1
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
2
|
Chen XJ, Clark-Walker GD. Unveiling the mystery of mitochondrial DNA replication in yeasts. Mitochondrion 2017; 38:17-22. [PMID: 28778567 DOI: 10.1016/j.mito.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 11/27/2022]
Abstract
Conventional DNA replication is initiated from specific origins and requires the synthesis of RNA primers for both the leading and lagging strands. In contrast, the replication of yeast mitochondrial DNA is origin-independent. The replication of the leading strand is likely primed by recombinational structures and proceeded by a rolling circle mechanism. The coexistent linear and circular DNA conformers facilitate the recombination-based initiation. The replication of the lagging strand is poorly understood. Re-evaluation of published data suggests that the rolling circle may also provide structures for the synthesis of the lagging-strand by mechanisms such as template switching. Thus, the coupling of recombination with rolling circle replication and possibly, template switching, may have been selected as an economic replication mode to accommodate the reductive evolution of mitochondria. Such a replication mode spares the need for conventional replicative components, including those required for origin recognition/remodelling, RNA primer synthesis and lagging-strand processing.
Collapse
Affiliation(s)
- Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
3
|
Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 2011; 39:4202-19. [PMID: 21266473 PMCID: PMC3105423 DOI: 10.1093/nar/gkq1345] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Comenius University, Mlynska dolina CH-1, 842 15 Bratislava, Slovak republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nosek J, Tomáska L. Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 2003; 44:73-84. [PMID: 12898180 DOI: 10.1007/s00294-003-0426-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 06/25/2003] [Accepted: 06/26/2003] [Indexed: 11/28/2022]
Abstract
Mitochondrial genomes in organisms from diverse phylogenetic groups vary in both size and molecular form. Although the types of mitochondrial genome appear very dissimilar, several lines of evidence argue that they do not differ radically. This would imply that interconversion between different types of mitochondrial genome might have occurred via relatively simple mechanisms. We exemplify this scenario on patterns accompanying evolution of mitochondrial telomeres. We propose that mitochondrial telomeres are derived from mobile elements (transposons or plasmids) that invaded mitochondria, integrated into circular or polydisperse linear mitochondrial DNAs (mtDNAs) and subsequently enabled precise resolution of the linear genophore. Simply, the selfish elements generated a problem - how to maintain the ends of a linear DNA - and, at the same time, made themselves essential by providing its solution. This scenario implies that insertion or deletion of such resolution elements may represent relatively simple routes for interconversion between different forms of the mitochondrial genome.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15, Bratislava, Slovakia.
| | | |
Collapse
|
5
|
|
6
|
|
7
|
Abstract
Forty years ago, soon after yeast mitochondrial DNA (mtDNA) was recognized, some animal versions of mtDNA were shown to comprise circular molecules. Supporting an idea that mitochondria had evolved from bacteria, this finding generated a dogmatic belief that yeast mtDNA was also circular, and the endless linear molecules actually observed in yeast were regarded as broken circles. This concept persisted for 30 years and has distorted our understanding of the true nature of the molecule.
Collapse
Affiliation(s)
- Don Williamson
- Parasitology Division, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
8
|
Santopietro LM, Kula MR. Cloning and nucleotide sequence of a linear DNA plasmid from Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Folia Microbiol (Praha) 2001; 46:277-88. [PMID: 11830937 DOI: 10.1007/bf02815614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Extrachromosomal elements were found in a strain of X. dendrorhous, and were characterized as linear DNA forming two well defined groups, pPh1 with 3 high-copy-number molecules, pPh11 (6.9 kb), pPh12 (5.7), pPh13 (4.7), and pPh2 with 2 low-copy-number molecules, pPh21 (3.6 kb), pPh22 (3.0). A 4077 bp fragment from pPh13 was cloned in pUC18 (pDK1) and sequenced (accession no. AJ 278,424). Seven putative ORF and some possible regulator sequences were defined.
Collapse
Affiliation(s)
- L M Santopietro
- Institut für Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, D-52426 Jülich, Germany
| | | |
Collapse
|
9
|
Abstract
The literature on sequencing as a tool for yeast molecular taxonomy is reviewed. Ribosomal DNA has been preferred for sequencing over other molecules such as mitochondrial DNA, and a large database is now available. rDNA consists of regions that evolve at different rates, allowing comparison of different levels of relationship among yeasts. Sequences of the 18S rDNA and the 25S rDNA have been largely used for yeast systematics and phylogeny, but the search for regions with increased resolving power has led to the study of the spacer regions of the rDNA. Few studies are concerned with signature sequences.
Collapse
Affiliation(s)
- P Valente
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Brasil.
| | | | | |
Collapse
|
10
|
Nosek J, Tomáska L, Fukuhara H, Suyama Y, Kovác L. Linear mitochondrial genomes: 30 years down the line. Trends Genet 1998; 14:184-8. [PMID: 9613202 DOI: 10.1016/s0168-9525(98)01443-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At variance with the earlier belief that mitochondrial genomes are represented by circular DNA molecules, a large number of organisms have been found to carry linear mitochondrial DNA. Studies of linear mitochondrial genomes might provide a novel view on the evolutionary history of organelle genomes and contribute to delineating mechanisms of maintenance and functioning of telomeres. Because linear mitochondrial DNA is present in a number of human pathogens, its replication mechanisms might become a target for drugs that would not interfere with replication of human circular mitochondrial DNA.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
11
|
Belloch C, Barrio E, Uruburu F, Garcia MD, Querol A. Characterisation of Four Species of the Genus Kluyveromyces by Mitochondrial DNA Restriction Analysis. Syst Appl Microbiol 1997. [DOI: 10.1016/s0723-2020(97)80008-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Tomáska L, Nosek J, Fukuhara H. Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 1997; 272:3049-56. [PMID: 9006955 DOI: 10.1074/jbc.272.5.3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Terminal segments (telomeres) of linear mitochondrial DNA (mtDNA) molecules of the yeast Candida parapsilosis consist of large sequence units repeated in tandem. The extreme ends of mtDNA terminate with a 5' single-stranded overhang of about 110 nucleotides. We identified and purified a mitochondrial telomere-binding protein (mtTBP) that specifically recognizes a synthetic oligonucleotide derived from the extreme end of this linear mtDNA. MtTBP is highly resistant to protease and heat treatments, and it protects the telomeric probe from degradation by various DNA-modifying enzymes. Resistance of the complex to bacterial alkaline phosphatase suggests that mtTBP binds the very end of the molecule. We purified mtTBP to near homogeneity using DNA affinity chromatography based on the telomeric oligonucleotide covalently bound to Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified fractions revealed the presence of a protein with an apparent molecular mass of approximately 15 kDa. UV cross-linking and gel filtration chromatography experiments suggested that native mtTBP is probably a homo-oligomer. MtTBP of C. parapsilosis is the first identified protein that specifically binds to telomeres of linear mitochondrial DNA.
Collapse
Affiliation(s)
- L Tomáska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | | | | |
Collapse
|
13
|
Abstract
Pulsed-field gel electrophoresis (PFGE) of isolates of Pythium oligandrum with linear mitochondrial genomes revealed a distinct band in ethidium bromide-stained gels similar in size to values estimated by restriction mapping of mitochondrial DNA (mtDNA). Southern analysis confirmed that these bands were mtDNA and indicated that linear genomes were present in unit-length size as well as multimers. Isolates of this species with circular mtDNA restriction maps also had low levels of linear mono- and multimers visualized by Southern analysis of PFGE gels. Examination of 17 additional species revealed similar results; three species had distinct linear mtDNA bands in ethidium bromide-stained gels while the remainder had linear mono- and multi-mers in lower amounts detected only by Southern analysis. Sequence analysis of an isolate of P. oligandrum with a primarily circular mitochondrial genomic map and a low amount of linear molecules revealed that the small unique region of the circular map (which corresponded to the terminal region of linear genomes) was flanked by palindromic intrastrand complementary sequences separated by a unique 194-bp sequence. Sequences with similarity to ATPase9 coding regions from other organisms were located adjacent to this region. Sequences with similarity to mitochondrial origins of replication and autonomously replicating sequences were also located in this region: their potential involvement in the generation of linear molecules is discussed.
Collapse
Affiliation(s)
- F N Martin
- Plant Pathology Department, University of Florida, Gainesville 32611, USA
| |
Collapse
|
14
|
Drissi R, Sor F, Nosek J, Fukuhara H. Genes of the linear mitochondrial DNA of Williopsis mrakii: coding sequences for a maturase-like protein, a ribosomal protein VAR1 homologue, cytochrome oxidase subunit 2 and methionyl tRNA. Yeast 1994; 10:391-8. [PMID: 8017108 DOI: 10.1002/yea.320100312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial DNA (mtDNA) in some yeasts has a linear structure with inverted terminal repeats closed by a single-stranded loop. These mtDNAs have generally a constant gene order, beginning with a small ribosomal RNA gene at the right end and terminating with a cytochrome oxidase subunit 2 gene (COX2) at the left end, independently of the wide variation in genome size. In the mtDNAs from several species of the genus Williopsis, we found an additional open reading frame, ORF1, which was homologous to the Saccharomyces cerevisiae RF1 gene encoding a group I intron maturase-like protein. ORF1 genes from W. mrakii and W. suaveolens were mapped and sequenced. Next to ORF1, COX2 and methionyl tRNA genes were present on the opposite strand. The same relative positions of genes in the mtDNAs so far examined suggests that the constancy of gene order is generally conserved also at the level of individual tRNA genes. We identified another open reading frame, ORF2, in W. mrakii mtDNA. It was mapped next to the cytochrome oxidase subunit 3 gene. Rich in adenine-thymine bases, ORF2 appears to be a homologue of the VAR1 gene which codes for a small ribosomal subunit protein in S. cerevisiae mitochondria. Nucleotide sequences data have been deposited in the EmBL data library under the following Accession Numbers: X66594 (Apocytochrome b and ORF2 genes of W. mrakii), X66595 (ORF1, tRNA-Met and COX2 genes of W. mrakii), X73415 (tRNA-Met and COX2 genes of W. suaveolens), X73416 (ORF1 gene of W. suaveolens) and X73414 (tRNA-Met and COX2 genes of P. jadinii).
Collapse
Affiliation(s)
- R Drissi
- Institut Curie, Centre Universitaire Paris XI, Orsay, France
| | | | | | | |
Collapse
|
15
|
Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G. Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr Genet 1993; 24:241-7. [PMID: 8221933 DOI: 10.1007/bf00351798] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mitochondrial genome of Chlamydomonas reinhardtii is a linear double-stranded DNA of 15.8 kb. With the exception of the termini its DNA sequence has been published. Here we describe the unique structure of the two termini determined from cloned fragments or, for the very terminal sequences, by the Maxam and Gilbert method after 5' labeling of uncloned terminal fragments. The 15.8-kb DNA is characterized by terminal inverted repeats of 531 or 532 bp in length including long 3' extensions. The 3' single-stranded extensions of the left and right ends are non-complementary, identical in sequence, and comprise 39 to 41 nucleotides. Remarkably, the linear genome possesses in addition an internal 86-bp repeat of the two outermost sequences. The unusual structure of the 15.8-kb DNA termini is compared with those of other linear mitochondrial DNAs. Possible mechanisms of 15.8-kb DNA replication are discussed.
Collapse
Affiliation(s)
- C Vahrenholz
- Botanisches Institut der Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
16
|
Abstract
Mitochondrial DNA was isolated from a yeast-like microorganism, Endomyces (Dipodascus) magnusii. The mtDNA consisted of circular molecules 40.4 kb long. A restriction map was constructed using the cleavage data of seven endonucleases. The arrangement of several genes within the mitochondrial genome of E. magnusii was established by specific hybridization with probes prepared from the mtDNA of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- P Griac
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji
| | | |
Collapse
|
17
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| |
Collapse
|
19
|
Okamoto K, Suzuki K, Yoshida K. Physical mapping and RFLP analysis of mtDNAs from the ascosporogenous yeasts: Saccharomyces exiguus, S. kluyveri and Hansenula wingei. IDENGAKU ZASSHI 1991; 66:709-18. [PMID: 1687653 DOI: 10.1266/jjg.66.709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial DNAs from the ascosporogenous yeasts S. exiguus, S. kluyveri and H. wingei were prepared by a new rapid method without CsCl isopycnic centrifugation. The mtDNA RFLPs were identified and clearly distinguished each species from the other. The physical maps were constructed by single and double digestion with nine restriction endonucleases. The location of rRNA genes was assigned to the maps by Southern hybridization with synthetic consensus probes. The genome sizes of these mtDNAs were estimated to be 45 kb for S. exiguus, 54 kb for S. kluyveri and 27 kb for H. wingei. The mtDNA RFLP analysis indicates a phylogenetic relationship among these yeasts. This indicates that S. cerevisiae is closer to H. wingei than S. kluyveri. However, the derived phylogenetic tree is completely consistent with that which was previously constructed on amino acid replacement in mating pheromones and electrophoretic karyotypes (Yoshida et al., 1989).
Collapse
Affiliation(s)
- K Okamoto
- Botanical Institute, Faculty of Science, Hiroshima University, Higashi, Japan
| | | | | |
Collapse
|
20
|
Coria R, Zalce ME, Mendoza V, Alvarez G, de Cobos AT, Brunner A. Restriction site variation, length polymorphism and changes in gene order in the mitochondrial DNA of the yeast Kluyveromyces lactics. Antonie Van Leeuwenhoek 1990; 58:227-34. [PMID: 1982049 DOI: 10.1007/bf00399333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of this work was to compare mitochondrial DNA restriction endonuclease patterns in strains of the yeast Kluyveromyces lactis, from different sources, to see how conserved is the organization of this organellar genome. The mitochondrial DNA of five independently-isolated strains and one of unknown origin were compared. Strains NRRL Y-1205, NRRL Y-8279 and NRRL Y-1140 gave identical patterns. Strain NRRL Y-1564 showed an insertion, with respect to the other three, of approximately 1250 bp. Strain W600B had also an insertion with extra restriction sites for EcoRI, HpaI, HaeIII, HincII and XbaI. On the other hand, strain Y-123 showed a restriction pattern quite different from the others. Sequences putatively encoding apocytochrome b, ATPase subunit 9 and ribosomal RNA large subunit, were localized on the physical maps of three strains. Results demonstrated that the order of these three genes shows a common feature in strains W600B and WM37 (auxotroph of Y-1140) but a different distribution in WM27 (auxotroph derived from Y-123). All these facts explain the extensive intraspecific polymorphism observed in the mtDNA of this yeast.
Collapse
Affiliation(s)
- R Coria
- Depto. de Microbiología, Universidad Nacional Autónoma de México, D.F
| | | | | | | | | | | |
Collapse
|
21
|
Uniformity of mitochondrial DNA complexity in Oomycetes and the evolution of the inverted repeat. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0147-5975(88)90038-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
23
|
Weber H, Barth G. Nonconventional yeasts: their genetics and biotechnological applications. Crit Rev Biotechnol 1988; 7:281-337. [PMID: 3064923 DOI: 10.3109/07388558809150535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To date, more than 500 species of yeasts have been described. Most of the genetic and biochemical studies have, however, been carried out with Saccharomyces cerevisiae. Although a considerable amount of knowledge has been accumulated on fundamental processes and biotechnological applications of this industrially important yeast, the large variety of other yeast genera and species may offer various advantages for experimental study as well as for product formation in biotechnology. The genetic investigation of these so-called unconventional yeasts is poorly developed and information about corresponding data is dispersed. It is the aim of this review to summarize and discuss the main results of genetic studies and biotechnological applications of unconventional yeasts and to serve as a guide for scientists who wish to enter this field or are interested in only some aspects of these yeasts.
Collapse
Affiliation(s)
- H Weber
- Central Institute of Microbiology and Experimental Therapy, Academy of Science GDR, Jena
| | | |
Collapse
|
24
|
Prokaryotic character of chloroplasts and mitochondria — the present knowledge. Folia Microbiol (Praha) 1987. [DOI: 10.1007/bf02881107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
|
26
|
|
27
|
Morin GB, Cech TR. The telomeres of the linear mitochondrial DNA of Tetrahymena thermophila consist of 53 bp tandem repeats. Cell 1986; 46:873-83. [PMID: 3019555 DOI: 10.1016/0092-8674(86)90069-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have cloned and sequenced the telomeric DNA of the linear mitochondrial DNA (mtDNA) of T. thermophila BVII. The mtDNA telomeres consist of a 53 bp sequence tandemly repeated from 4 to 30 times, with most molecules having 15 +/- 4 repetitions. The previously recognized terminal heterogeneity of the mtDNA is completely accounted for by the variability in the number of repeats. The 53 bp repeat does not resemble known telomeric DNA in sequence, repeat size, or number of repetitions. The termini occur at heterogeneous positions within the 53 bp repeat. The junction of the telomeric repeat with the internal DNA is at a different position within the telomeric repeat on each end of the mtDNA. We propose a model for the maintenance of the mtDNA ends involving unequal homologous recombination.
Collapse
|
28
|
Suyama Y, Fukuhara H, Sor F. A fine restriction map of the linear mitochondrial DNA of Tetrahymena pyriformis: genome size, map locations of rRNA and tRNA genes, terminal inversion repeat, and restriction site polymorphism. Curr Genet 1985; 9:479-93. [PMID: 2897250 DOI: 10.1007/bf00434053] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A fine restriction map of the linear mitochondrial DNA of Tetrahymena pyriformis strain ST is presented. 1. Based on agarose gel electrophoresis data together with limited nucleotide sequences available on some restriction fragments, we estimate the actual size of this genome to be about 55,000 base pairs. 2. Seven tRNA gene locations have been assigned, which are scattered along the genome length. Six of these locations encode the genes for tRNA(phe), tRNA(his), tRNA(trp), and tRNA(glu), and the duplicate tRNA(tyr) genes which are located at the inverted terminal repeat segments. The tRNA gene(s) encoded in one location has not been identified. We have not yet found the tRNA(leu) and tRNA(met) genes, which were previously shown to be encoded in the genome (Chiu et al. 1974; Suyama 1982). 3. We have mapped the 14S rRNA gene by sequencing the 170 bp segment of EcoRI fragment 8 and by aligning its sequence with E. coli 16S rRNA. From our recent complete sequence data the gene size was found to be about 1,650 bp, which is unexpectedly large for the 14S rRNA which has an estimated size of 1,300 bp. The 14S rRNA is probably a cleavage product of the larger primary transcript of which 200-300 bases of the 5' end are missing. 4. The duplicate copies of the 21S rRNA gene at the terminal duplication inversion segments were analyzed. ClaI fragment 7 (1,500 bp) corresponds in sequence from base position 850 to 2,390 of the 20S rRNA gene of Paramecium mitochondrial DNA (Seilhamer et al. 1984b). The 21S gene is approximately 2,500 bp long. The presence of some restriction site polymorphism is apparent in this segment. 5. Each of the 21S gene copies precedes the tRNA(tyr) gene, but the space flanking one tRNA(tyr) gene differs in size and restriction sites from the space flanking another tRNA(tyr) gene. Thus, this space corresponds to the segment of an imperfect match in the terminal duplication inversion of Goldbach et al. (1978a). 6. Saccharomyces cerevisiae mitochondrial probes including Cob, ATPase VI and IX, and cytochrome oxidase I gene sequences, 21S and 15S rRNAs, and mouse mitochondrial DNA showed no significant hybridization with any restriction fragments of Tetrahymena mitochondrial DNA. The results are in accordance with an extensive sequence divergence previously found in the Tetrahymena mitochondrial genome (Goldbach et al. 1977).
Collapse
Affiliation(s)
- Y Suyama
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
29
|
|
30
|
Kovác L, Lazowska J, Slonimski PP. A yeast with linear molecules of mitochondrial DNA. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:420-4. [PMID: 6098800 DOI: 10.1007/bf00329938] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitochondrial DNA from the yeast strain SR23, tentatively allocated to the species Candida rhagii, consists of linear molecules 30 kb long. This has been demonstrated by restriction analysis and selective radioactive labelling of terminal restriction fragments. Preliminary sequence analysis indicated that the two ends of the molecule are formed by inverted repeats. The arrangement of several genes in the mitochondrial genome of C. rhagii SR23 was established by specific hybridisation with probes prepared from mitochondrial DNA of Saccharomyces cerevisiae. The arrangement is unique, with genes coding for the two ribosomal RNAs placed widely apart. Intron(s) may be present in the gene coding for cytochrome b.
Collapse
|
31
|
The mitochondrial DNA of the yeast Hansenula petersonii: genome organization and mosaic genes. Curr Genet 1984; 8:449-55. [DOI: 10.1007/bf00433911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1984] [Indexed: 10/26/2022]
|
32
|
Affiliation(s)
- R R Sederoff
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27650, USA
| |
Collapse
|
33
|
Mahler HR. The exon:intron structure of some mitochondrial genes and its relation to mitochondrial evolution. INTERNATIONAL REVIEW OF CYTOLOGY 1983; 82:1-98. [PMID: 6352548 DOI: 10.1016/s0074-7696(08)60823-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
|