hybridization to two polyadenylylated transcripts, of about 1.4 kb and 1.9 kb, in human cells. Genomic DNA blot analysis showed multiple hybridizing restriction fragments in human and mouse, and homologous DNA sequences are found across eukaryotes from human to yeast. These findings suggest that the sequences encoding the hnRNP C proteins are members of a conserved gene family and they open the way for detailed molecular and genetic studies of these proteins.
Collapse
|
8
|
Patton JR, Chae CB. Specific regions of the intervening sequences of beta-globin RNA are resistant to nuclease in 50S heterogeneous nuclear RNA-protein complexes. Proc Natl Acad Sci U S A 1985; 82:8414-8. [PMID: 3001702 PMCID: PMC390926 DOI: 10.1073/pnas.82.24.8414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The specific assembly of heterogeneous nuclear RNA-protein complexes (hnRNPs) containing precursor beta-globin RNA was investigated by using the 50S hnRNP released from chicken reticulocyte nuclei by endogenous nuclease. The nuclease-resistant regions were mapped on adult beta-globin intervening sequences (IVS) at the resolution of nucleotides with an RNA mapping method [Patton, J. R. and Chae, C.-B. (1983) J. Biol. Chem. 258, 3991-3995]. We found that there is one 28-nucleotide-long nuclease-resistant region in the first IVS and there are four nuclease-resistant regions in the second IVS. Of particular interest is the presence in 50S hnRNP of a nuclease-resistant region (24-28 nucleotides long) in both IVS immediately upstream from the putative lariat branch site in an RNA splicing intermediate. Our results demonstrate that hnRNPs containing precursor beta-globin RNA are, like those containing mature beta-globin RNA, assembled in a site-specific manner.
Collapse
|
9
|
Specific regions of beta-globin RNA are resistant to nuclease digestion in RNA-protein complexes in chicken reticulocyte nuclei. Mol Cell Biol 1985. [PMID: 4033649 DOI: 10.1128/mcb.5.6.1220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between beta-globin RNA and proteins in chicken reticulocyte nuclei was studied by determining the sequence of nuclease-resistant beta-globin RNA. Two types of nuclease-resistant RNAs were isolated for this study: endogenous nuclease-resistant RNA from 50S heterogeneous nuclear RNA-protein complexes and micrococcal nuclease-resistant nuclear RNA from whole nuclei. The nuclease-resistant regions were identified with the use of a RNA mapping method we recently developed (J.R. Patton and C.-B. Chae, J. Biol. Chem. 258:3991-3995, 1983). We found that beta-globin RNA is assembled into heterogeneous nuclear RNA-protein complexes in a specific manner. There are several regions of nuclease resistance in the first and third exons interrupted at regular intervals by sensitive regions. The second exon has only one nuclease-resistant region. The resistant regions range in size from 20 to 50 nucleotides. This organization may reflect a specific mode of assembly for heterogeneous nuclear RNA-protein complexes.
Collapse
|
10
|
Patton JR, Ross DA, Chae CB. Specific regions of beta-globin RNA are resistant to nuclease digestion in RNA-protein complexes in chicken reticulocyte nuclei. Mol Cell Biol 1985; 5:1220-8. [PMID: 4033649 PMCID: PMC366849 DOI: 10.1128/mcb.5.6.1220-1228.1985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The interaction between beta-globin RNA and proteins in chicken reticulocyte nuclei was studied by determining the sequence of nuclease-resistant beta-globin RNA. Two types of nuclease-resistant RNAs were isolated for this study: endogenous nuclease-resistant RNA from 50S heterogeneous nuclear RNA-protein complexes and micrococcal nuclease-resistant nuclear RNA from whole nuclei. The nuclease-resistant regions were identified with the use of a RNA mapping method we recently developed (J.R. Patton and C.-B. Chae, J. Biol. Chem. 258:3991-3995, 1983). We found that beta-globin RNA is assembled into heterogeneous nuclear RNA-protein complexes in a specific manner. There are several regions of nuclease resistance in the first and third exons interrupted at regular intervals by sensitive regions. The second exon has only one nuclease-resistant region. The resistant regions range in size from 20 to 50 nucleotides. This organization may reflect a specific mode of assembly for heterogeneous nuclear RNA-protein complexes.
Collapse
|
11
|
Lothstein L, Arenstorf HP, Chung SY, Walker BW, Wooley JC, LeStourgeon WM. General organization of protein in HeLa 40S nuclear ribonucleoprotein particles. J Cell Biol 1985; 100:1570-81. [PMID: 3988802 PMCID: PMC2113882 DOI: 10.1083/jcb.100.5.1570] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The majority of the protein mass of HeLa 40S heterogeneous nuclear ribonucleoprotein monoparticles is composed of multiple copies of six proteins that resolve in SDS gels as three groups of doublet bands (A1, A2; B1, B2; and C1, C2) (Beyer, A. L., M. E. Christensen, B. W. Walker, and W. M. LeStourgeon. 1977. Cell. 11: 127-138). We report here that when 40S monoparticles are exposed briefly to ribonuclease, proteins A1, C1, and C2 are solubilized coincidentally with the loss of most premessenger RNA sequences. The remaining proteins exist as tetramers of (A2)3(B1) or pentamers of (A2)3(B1)(B2). The tetramers may reassociate in highly specific ways to form either of two different structures. In 0.1 M salt approximately 12 tetramers (derived from three or four monoparticles) reassemble to form highly regular structures, which may possess dodecahedral symmetry. These structures sediment at 43S, are 20-22 nm in width, and have a mass near 2.3 million. These structures possess 450-500 bases of slowly labeled RNA, which migrates in gels as fragments 200-220 bases in length. In 9 mM salt the tetramers reassociate to form 2.0 M salt-insoluble helical filaments of indeterminant length with a pitch near 60 nm and diameter near 18 nm. If 40S monoparticles are treated briefly with nuclease-free proteases, the same proteins solubilized by nuclease (A1, C1, and C2) are preferentially cleaved. This protein cleavage is associated with the dissociation of most of the heterogeneous nuclear RNA. Proteins A2 and B1 again reassemble to form uniform, globular particles, but these sediment slightly slower than intact monoparticles. These findings indicate that proteins A1, C1, and C2 and most of the premessenger sequences occupy a peripheral position in intact monoparticles and that their homotypic and heterotypic associations are dependent on protein-RNA interactions. Protein cross-linking studies demonstrate that trimers of A1, A2, and C1 exist as the most easily stabilized homotypic association in 40S particles. This supports the 3:1 ratio (via densitometry) of the A and C proteins to the B proteins and indicates that 40S monoparticles are composed of three or four repeating units, each containing 3(A1),3(A2),1(B1),1(B2),3(C1), and 1(C2).
Collapse
|
12
|
Choi YD, Dreyfuss G. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc Natl Acad Sci U S A 1984; 81:7471-5. [PMID: 6594697 PMCID: PMC392168 DOI: 10.1073/pnas.81.23.7471] [Citation(s) in RCA: 148] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The packaging of heterogeneous nuclear RNA (hnRNA), the fate of hnRNA in the nucleus, and the conversion of hnRNA to mRNA are believed to occur as the hnRNA transcript is associated with specific proteins to form a ribonucleoprotein complex termed the hnRNP complex. The identity and organization of the protein constituents of the hnRNP have been a matter of considerable controversy. We report here the isolation of the hnRNP complex from vertebrate cell nuclei, employing immunoprecipitation with monoclonal antibodies against the major proteins that are in contact with hnRNA in HeLa cells. Rapid immunoprecipitation from HeLa nucleoplasm with two different monoclonal antibodies to the hnRNP C proteins (41 and 43 kDa) isolates a similar complex that contains proteins and hnRNA of up to approximately equal to 10 kilobases. The major steady-state [35S]methionine-labeled proteins of the isolated complex are of 34 kDa, 36 kDa (A1 and A2), 37 kDa, 38 kDa (B1 and B2), 41 kDa, 43 kDa (C1 and C2), and doublets at 68 kDa and at 120 kDa. Additional proteins from 45 kDa to very high molecular mass are also seen. The major proteins of the complex appear identical by NaDodSO4/polyacrylamide gel electrophoresis to genuine hnRNP proteins--those which become crosslinked by UV light to the hnRNA in vivo. Immunoprecipitation with a different, noncrossreacting monoclonal antibody to the 120-kDa protein isolates an apparently identical complex of proteins that are present at a similar relative stoichiometry. Similar hnRNP complexes are found in rodent and avian cells. Nuclease digestions indicate that RNA plays a role in maintaining the integrity of the structure and that intact RNA of approximately equal to 125 nucleotides is sufficient to hold the complex of proteins together. The coimmunoprecipitation of the hnRNA and of all of the proteins through antibodies against different genuine hnRNP proteins and from divergent species strongly suggests that the hnRNP complex is a unitary structure of consistent, defined, and conserved components.
Collapse
|
13
|
Choi YD, Dreyfuss G. Monoclonal antibody characterization of the C proteins of heterogeneous nuclear ribonucleoprotein complexes in vertebrate cells. J Biophys Biochem Cytol 1984; 99:1997-204. [PMID: 6209285 PMCID: PMC2113551 DOI: 10.1083/jcb.99.6.1997] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The C proteins (C1 and C2) are major constituents of the 40S subparticle of heterogeneous nuclear ribonucleoprotein complexes (hnRNPs) (Beyer, A.L., M.E. Christensen, B.W. Walker, and W.M. LeStourgeon, 1977, Cell, 11:127-138) and are two of the most prominent proteins that become cross-linked by ultraviolet light to heterogeneous nuclear RNA (hnRNA) in vivo. Studies are described here on the characterization of the C proteins in vertebrate cells using monoclonal and polyclonal antibodies. Monoclonal antibodies to genuine RNP proteins, including the C proteins, were obtained by immunizing mice with purified complexes of poly(A)+ hnRNA and poly(A)+ mRNA with their contacting proteins in vivo obtained by ultraviolet cross-linking the complexes in intact cells (Dreyfuss, G., Y.D. Choi, and S.A. Adam, 1984, Mol. Cell. Biol., 4:1104-1114). One of the monoclonal antibodies identified the C proteins in widely divergent species ranging from human to lizard. In all species examined, there were two C proteins in the molecular weight range of from 39,000 to 42,000 for C1, and from 40,000 to 45,000 for C2. The two C proteins were found to be highly related to each other; they were recognized by the same monoclonal antibodies and antibodies raised against purified C1 reacted also with C2. In avian, rodent, and human cells the C proteins were phosphorylated and were in contact with hnRNA in vivo. Immunofluorescence microscopy demonstrated that the C proteins are segregated to the nucleus. Within the nucleus the C proteins were not found in nucleoli and were not associated with chromatin as seen in cells in prophase. These findings demonstrate that C proteins with similar characteristics to those in humans are ubiquitous components of hnRNPs in vertebrates.
Collapse
|
14
|
Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies. Mol Cell Biol 1984. [PMID: 6204191 DOI: 10.1128/mcb.4.6.1104] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure of cells to UV light of sufficient intensity brings about cross-linking of RNA to proteins which are in direct contact with it in vivo. The major [35S]methionine-labeled proteins which become cross-linked to polyadenylated heterogeneous nuclear RNA in HeLa cells have molecular weights of 120,000 (120K), 68K, 53K, 43K, 41K, 38K, and 36K. Purified complexes of polyadenylated RNA with proteins obtained by UV cross-linking in intact cells were used to immunize mice and generate monoclonal antibodies to several of these proteins. Some properties of three of the proteins, 41K, 43K, and 120K, were characterized with these antibodies. The 41K and 43K polypeptides are highly related. They were recognized by the same antibody (2B12) and have identical isoelectric points (pl = 6.0 +/- 0.2) but different partial peptide maps. The 41K and 43K polypeptides were part of the 40S heterogeneous nuclear ribonucleoprotein particle and appear to correspond to the previously described C proteins (Beyer et al., Cell II:127-138, 1977). A different monoclonal antibody (3G6) defined a new major heterogeneous ribonucleoprotein of 120K. The 41K, 43K, and 120K polypeptides were associated in vivo with both polyadenylated and non-polyadenylated nuclear RNA, and all three proteins were phosphorylated. The monoclonal antibodies recognized similar proteins in human and monkey cells but not in several other vertebrates. Immunofluorescence microscopy demonstrated that these proteins are segregated to the nucleus, where they are part of a fine particulate nonnucleolar structure. In cells extracted in situ with nonionic detergent, all of the 41K and 43K polypeptides were associated with the nucleus at salt concentrations up to 0.5 M NaCl, whereas the 120K polypeptide was completely extracted at this NaCl concentration. A substantial fraction of the 41K and 43K polypeptides (up to 40%) was retained with a nuclear matrix--a structure which is resistant to digestion with DNase I and to extraction by 2 M NaCl, but the 41K and 43K polypeptides were quantitatively removed at 0.5 M NaCl after digestion with RNase.
Collapse
|
15
|
Dreyfuss G, Choi YD, Adam SA. Characterization of heterogeneous nuclear RNA-protein complexes in vivo with monoclonal antibodies. Mol Cell Biol 1984; 4:1104-14. [PMID: 6204191 PMCID: PMC368879 DOI: 10.1128/mcb.4.6.1104-1114.1984] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exposure of cells to UV light of sufficient intensity brings about cross-linking of RNA to proteins which are in direct contact with it in vivo. The major [35S]methionine-labeled proteins which become cross-linked to polyadenylated heterogeneous nuclear RNA in HeLa cells have molecular weights of 120,000 (120K), 68K, 53K, 43K, 41K, 38K, and 36K. Purified complexes of polyadenylated RNA with proteins obtained by UV cross-linking in intact cells were used to immunize mice and generate monoclonal antibodies to several of these proteins. Some properties of three of the proteins, 41K, 43K, and 120K, were characterized with these antibodies. The 41K and 43K polypeptides are highly related. They were recognized by the same antibody (2B12) and have identical isoelectric points (pl = 6.0 +/- 0.2) but different partial peptide maps. The 41K and 43K polypeptides were part of the 40S heterogeneous nuclear ribonucleoprotein particle and appear to correspond to the previously described C proteins (Beyer et al., Cell II:127-138, 1977). A different monoclonal antibody (3G6) defined a new major heterogeneous ribonucleoprotein of 120K. The 41K, 43K, and 120K polypeptides were associated in vivo with both polyadenylated and non-polyadenylated nuclear RNA, and all three proteins were phosphorylated. The monoclonal antibodies recognized similar proteins in human and monkey cells but not in several other vertebrates. Immunofluorescence microscopy demonstrated that these proteins are segregated to the nucleus, where they are part of a fine particulate nonnucleolar structure. In cells extracted in situ with nonionic detergent, all of the 41K and 43K polypeptides were associated with the nucleus at salt concentrations up to 0.5 M NaCl, whereas the 120K polypeptide was completely extracted at this NaCl concentration. A substantial fraction of the 41K and 43K polypeptides (up to 40%) was retained with a nuclear matrix--a structure which is resistant to digestion with DNase I and to extraction by 2 M NaCl, but the 41K and 43K polypeptides were quantitatively removed at 0.5 M NaCl after digestion with RNase.
Collapse
|
16
|
Abstract
Eucaryotic messenger RNA precursors are processed in nuclear ribonucleoprotein particles (hnRNP). Here recent work on the structure of hnRNP is reviewed, with emphasis on function. Detailed analysis of a specific case, the altered assembly of hnRNP in heat-shocked Drosophila and mammalian cells, leads to a general hypothesis linking hnRNP structure and messenger RNA processing.
Collapse
|
17
|
van Eekelen C, Ohlsson R, Philipson L, Mariman E, van Beek R, van Venrooij W. Sequence dependent interaction of hnRNP proteins with late adenoviral transcripts. Nucleic Acids Res 1982; 10:7115-31. [PMID: 6296766 PMCID: PMC326992 DOI: 10.1093/nar/10.22.7115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Irradiation with ultraviolet light was used to induce covalent linkage between hnRNA and its associated proteins in intact HeLa cells, late after infection with adenovirus type 2. Covalently linked hnRNA-protein complexes, containing polyadenylated adenoviral RNA, were isolated and their protein moiety characterized. Host 42,000 Mr hnRNP proteins proved to be the major proteins crosslinked to viral hnRNA. To investigate their possible involvement in RNA processing, the localization of these cross-linked polypeptides on adenoviral late transcripts was determined. Sequences of RNA around the attachment sites of the protein were isolated. After in vitro labeling they were hybridized to Southern blots of adeno DNA fragments. The hybridization patterns revealed that the 42,000 Mr polypeptides can be linked to adenoviral transcripts over the entire length of the RNA, corresponding to 16.2-91.5 m.u. of the viral genome. Fine mapping within the Hind III B region (16.8-31.5 m.u.) established, however, that the localization of the cross-linked polypeptides was not random in all parts of the transcript. Sequences around the third leader and the 3' part of the i-leader were overrepresented, whereas the regions encoding VA I and VA II RNA and the late region 1 mRNA bodies were underrepresented in the cross-linked RNA. Using genomic DNA fragments and a cDNA clone containing the tripartite leader it appeared that leader and intervening sequences were represented about equally in cross-linked RNA fragments. Although these results do not support the notion that introns or exons are specifically interacting with one RNP protein, they demonstrate that the 42,000 hnRNP proteins are non randomly positioned on the RNA sequence.
Collapse
|
18
|
Ohlsson RI, van Eekelen C, Philipson L. Non-random localization of ribonucleoprotein (RNP) structures within an adenovirus mRNA precursor. Nucleic Acids Res 1982; 10:3053-68. [PMID: 6285286 PMCID: PMC320689 DOI: 10.1093/nar/10.10.3053] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Heterogeneous nuclear protein complexes (hnRNP) containing the precursor RNA from the adenovirus early region 2 were analysed to determine the specificity of protein-RNA interaction. RNA precursor sequences were present in isolated hnRNP complexes and endogenous 30S particles. At least 20-40 bases long fragments were protected when RNase A was used to remove unprotected RNA sequences in hnRNA complexes. Similarly around 40 bases of RNA were protected in 30S particles. These sequences represent discrete regions of the adenovirus genome. Especially sequences complementary to the EcoRI-F fragment encoding the first leader and the major intron for the DNA binding protein (DBP) RNA precursor, were analysed in detail. Tentatively, sequences resistant to RNase A were located in the middle of the intron and at the splice-donor junction of the first leader of the DBP precursor RNA. The same sequences were identified irrespective whether hnRNP complexes or 30S particles were used suggesting that 30S particles originate from hnRNP complexes. A 38.000 dalton protein appears to be in direct contact with RNA sequences complementary to the EcoRI-F fragment.
Collapse
|