1
|
Loisel DA, Rockman MV, Wray GA, Altmann J, Alberts SC. Ancient polymorphism and functional variation in the primate MHC-DQA1 5' cis-regulatory region. Proc Natl Acad Sci U S A 2006; 103:16331-6. [PMID: 17053068 PMCID: PMC1637582 DOI: 10.1073/pnas.0607662103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Precise regulation of MHC gene expression is critical to vertebrate immune surveillance and response. Polymorphisms in the 5' proximal promoter region of the human class II gene HLA-DQA1 have been shown to influence its transcriptional regulation and may contribute to the pathogenesis of autoimmune diseases. We investigated the evolutionary history of this cis-regulatory region by sequencing the DQA1 5' proximal promoter region in eight nonhuman primate species. We observed unexpectedly high levels of sequence variation and multiple strong signatures of balancing selection in this region. Specifically, the considerable DQA1 promoter region diversity was characterized by abundant shared (or trans-species) polymorphism and a pronounced lack of fixed differences between species. The majority of transcription factor binding sites in the DQA1 promoter region were polymorphic within species, and these binding site polymorphisms were commonly shared among multiple species despite evidence for negative selection eliminating a significant fraction of binding site mutations. We assessed the functional consequences of intraspecific promoter region diversity using a cell line-based reporter assay and detected significant differences among baboon DQA1 promoter haplotypes in their ability to drive transcription in vitro. The functional differentiation of baboon promoter haplotypes, together with the significant deviations from neutral sequence evolution, suggests a role for balancing selection in the evolution of DQA1 transcriptional regulation in primates.
Collapse
Affiliation(s)
- Dagan A. Loisel
- *Department of Biology, Duke University, Durham, NC 27705
- To whom correspondence may be addressed. E-mail:
or
| | - Matthew V. Rockman
- Lewis–Sigler Institute for Integrative Genomics and
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Gregory A. Wray
- *Department of Biology, Duke University, Durham, NC 27705
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27705
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Department of Conservation Biology, Chicago Zoological Society, Brookfield, IL 60513; and
- **Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- To whom correspondence may be addressed. E-mail:
or
| | - Susan C. Alberts
- *Department of Biology, Duke University, Durham, NC 27705
- **Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
2
|
Celada A, McKercher SR, Maki RA. Identification of the transcription factors NF-YA and NF-YB as factors A and B that bound to the promoter of the major histocompatibility complex class II gene I-A beta. Biochem J 1996; 317 ( Pt 3):771-7. [PMID: 8760361 PMCID: PMC1217551 DOI: 10.1042/bj3170771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Y box is a conserved sequence in the promoter of major histocompatibility complex (MHC) class II genes, which contains a CCAAT sequence (CCAAT box). Previously, we partially purified the DNA-binding protein that recognizes the Y box of the I-A beta gene and showed that it consisted of two components (factors A and B) both of which were necessary for optimal DNA binding. The genes for the heteromeric protein NF-Y (NF-YA and NF-YB), which binds to the I-E alpha Y box have been cloned. We subsequently isolated the genes for NF-YA and NF-YB using oligonucleotides designed from the published sequences. NF-YA and NF-YB were tested for binding to the I-A beta and I-E alpha Y boxes. While neither NF-YA or NF-YB alone bound to the Y box, when the components were mixed the complex bound to the I-A beta Y box with high affinity. Moreover, NF-YA and NF-YB could be complemented for binding to DNA by factor B or factor A, respectively. These results suggest that the active binding protein is NF-YA in factor A extracts and NF-YB in factor B extracts. Finally, antibodies against NF-YA and NF-YB were shown to induce a supershift when nuclear extracts were added to the double-stranded oligodeoxynucleotide covering the Y box of the I-A beta gene. Antisense expression constructs of both NF-YA and NF-YB were made and their effect on expression from the I-A beta promoter was tested. Either antisense construction, when transfected into cells, lowered the expression of a reporter gene linked to the I-A beta promoter. This study provides direct evidence of the identification of NF-YA and NF-YB as the previously described factors A and B. Moreover, these results strongly implicate NF-Y in the expression of the MHC class II gene I-A beta.
Collapse
Affiliation(s)
- A Celada
- Departament de Fisiologia (Immunologia), Facultad de Biologia, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
3
|
Celada A, Gil P, McKercher SR, Maki RA. Identification of a transcription factor that binds to the S box of the I-A beta gene of the major histocompatibility complex. Biochem J 1996; 313 ( Pt 3):737-44. [PMID: 8611149 PMCID: PMC1216972 DOI: 10.1042/bj3130737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Class II genes of the MHC show a striking homology upstream of the transcription start site that is composed of three conserved sequences (S, X and Y boxes, each separated by 15-20 bp). The presence of the S-box sequence in the mouse MHC class II gene I-A Beta was examined for its influence on the expression of this gene. Deletion or mutation of the S box decreased the induction of chloramphenicol acetyltransferase (CAT) activity in B lymphocytes by 32%. In macrophages, deletion or mutation of the S box abolished interferon-gamma (IFN-gamma) inducibility of CAT activity. Using a gel-retardation assay, we have identified a nuclear factor whose binding site overlaps the 7-mer conserved sequence of the S box. This factor is present in lymphocytes, macrophages, mastocytes and fibroblasts. Surprisingly, binding of this nuclear factor to DNA was induced by IFN-gamma in bone-marrow-derived macrophages, but not in macrophage-like cell lines. The binding site for this factor was defined by DNase I footprinting and partially purified by using an affinity column containing double-stranded oligonucleotides containing a sequence of the S box. A prominent protein of 43 kDa was found that bound specifically to the S-box sequence.
Collapse
Affiliation(s)
- A Celada
- Department de Fisiologia (Immunologia), Facultad de Biologia, Universtat de Barcelona, Spain
| | | | | | | |
Collapse
|
4
|
Bellorini M, Dantonel JC, Yoon JB, Roeder RG, Tora L, Mantovani R. The major histocompatibility complex class II Ea promoter requires TFIID binding to an initiator sequence. Mol Cell Biol 1996; 16:503-12. [PMID: 8552077 PMCID: PMC231028 DOI: 10.1128/mcb.16.2.503] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The major histocompatibility complex (MHC) class II Ea promoter is dependent on the presence of conserved upstream X and Y boxes and of initiator (Inr) sequences. In vitro transcription analysis of the Inr region with linker-scanning mutants pinpoints a functionally essential element that shows homology to the terminal deoxynucleotidyltransferase (TdT) Inr; contrary to the TdT Inr and other Inrs identified so far, the key sequence, between positions +5 and +12, is located within a transcribed area. Swapping the TdT sequence into the corresponding Ea position leads to a fivefold increase in transcription rate, without altering start site selection. Inr-binding proteins LBP-1/CP2 and TIP--a TdT Inr-binding protein unrelated to YY1--recognize the Ea Inr; they interact with overlapping yet distinct sequences around the Cap site, but their binding does not coincide with Ea Inr activity. A good correlation is, rather, found with binding of immunopurified holo-TFIID to this element. TFIID interacts both with Ea TATA-like and Inr sequences, but only the latter is functionally relevant. Unlike TBP, TFIID binds in the absence of TFIIA, indicating a stabilizing role for TBP-associated factors in Ea promoter recognition. Sequence comparison with other mouse and human MHC class II promoters suggests a common mechanism of start site(s) selection for the MHC class II gene family.
Collapse
Affiliation(s)
- M Bellorini
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Abdulkadir SA, Krishna S, Thanos D, Maniatis T, Strominger JL, Ono SJ. Functional roles of the transcription factor Oct-2A and the high mobility group protein I/Y in HLA-DRA gene expression. J Exp Med 1995; 182:487-500. [PMID: 7629508 PMCID: PMC2192141 DOI: 10.1084/jem.182.2.487] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The class II major histocompatibility complex gene HLA-DRA is expressed in B cells, activated T lymphocytes, and in antigen-presenting cells. In addition, HLA-DRA gene expression is inducible in a variety of cell types by interferon-gamma (IFN-gamma). Here we show that the lymphoid-specific transcription factor Oct-2A plays a critical role in HLA-DRA gene expression in class II-positive B cell lines, and that the high mobility group protein (HMG) I/Y binds to multiple sites within the DRA promoter, including the Oct-2A binding site. Coexpression of HMG I/Y and Oct-2 in cell lines lacking Oct-2 results in high levels of HLA-DRA gene expression, and in vitro DNA-binding studies reveal that HMG I/Y stimulates Oct-2A binding to the HLA-DRA promoter. Thus, Oct-2A and HMG I/Y may synergize to activate HLA-DRA expression in B cells. By contrast, Oct-2A is not involved in the IFN-gamma induction of the HLA-DRA gene in HeLa cells, but antisense HMG I/Y dramatically decreases the level of induction. We conclude that distinct sets of transcription factors are involved in the two modes of HLA-DRA expression, and that HMG I/Y may be important for B cell-specific expression, and is essential for IFN-gamma induction.
Collapse
Affiliation(s)
- S A Abdulkadir
- Department of Medicine, Lucille P. Markey Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore 21224, USA
| | | | | | | | | | | |
Collapse
|
6
|
Sugawara M, Scholl T, Mahanta SK, Ponath PD, Strominger JL. Cooperativity between the J and S elements of class II major histocompatibility complex genes as enhancers in normal and class II-negative patient and mutant B cell lines. J Exp Med 1995; 182:175-84. [PMID: 7790817 PMCID: PMC2192087 DOI: 10.1084/jem.182.1.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The class II major histocompatibility complex genes all contain in their proximal promoters three cis-elements called S, X, and Y that are conserved in both sequence and position, and a fourth element, J, conserved in sequence but not in position. J, X, and Y and, to some extent, S, have been shown to be functionally important in regulation of expression of these genes. In the present study, a protein factor that binds cooperatively to the S plus J elements of the promoter of the class II major histocompatibility complex gene DPA has been detected. Moreover, functional cooperativity between S and J in activation of the enhancerless -40 interferon-beta (-40 IFN-beta) promoter has been demonstrated. Finally, the latter assay appears to subdivide complementation group A of class II negative human B cell lines that includes both mutants generated in vitro and cells from patients with the bare lymphocyte syndrome (type II). In three of these cell lines, the enhancerless -40 IFN-beta promoter containing the S plus J elements was functionally active, while in the others it was inactive.
Collapse
Affiliation(s)
- M Sugawara
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
7
|
Huang K, Fishwild DM, Wu HM, Dedrick RL. Lipopolysaccharide-induced E-selectin expression requires continuous presence of LPS and is inhibited by bactericidal/permeability-increasing protein. Inflammation 1995; 19:389-404. [PMID: 7543076 DOI: 10.1007/bf01534395] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Endothelial cells stimulated by LPS express E-selectin, which plays an important role in mediating neutrophil adhesion during inflammation. E-selectin is induced within 1-2 h, peaks at 4-6 h, and gradually returns to basal level by 24 h. rBPI21, a recombinant N-terminal fragment of human bactericidal/permeability-increasing protein (BPI), inhibited LPS-induced E-selectin expression when added at the same time as, and up to 6 h after, LPS. Delayed administration of rBPI21 also affected LPS-mediated activation of the nuclear factor, NF-kappa B. Two to 4 h following LPS addition to endothelial cells, when NF-kappa B was already activated, addition of rBPI21 resulted in marked reduction of NF-kappa B detectable at 4 or 6 h. These results indicate that endothelial activation requires continuous presence of LPS, and rBPI21 acts to reverse LPS-mediated endothelial activation by interrupting the on-going LPS signal.
Collapse
Affiliation(s)
- K Huang
- Department of Immunology, XOMA Corporation, Berkeley, California 94710, USA
| | | | | | | |
Collapse
|
8
|
Voliva CF, Jabrane-Ferrat N, Peterlin BM. The function of the octamer-binding site in the DRA promoter. Immunogenetics 1995; 43:20-6. [PMID: 8537118 DOI: 10.1007/bf00186600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The octamer binding site, which is located immediately upstream of the poorly conserved DRA TATA sequence, is important for high levels of expression of this human major histocompatibility class II gene in B cells. In this study, we demonstrate that the substitution of the DRA TATA sequence with the TATA box from the adenovirus E1b promoter removes the requirement for the octamer binding site for high levels of expression from the DRA promoter. Since only the TATA box from the E1b but not the DRA promoters binds the TATA binding protein, we conclude that the octamer binding site helps to recruit TBP to the DRA promoter.
Collapse
Affiliation(s)
- C F Voliva
- Searle Research and Development, Monsanto Company, St. Louis, MO 63198, USA
| | | | | |
Collapse
|
9
|
Ting JP, Painter A, Zeleznik-Le NJ, MacDonald G, Moore TM, Brown A, Schwartz BD. YB-1 DNA-binding protein represses interferon gamma activation of class II major histocompatibility complex genes. J Exp Med 1994; 179:1605-11. [PMID: 8163940 PMCID: PMC2191494 DOI: 10.1084/jem.179.5.1605] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Interferon gamma (IFN-gamma) is the most potent inducer of class II major histocompatibility complex (MHC) genes. This induction is uniquely mediated by three DNA elements in the promoter region of class II MHC genes. One of these DNA elements, Y, contains an inverted CCAAT box. Previously, we have screened a lambda gt11 library for Y-binding proteins and identified the YB-1 gene. Here we provide evidence that YB-1 can repress the IFN-gamma induction of class II MHC promoter as well as the Invariant chain (Ii) gene which also contains a Y element in its promoter. This was demonstrated by cotransfecting a YB-1 expression vector with promoter-reporter gene constructs. As an alternate approach, an efficient transient transfection system was developed which resulted in a > 70% transfection efficiency. Transfection of YB-1 by this procedure resulted in the near abrogation of IFN-gamma induced HLA-DR antigen and mRNA expression. These findings show the functional suppression of class II MHC gene induction by the YB-1 protein.
Collapse
Affiliation(s)
- J P Ting
- Department of Microbiology-Immunology, University of North Carolina at Chapel Hill 27599-7295
| | | | | | | | | | | | | |
Collapse
|
10
|
A unique palindromic element mediates gamma interferon induction of mig gene expression. Mol Cell Biol 1994. [PMID: 8289831 DOI: 10.1128/mcb.14.2.914] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To define the molecular mechanisms involved in the action of gamma interferon (IFN-gamma), we have analyzed the transcriptional regulation of the mig (monokine induced by gamma interferon) gene, a member of the platelet factor 4-interleukin-8 cytokine family that is expressed in murine macrophages specifically in response to IFN-gamma. Analysis of mig/CAT chimeric constructs transiently transfected into the RAW 264.7 mouse monocytic cell line revealed a unique IFN-gamma-responsive element (gamma RE-1). The sequence of this cis regulatory element defined by deletion analysis contains an imperfect inverted repeat extending 27 bp. Examination of mig/CAT constructs with mutations in gamma RE-1 revealed that the palindromic positions in the element were essential for activity. Consistent with its function as an enhancer, a single copy of gamma RE-1 conferred IFN-gamma inducibility to a heterologous (herpes simplex virus thymidine kinase) promoter. Exonuclease III protection assays demonstrated symmetrical protection of a mig promoter fragment centered about the gamma RE-1 palindromic sequence. Using the gel electrophoretic mobility shift assay, we identified a factor (gamma RF-1) present in nuclear extracts prepared from IFN-gamma-stimulated RAW 264.7 cells which binds to gamma RE-1. The activation of gamma RF-1 occurred rapidly (within 1 min) in response to IFN-gamma and was independent of protein synthesis. Similar to the expression of mig mRNA, the formation of gamma RF-1 was selectively induced by IFN-gamma and not IFN-alpha. The regulation of gene expression through gamma RF-1 and gamma RE-1 may explain the preferential activation of a subset of interferon-inducible genes by IFN-gamma.
Collapse
|
11
|
Wong P, Severns CW, Guyer NB, Wright TM. A unique palindromic element mediates gamma interferon induction of mig gene expression. Mol Cell Biol 1994; 14:914-22. [PMID: 8289831 PMCID: PMC358446 DOI: 10.1128/mcb.14.2.914-922.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To define the molecular mechanisms involved in the action of gamma interferon (IFN-gamma), we have analyzed the transcriptional regulation of the mig (monokine induced by gamma interferon) gene, a member of the platelet factor 4-interleukin-8 cytokine family that is expressed in murine macrophages specifically in response to IFN-gamma. Analysis of mig/CAT chimeric constructs transiently transfected into the RAW 264.7 mouse monocytic cell line revealed a unique IFN-gamma-responsive element (gamma RE-1). The sequence of this cis regulatory element defined by deletion analysis contains an imperfect inverted repeat extending 27 bp. Examination of mig/CAT constructs with mutations in gamma RE-1 revealed that the palindromic positions in the element were essential for activity. Consistent with its function as an enhancer, a single copy of gamma RE-1 conferred IFN-gamma inducibility to a heterologous (herpes simplex virus thymidine kinase) promoter. Exonuclease III protection assays demonstrated symmetrical protection of a mig promoter fragment centered about the gamma RE-1 palindromic sequence. Using the gel electrophoretic mobility shift assay, we identified a factor (gamma RF-1) present in nuclear extracts prepared from IFN-gamma-stimulated RAW 264.7 cells which binds to gamma RE-1. The activation of gamma RF-1 occurred rapidly (within 1 min) in response to IFN-gamma and was independent of protein synthesis. Similar to the expression of mig mRNA, the formation of gamma RF-1 was selectively induced by IFN-gamma and not IFN-alpha. The regulation of gene expression through gamma RF-1 and gamma RE-1 may explain the preferential activation of a subset of interferon-inducible genes by IFN-gamma.
Collapse
Affiliation(s)
- P Wong
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | | | |
Collapse
|
12
|
Thanos D, Gregoriou M, Stravopodis D, Liapaki K, Makatounakis T, Papamatheakis J. The MHC class II E beta promoter: a complex arrangement of positive and negative elements determines B cell and interferon-gamma (IFN-gamma) regulated expression. Nucleic Acids Res 1993; 21:6010-9. [PMID: 8290364 PMCID: PMC310488 DOI: 10.1093/nar/21.25.6010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 5' proximal region of the E beta gene was studied with respect to B lymphoid expression and responsiveness to cytokines, revealing a complex array of general and cell type specific cis-elements and factors. Full lymphoid activity and response to interferon-gamma (IFN-gamma) is generated by the concerted action of the MHC boxes (H, X and Y) and additional elements. Combinatorial interactions between elements and their cognate factors are indicated by several lines of evidence. Thus, mutations within the X box in the promoter context are strongly deleterious to both B lymphoid activity and IFN-gamma regulation. However, the X box alone has minimal lymphoid activity upon heterologous promoters. Data from deletion, insertion and site directed mutagenesis demonstrate that sequences extending approximately 35 bp 5' of the X box (designated as Cytokine Response Sequence--CRS) have a dual role: they are required for cytokine-regulated expression as well as serving as an enhancer element for cell-specific constitutive expression. A region that carries X and CRS permits both lymphoid activity and IFN-gamma response. In contrast, sequences that include X and the downstream Y box are constitutively active in all cell types tested. Combination of the sequences both upstream and downstream of the X box results in a tissue-specific and cytokine-regulated enhancer of full strength. In vivo competition studies show that titratable trans-acting factors, shared by Class I and Class II promoters, mediate the CRS-dependent IFN-gamma response. We report here the identification of novel nuclear complexes that bind to the CRS and recognize sites which correlate with its negative or positive elements. One of these complexes is present in B lymphoid cells only. Three other CRS complexes that are upregulated by either IFN-alpha and IFN-gamma are competed by a non-Class II, IFN-alpha stimulated response element (ISRE), providing evidence for the functional interconnection of these cytokines.
Collapse
Affiliation(s)
- D Thanos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Crete, Greece
| | | | | | | | | | | |
Collapse
|
13
|
Mantovani R, Tora L, Moncollin V, Egly JM, Benoist C, Mathis D. The major histocompatibility complex (MHC) Ea promoter: sequences and factors at the initiation site. Nucleic Acids Res 1993; 21:4873-8. [PMID: 8177733 PMCID: PMC311399 DOI: 10.1093/nar/21.21.4873] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have analysed the function of sequences in the TATA/initiator region of the promoter of Ea, a class II gene of the Major Histocompatibility Complex. We find that the Ea promoter contains an initiator element with a strong influence on transcription. We also find that the Ea promoter does contain a bona fide TATA box, which can be recognized by the TATA binding protein (TBP), and that TBP is required for transcriptional activity. For activity, TBP must be included within a larger TFIID complex, as Ea transcription in a heat-treated extract can be restored by immunopurified TFIID but not by TBP alone. On the other hand, the TATA motif can be eliminated without significantly affecting either the efficiency or the startsites of transcription. This suggests that TBP, even in this TATA-containing promoter, is held in place by other components of the initiation complex, regardless of its affinity for the underlying DNA.
Collapse
Affiliation(s)
- R Mantovani
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire de Génie Génétique de l'INSERM, Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
14
|
Celada A, McKercher S, Maki RA. Repression of major histocompatibility complex IA expression by glucocorticoids: the glucocorticoid receptor inhibits the DNA binding of the X box DNA binding protein. J Exp Med 1993; 177:691-8. [PMID: 8436907 PMCID: PMC2190934 DOI: 10.1084/jem.177.3.691] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glucocorticoids are effective repressors of major histocompatibility complex (MHC) class II gene expression. The repression occurs in B cells, which constitutively express MHC class II, as well as in macrophages, which only express MHC class II after the cells are treated with interferon gamma. For the MHC class II gene IA beta, this negative regulation has been linked to the X box DNA sequence, located with the IA beta promoter. The addition of the glucocorticoid receptor was shown to inhibit the DNA binding of the X box DNA binding protein to the X box. The DNA binding of two other DNA binding proteins that recognize elements within this promoter was unaffected by the addition of glucocorticoid receptor. It is likely that the repression of IA beta gene expression by glucocorticoids occurs because the X box DNA binding protein is prevented from binding to the DNA and activating transcription.
Collapse
Affiliation(s)
- A Celada
- La Jolla Cancer Research Foundation, California 92037
| | | | | |
Collapse
|
15
|
Cox PM, Goding CR. An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DR alpha promoter and activation by SV40 T-antigen. Nucleic Acids Res 1992; 20:4881-7. [PMID: 1329030 PMCID: PMC334246 DOI: 10.1093/nar/20.18.4881] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Constitutive expression of major histocompatibility complex class II (MHC II) antigens normally occurs in B-lymphocytes and antigen presenting cells of the monocyte/macrophage lineage. However, many malignant tumours and transformed cells express these proteins aberrantly. We demonstrate here that the MHC II DR alpha promoter is constitutively active both in the SV40 large T antigen transformed cell line, COS, and in CV1 cells from which they are derived. As an approach to understanding the molecular mechanisms underlying aberrant DR alpha expression we have examined the cis- and trans-acting requirements for DR alpha transcription in these cell types. Electrophoretic mobility shift assays showed that the region immediately 3' to the X-box was bound by a member of the ATF/CREB family of transcription factors. Using deletions and point mutations in the DR alpha promoter we demonstrate that, in contrast to B-cells, the octamer motif and conserved X- and Y-boxes make only a minor contribution to promoter function while single point mutations in the ATF/CREB motif reduced transcription up to 20-fold. In addition, we show that the DR alpha promoter is activated by SV40 large T-antigen and that activation requires an intact ATF/CREB motif. Similar data were obtained using B16 melanoma cells. These results suggest that the ATF/CREB motif may be a target for transcription deregulation in several transformed cell types.
Collapse
Affiliation(s)
- P M Cox
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, Oxted, Surrey, UK
| | | |
Collapse
|
16
|
Ivashkiv LB, Glimcher LH. Repression of class II major histocompatibility complex genes by cyclic AMP is mediated by conserved promoter elements. J Exp Med 1991; 174:1583-92. [PMID: 1660527 PMCID: PMC2119024 DOI: 10.1084/jem.174.6.1583] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The induction of cell surface expression of class II major histocompatibility complex (MHC) antigens by interleukin (IL)-4 and interferon (IFN)-gamma is inhibited by elevation of intracellular cyclic (c)AMP, which is caused by immunomodulatory agents such as E series prostaglandins (PGEs). To investigate the mechanism of this downregulation, we have analyzed the consequences of elevating intracellular cAMP on cell surface expression, mRNA levels, and promoter activity of the murine A alpha and E beta class II MHC genes. Elevation of cAMP resulted in a coordinate repression of both basal and inducible A alpha and E beta expression. 151 and 192 base pairs of A alpha and E beta promoter sequence, respectively, were sufficient for conferring repression by cAMP on a reporter gene. A mutational analysis of the A alpha promoter revealed that cAMP downregulation is mediated by the conserved S and X1 DNA elements, which are also necessary for induction by cytokines. Downregulation by cAMP was not dependent on an intact X2 site, which is identical in sequence to the CRE element which mediates the positive regulation of several genes by cAMP. These results identify the DNA elements which mediate repression of class II MHC genes by cAMP and show that the same DNA sequences can mediate both positive and negative regulation of class II MHC expression.
Collapse
Affiliation(s)
- L B Ivashkiv
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
17
|
Hasegawa SL, Boss JM. Two B cell factors bind the HLA-DRA X box region and recognize different subsets of HLA class II promoters. Nucleic Acids Res 1991; 19:6269-76. [PMID: 1956787 PMCID: PMC329138 DOI: 10.1093/nar/19.22.6269] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The class II genes of the human Major Histocompatibility Complex (MHC) encode three isotypes of alpha/beta heterodimeric proteins, HLA-DR, -DQ, and -DP, which are responsible for presenting processed antigens to T helper lymphocytes. These MHC class II genes are expressed in a coordinate manner. The promoter regions of all MHC class II genes share a set of highly conserved elements that mediate different levels of tissue-specific and inducible transcription. One element, the X box, appears to be the major positive element in B cell-specific expression, and nuclear protein binding studies have subdivided this region into the X1 and X2 boxes. Regulatory Factor X (RFX) binds to the X1 box whereas several other factors have been described that bind to the X2 box. In this report, we further characterize the X1 binding protein RFX and show that RFX binds poorly to beta chain gene promoters. In particular, RFX does not bind to the DRB gene, which is expressed at the highest levels of all beta chain genes. In addition, we have identified an X2 box binding activity in human B cell extracts that binds with high affinity to the HLA-DRA promoter. This X2 binding protein, X2BP, binds to a different subset of class II promoters than does RFX. These findings suggest that coordinate regulation of class II expression may involve different combinations or arrangements of transcriptional elements and factors instead of a common set.
Collapse
Affiliation(s)
- S L Hasegawa
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | |
Collapse
|
18
|
Sugawara M, Ponath PD, Shin J, Yang Z, Strominger JL. Delineation of a previously unrecognized cis-acting element required for HLA class II gene expression. Proc Natl Acad Sci U S A 1991; 88:10347-51. [PMID: 1946454 PMCID: PMC52925 DOI: 10.1073/pnas.88.22.10347] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cis-acting DNA sequences that control expression of the HLA-DPA and HLA-DQB promoters have been investigated in detail. A set of recombinant plasmids containing 5' promoter deletions as well as site-directed mutants of the DPA and DQB genes were fused to a reporter gene and transfected into human B and interferon gamma (IFN-gamma)-inducible cells. A previously unrecognized cis element, which is essential both for transcription induced by IFN-gamma in several cell types and for constitutive class II expression in B cells, in addition to the well known X and Y boxes, has been defined. This sequence, which spans nucleotides -107 to -98 and -146 to -137 of the DPA and DQB promoters, respectively, has been called the J element. Some evidence for function of a fourth element, the S element, is also presented.
Collapse
Affiliation(s)
- M Sugawara
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | | | | | | | |
Collapse
|
19
|
Bono MR, Alcaïde-Loridan C, Couillin P, Letouzé B, Grisard MC, Jouin H, Fellous M. Human chromosome 16 encodes a factor involved in induction of class II major histocompatibility antigens by interferon gamma. Proc Natl Acad Sci U S A 1991; 88:6077-81. [PMID: 1906174 PMCID: PMC52025 DOI: 10.1073/pnas.88.14.6077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interferon gamma (IFN-gamma) induces expression of class II major histocompatibility complex (MHC)-encoded antigens in immunocompetent cells. To gain further insight into the mechanism of this induction, we prepared somatic cell hybrids between different human cell lines and a murine cell line, RAG, that does not express murine class II MHC antigens before or after treatment with murine IFN-gamma. Some of the resulting cell hybrids express murine class II MHC antigens when treated with murine IFN-gamma. This inducible phenotype is correlated with the presence of human chromosome 16. It has been shown previously that the induction of class I MHC antigens by human IFN-gamma in human-rodent hybrids requires the presence of species-specific factors encoded by chromosome 6, which bears the gene for the human IFN-gamma receptor, and chromosome 21, whose product(s) is necessary for the transduction of human IFN-gamma signals. In this report, we show that the induction of murine class II MHC antigens by human IFN-gamma in the human-RAG cell hybrids requires, likewise, the presence of human chromosomes 6 and 21, in addition to chromosome 16. In some of these hybrids, when all three of these human chromosomes were present, induction of cell-surface HLA-DR antigens was also observed. Our results demonstrate that human chromosome 16 encodes a non-species-specific factor involved in the induction of class II MHC antigens by IFN-gamma.
Collapse
Affiliation(s)
- M R Bono
- Institut National de la Santé et de la Recherche Médicale, U.276, Université Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Stereospecific alignment of the X and Y elements is required for major histocompatibility complex class II DRA promoter function. Mol Cell Biol 1991. [PMID: 1901941 DOI: 10.1128/mcb.11.5.2406] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory mechanisms controlling expression of the major histocompatibility complex (MHC) class II genes involve several cis-acting DNA elements, including the X and Y boxes. These two elements are conserved within all murine and human class II genes and are required for accurate and efficient transcription from MHC class II promoters. Interestingly, the distance between the X and Y elements is also evolutionarily conserved at 18 to 20 bp. To investigate the function of the invariant spacing in the human MHC class II gene, HLA-DRA, we constructed a series of spacing mutants which alters the distance between the X and Y elements by integral and half-integral turns of the DNA helix. Transient transfection of the spacing constructs into Raji cells revealed that inserting integral turns of the DNA helix (+20 and +10 bp) did not reduce promoter activity, while inserting or deleting half-integral turns of the DNA helix (+15, +5, and -5 bp) drastically reduced promoter activity. The loss of promoter function in these half-integral turn constructs was due neither to the inability of the X and Y elements to bind proteins nor to improper binding of the X- and Y-box-binding proteins. These data indicate that the X and Y elements must be aligned on the same side of the DNA helix to ensure normal function. This requirement for stereospecific alignment strongly suggests that the X- and Y-box-binding proteins either interact directly or are components of a larger transcription complex which assembles on one face of the DNA double helix.
Collapse
|
21
|
Vilen BJ, Cogswell JP, Ting JP. Stereospecific alignment of the X and Y elements is required for major histocompatibility complex class II DRA promoter function. Mol Cell Biol 1991; 11:2406-15. [PMID: 1901941 PMCID: PMC359998 DOI: 10.1128/mcb.11.5.2406-2415.1991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The regulatory mechanisms controlling expression of the major histocompatibility complex (MHC) class II genes involve several cis-acting DNA elements, including the X and Y boxes. These two elements are conserved within all murine and human class II genes and are required for accurate and efficient transcription from MHC class II promoters. Interestingly, the distance between the X and Y elements is also evolutionarily conserved at 18 to 20 bp. To investigate the function of the invariant spacing in the human MHC class II gene, HLA-DRA, we constructed a series of spacing mutants which alters the distance between the X and Y elements by integral and half-integral turns of the DNA helix. Transient transfection of the spacing constructs into Raji cells revealed that inserting integral turns of the DNA helix (+20 and +10 bp) did not reduce promoter activity, while inserting or deleting half-integral turns of the DNA helix (+15, +5, and -5 bp) drastically reduced promoter activity. The loss of promoter function in these half-integral turn constructs was due neither to the inability of the X and Y elements to bind proteins nor to improper binding of the X- and Y-box-binding proteins. These data indicate that the X and Y elements must be aligned on the same side of the DNA helix to ensure normal function. This requirement for stereospecific alignment strongly suggests that the X- and Y-box-binding proteins either interact directly or are components of a larger transcription complex which assembles on one face of the DNA double helix.
Collapse
Affiliation(s)
- B J Vilen
- Lineberger Cancer Research Center, Chapel Hill, North Carolina
| | | | | |
Collapse
|
22
|
Hasegawa SL, Sloan JH, Reith W, Mach B, Boss JM. Regulatory factor-X binding to mutant HLA-DRA promoter sequences. Nucleic Acids Res 1991; 19:1243-9. [PMID: 1903200 PMCID: PMC333849 DOI: 10.1093/nar/19.6.1243] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The class II genes of the major histocompatibility complex (MHC) encode a family of cell surface glycoproteins that present processed antigen to the T cell receptor. Class II genes are regulated coordinately, responding to both immunologic and developmental signals. Conserved sequence elements 5' to class II genes have been shown to be important in transcriptional control. One of these sequences, the X box, is a specific target for the binding of the factor RF-X. In the hereditary HLA class II deficiency, a form of primary immunodeficiency, a regulatory defect in expression of class II genes is associated with a defect in the binding of RF-X. To determine the basepairs that are important for this binding interaction, a series of single basepair substitutions spanning the X box motif of the DRA gene was constructed and tested for binding of RF-X by gel electrophoresis mobility shift assays (EMSAs). Several, but not all, of the mutants severely affected binding of RF-X. In addition, the binding of both the natural and the recombinant form of RF-X was affected with the same specificity. A comparison of X box basepair positions important for RF-X binding to DRA with sequences conserved between X boxes of other class II alpha chain genes suggests that high affinity RF-X binding is important for a high level of expression and may explain differences in the levels of class II expression of different class II alpha chains.
Collapse
Affiliation(s)
- S L Hasegawa
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | |
Collapse
|
23
|
Zeleznik-Le NJ, Azizkhan JC, Ting JP. Affinity-purified CCAAT-box-binding protein (YEBP) functionally regulates expression of a human class II major histocompatibility complex gene and the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A 1991; 88:1873-7. [PMID: 1848012 PMCID: PMC51128 DOI: 10.1073/pnas.88.5.1873] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Efficient major histocompatibility complex class II gene expression requires conserved protein-binding promoter elements, including X and Y elements. We affinity purified an HLA-DRA Y-element (CCAAT)-binding protein (YEBP) and used it to reconstitute Y-depleted HLA-DRA in vitro transcription. This directly demonstrates a positive functional role for YEBP in HLA-DRA transcription. The ability of YEBP to regulate divergent CCAAT elements was also assessed; YEBP was found to partially activate the thymidine kinase promoter. This functional analysis of YEBP shows that this protein plays an important role in the regulation of multiple genes.
Collapse
Affiliation(s)
- N J Zeleznik-Le
- Lineberger Cancer Research Center, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
24
|
Schanberg LE, Fleenor DE, Kurtzberg J, Haynes BF, Kaufman RE. Isolation and characterization of the genomic human CD7 gene: structural similarity with the murine Thy-1 gene. Proc Natl Acad Sci U S A 1991; 88:603-7. [PMID: 1703303 PMCID: PMC50860 DOI: 10.1073/pnas.88.2.603] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human CD7 molecule is a 40-kDa member of the immunoglobulin gene superfamily that is expressed on T-lymphoid and myeloid precursors in fetal liver and bone marrow. CD7 is also expressed on T lymphocytes in multiple stages of T-cell development, including a major subset of mature peripheral T cells. In this paper we report the isolation and characterization of the human CD7 gene and 5' flanking region. Sequence analysis revealed that the CD7 gene comprises four exons that span 3.5 kilobases. The 5' flanking region (506 base pairs) has a high G + C content and no "TATA" or "CCAAT" elements. DNase I sensitivity analysis of chromatin from the CD7+ progenitor cell leukemia line, DU528, and the CD7-, CD4+, CD8+, TCR alpha beta + T-cell line, DU980 (where TCR is the T-cell receptor), revealed two distinct hypersensitive sites 5' of the CD7 gene. Hypersensitive site 1, present in the DU980 T-cell line, was located 4.5 kilobases upstream of the presumed CD7 transcription initiation site. Only DNase I hypersensitive site 2, which mapped to the promoter region, was found in the DU528 line. Comparison of the organization of the CD7 gene with that of other members of the immunoglobulin gene superfamily revealed that the human CD7 gene most closely resembles the murine Thy-1 gene. Both CD7 and Thy-1 are encoded by small genes with four exons, contain TATA-less promoters, and have a similar functional organization. These structural similarities suggest that human CD7 and murine Thy-1 may be functional homologues.
Collapse
Affiliation(s)
- L E Schanberg
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
25
|
Andersen LC, Beaty JS, Nettles JW, Seyfried CE, Nepom GT, Nepoom BS. Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes. J Exp Med 1991; 173:181-92. [PMID: 1985121 PMCID: PMC2118753 DOI: 10.1084/jem.173.1.181] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Class II genes of the human major histocompatibility complex (MHC) are highly polymorphic. Allelic variation of structural genes provides diversity in immune cell interactions, contributing to the formation of the T cell repertoire and to susceptibility to certain autoimmune diseases. We now report that allelic polymorphism also exists in the promoter and upstream regulatory regions (URR) of human histocompatibility leukocyte antigen (HLA) class II genes. Nucleotide sequencing of these regulatory regions of seven alleles of the DQB locus reveals a number of allele-specific polymorphisms, some of which lie in functionally critical consensus regions thought to be highly conserved in class II promoters. These sequence differences also correspond to allelic differences in binding of nuclear proteins to the URR. Fragments of the URR of two DQB alleles were analyzed for binding to nuclear proteins extracted from human B lymphoblastoid cell lines (B-LCL). Gel retardation assays showed substantially different banding patterns to the two promoters, including prominent variation in nuclear protein binding to the partially conserved X box regions and a novel upstream polymorphic sequence element. Comparison of these two polymorphic alleles in a transient expression system demonstrated a marked difference in their promoter strengths determined by relative abilities to initiate transcription of the chloramphenicol acetyltransferase reporter gene in human B-LCL. Shuttling of URR sequences between alleles showed that functional variation corresponded to both the X box and upstream sequence polymorphic sites. These findings identify an important source of MHC class II diversity, and suggest the possibility that such regulatory region polymorphisms may confer allelic differences in expression, inducibility, and/or tissue specificity of class II molecules.
Collapse
Affiliation(s)
- L C Andersen
- Virginia Mason Research Center, Seattle, Washington 98101
| | | | | | | | | | | |
Collapse
|
26
|
Yang Z, Sugawara M, Ponath PD, Wessendorf L, Banerji J, Li Y, Strominger JL. Interferon gamma response region in the promoter of the human DPA gene. Proc Natl Acad Sci U S A 1990; 87:9226-30. [PMID: 2123552 PMCID: PMC55137 DOI: 10.1073/pnas.87.23.9226] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interferon gamma (IFN-gamma) response region of the human class II major histocompatibility complex gene, DPA, has been localized to a 52-base-pair (bp) DNA fragment in the proximal promotor at -107 to -55 bp after transfection into HeLa cells of a series of 5', 3', and gap deletion mutants linked to a reporter gene, human growth hormone, as well as of synthetic oligonucleotides fused to the heterologous promoter thymidine kinase. The 52-mer sequence contains the X and Y box elements conserved in all class II genes; their presence is indispensable for IFN-gamma inducibility. Furthermore, an additional 5 bp immediately 5' of the X box of the DPA gene are necessary and sufficient for IFN-gamma induction. This region may contain an IFN-gamma response element. A closely related sequence has also been found in the vicinity of the critical deletion sites of three other well-studied class II gene promoters, all of which require a much longer sequence 5' of the X box. A fourth element, the W element, located about 15 bp 5' of the X box in all class II genes, is clearly of little importance in IFN-gamma inducibility of the DPA gene.
Collapse
Affiliation(s)
- Z Yang
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | | | | | | | | | | | |
Collapse
|
27
|
Transcriptional control of the invariant chain gene involves promoter and enhancer elements common to and distinct from major histocompatibility complex class II genes. Mol Cell Biol 1990. [PMID: 2115116 DOI: 10.1128/mcb.10.8.3906] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The invariant chain (Ii) is a glycoprotein coexpressed with the major histocompatibility complex (MHC) class II antigens. Although Ii is encoded by a single gene unlinked to the MHC gene complex, Ii and MHC class II appear to have similar patterns of tissue specific expression and generally are coordinately regulated by cytokines. Here we present evidence that transcription of the murine Ii gene is controlled by multiple cis-acting elements. The 5' regulatory region of the Ii gene appears to be combined of conserved class II regulatory elements with promoter elements commonly found in other eucaryotic genes. A region containing characteristic class II promoter elements (H box, X box, and a modified Y box) serves as an upstream enhancer in the Ii gene and might contribute to the coexpression of MHC class II and Ii genes. A series of positive control elements, the kappa B element, Sp1-binding site, and CCAAT box, are present in the Ii promoter and apparently serve distinct regulatory functions. The kappa B site in the Ii gene is a cell type-specific element, contributing to expression in a B-cell line but not in a fibroblast cell line, and the Sp1 site is required by the H-X-Y' enhancer element to stimulate promoter activity. In addition, an Ii enhancer in the first intron that specifically stimulates its own promoter has been identified. Our results suggest that a sequence match between enhancers and certain promoter elements is critical.
Collapse
|
28
|
Zhu L, Jones PP. Transcriptional control of the invariant chain gene involves promoter and enhancer elements common to and distinct from major histocompatibility complex class II genes. Mol Cell Biol 1990; 10:3906-16. [PMID: 2115116 PMCID: PMC360901 DOI: 10.1128/mcb.10.8.3906-3916.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The invariant chain (Ii) is a glycoprotein coexpressed with the major histocompatibility complex (MHC) class II antigens. Although Ii is encoded by a single gene unlinked to the MHC gene complex, Ii and MHC class II appear to have similar patterns of tissue specific expression and generally are coordinately regulated by cytokines. Here we present evidence that transcription of the murine Ii gene is controlled by multiple cis-acting elements. The 5' regulatory region of the Ii gene appears to be combined of conserved class II regulatory elements with promoter elements commonly found in other eucaryotic genes. A region containing characteristic class II promoter elements (H box, X box, and a modified Y box) serves as an upstream enhancer in the Ii gene and might contribute to the coexpression of MHC class II and Ii genes. A series of positive control elements, the kappa B element, Sp1-binding site, and CCAAT box, are present in the Ii promoter and apparently serve distinct regulatory functions. The kappa B site in the Ii gene is a cell type-specific element, contributing to expression in a B-cell line but not in a fibroblast cell line, and the Sp1 site is required by the H-X-Y' enhancer element to stimulate promoter activity. In addition, an Ii enhancer in the first intron that specifically stimulates its own promoter has been identified. Our results suggest that a sequence match between enhancers and certain promoter elements is critical.
Collapse
Affiliation(s)
- L Zhu
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
29
|
Freund YR, Dedrick RL, Jones PP. cis-acting sequences required for class II gene regulation by interferon gamma and tumor necrosis factor alpha in a murine macrophage cell line. J Exp Med 1990; 171:1283-99. [PMID: 2109037 PMCID: PMC2187825 DOI: 10.1084/jem.171.4.1283] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this report, we have demonstrated that IFN-gamma and TNF-alpha increase expression of both the I-A and I-E region gene products on the surface of the myelomonocytic cell line WEHI-3, and that they mediate this increase via an increase in A alpha transcription. Constructs containing 5' deletion mutations of the A alpha promoter attached to the bacterial chloramphenicol acetyl transferase gene were used to delineate the minimum 5' flanking sequences required for promoter activity, and for inducibility by IFN-gamma and TNF-alpha. Approximately 115 bp of 5' sequences are required for minimum induction by IFN-gamma or TNF-alpha when the cytokines are present separately. This includes the three conserved promoter elements, the X, Y, and H boxes. Nested linker-scanner mutations demonstrated that additional regions were also critical for optimal induction by IFN-gamma or TNF-alpha. These include the kappa B-like enhancer and a TNF-alpha-specific sequence that we have tentatively called the T box. The T box sequence was also found in the promoter regions of the human HLA-DQ alpha and rat RT1.B alpha genes. Although the entire T box sequence element was not found in the other mouse class II genes, all class II alpha genes contained the SV40 core enhancer element in the regions included by the T box. Mouse class II beta genes appear to contain neither the T box nor the core enhancer element in this region, suggesting differential regulation of class II alpha and beta genes by TNF-alpha.
Collapse
Affiliation(s)
- Y R Freund
- Department of Immunology and Infectious Diseases, Palo Alto Medical Foundation, California 94301
| | | | | |
Collapse
|