1
|
Corcoran L, Emslie D, Kratina T, Shi W, Hirsch S, Taubenheim N, Chevrier S. Oct2 and Obf1 as Facilitators of B:T Cell Collaboration during a Humoral Immune Response. Front Immunol 2014; 5:108. [PMID: 24688485 PMCID: PMC3960507 DOI: 10.3389/fimmu.2014.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig) in B lineage cells. This prediction flowed from the earlier observation that an 8-bp sequence, the “octamer motif,” was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f1 gene, was characterized and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1), encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1) on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterization of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signaling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signaling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.
Collapse
Affiliation(s)
- Lynn Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Dianne Emslie
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Tobias Kratina
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Wei Shi
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Susanne Hirsch
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Nadine Taubenheim
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Stephane Chevrier
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
2
|
Valbuena JR, Medeiros LJ, Rassidakis GZ, Hao S, Wu CD, Chen L, Lin P. Expression of B Cell–Specific Activator Protein/PAX5 in Acute Myeloid Leukemia With t(8;21)(q22;q22). Am J Clin Pathol 2006. [DOI: 10.1309/lg0q0vxybetj4vhe] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
3
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
4
|
Coyle AT, Kinsella BT. Characterization of promoter 3 of the human thromboxane A receptor gene. A functional AP-1 and octamer motif are required for basal promoter activity. FEBS J 2005; 272:1036-53. [PMID: 15691336 DOI: 10.1111/j.1742-4658.2004.04538.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The TPalpha and TPbeta isoforms of the human thromboxane A(2) receptor (TP) arise by differential splicing but are under the transcriptional control of two distinct promoters, termed Prm1 and Prm3, respectively (Coyle et al. 2002 Eur J Biochem269, 4058-4073). The aim of the current study was to determine the key factors regulating TPbeta expression by functionally characterizing Prm3, identifying the core promoter and the cis-acting elements regulating basal Prm3 activity. Hence, the ability of Prm3 and a series of Prm3 deleted/mutated subfragments to direct reporter gene expression in human erythroleukemia 92.1.7 and human embryonic kidney 293 cells was investigated. It was established that nucleotides -118 to +1 are critical for core Prm3 activity in both cell types. Furthermore, three distinct regulatory regions comprising of an upstream repressor sequence, located between -404 to -320, and two positive regulatory regions required for efficient basal gene expression, located between -154 to -106 and -50 to +1, were identified within the core Prm3. Deletion and site-directed mutagenesis of consensus Oct-1/2 and AP-1 elements within the latter -154 to -106 and -50 to +1 regions, respectively, substantially reduced Prm3 activity while mutation of both elements abolished Prm3 activity. Electromobility shift and supershift assays confirmed the specificity of nuclear factor binding to the latter Oct-1/2 and AP-1 elements. Moreover, herein it was established that the core AP-1 element mediates phorbol myristic acid-induction of Prm3 activity hence providing a mechanistic explanation of phorbol ester up-regulation of TPbeta mRNA expression.
Collapse
Affiliation(s)
- Adrian T Coyle
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|
5
|
Corcoran LM, Koentgen F, Dietrich W, Veale M, Humbert PO. All known in vivo functions of the Oct-2 transcription factor require the C-terminal protein domain. THE JOURNAL OF IMMUNOLOGY 2004; 172:2962-9. [PMID: 14978099 DOI: 10.4049/jimmunol.172.5.2962] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oct-2, a transcription factor expressed in the B lymphocyte lineage and in the developing CNS, functions through of a number of discrete protein domains. These include a DNA-binding POU homeodomain flanked by two transcriptional activation domains. In vitro studies have shown that the C-terminal activation domain, a serine-, threonine- and proline-rich sequence, possesses unique qualities, including the ability to activate transcription from a distance in a B cell-specific manner. In this study, we describe mice in which the endogenous oct-2 gene has been modified through gene targeting to create a mutated allele, oct-2DeltaC, which encodes Oct-2 protein isoforms that lack all sequence C-terminal to the DNA-binding domain. Surprisingly, despite the retention of the DNA-binding domain and the glutamine-rich N-terminal activation domain, the truncated protein(s) encoded by the oct-2DeltaC allele are unable to rescue any of the previously described defects exhibited by oct-2 null mice. Homozygous oct-2DeltaC/DeltaC mice die shortly after birth, and B cell maturation, B-1 cell self renewal, serum Ig levels, and B lymphocyte responses to in vitro stimulation are all reduced or absent, to a degree equivalent to that seen in oct-2 null mice. We conclude that the C-terminal activation domain of Oct-2 is required to mediate the unique and indispensable functions of the Oct-2 transcription factor in vivo.
Collapse
Affiliation(s)
- Lynn M Corcoran
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
6
|
Salas M, Eckhardt LA. Critical Role for the Oct-2/OCA-B Partnership in Ig-Secreting Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:6589-98. [PMID: 14662861 DOI: 10.4049/jimmunol.171.12.6589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B and T lymphocytes arise from a common precursor in the bone marrow, but ultimately acquire very different functions. The difference in function is largely attributable to the expression of tissue-specific transcription factors that activate discrete sets of genes. In previous studies we and others have shown that the specialized genes expressed by Ig-secreting cells cease transcription when these cells are fused to a T lymphoma. The extinguished genes include those encoding Ig, J chain, and the transcription factors Oct-2, PU.1, and the coactivator OCA-B. Remarkably, if we sustain Oct-2 expression during cell fusion, all the other tissue-specific genes of the Ig-secreting cell simultaneously escape silencing. This suggests that Oct-2 plays a central role in maintaining the gene expression program of these cells. In the present studies we have investigated the roles of the transcription factor PU.1 and the coactivator OCA-B within the hierarchy of regulatory factors that sustain Ig-secreting cell function. Our results show that OCA-B and Oct-2 are regulatory partners in this process and that PU.1 plays a subordinate role at this cell stage.
Collapse
Affiliation(s)
- Mabel Salas
- Department of Biological Sciences, Hunter College and Graduate Center of City University of New York, New York, NY 10021, USA
| | | |
Collapse
|
7
|
Corcoran L, Vremec D, Febbraio M, Baldwin T, Handman E. Differential regulation of CD36 expression in antigen-presenting cells: Oct-2 dependence in B lymphocytes but not dendritic cells or macrophages. Int Immunol 2002; 14:1099-104. [PMID: 12356675 DOI: 10.1093/intimm/dxf075] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mice, three antigen-presenting cell types [B lymphocytes, macrophages and dendritic cells (DC)] express the scavenger receptor CD36. This molecule has been implicated in many important functions, including DC maturation and antigen presentation. In murine B cells, the CD36 gene requires the Oct-2 transcription factor for its expression. We previously found that B cells from Oct-2-null mice display defects in maturation, survival and proliferation. Here we have looked for a possible role for CD36 in B cells, but found that CD36 is dispensable for all responses tested. Although loss of CD36 did not directly affect B cell function, it did modulate slightly the isotype and level of IgG produced in vivo in naive mice, and IgM in Leishmania-infected mice. We also show that in DC and macrophages, CD36 expression is independent of Oct-2. We conclude that CD36 does not play a major role in B cell function, but that CD36 may contribute indirectly to humoral immunity through cells of the innate immune system.
Collapse
Affiliation(s)
- Lynn Corcoran
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Johansson M, Norda A, Karlsson A. Conserved gene structure and transcription factor sites in the human and mouse deoxycytidine kinase genes. FEBS Lett 2000; 487:209-12. [PMID: 11150511 DOI: 10.1016/s0014-5793(00)02347-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Deoxycytidine kinase (dCK) phosphorylates several anti-cancer and anti-viral nucleoside analogs. The enzyme is predominantly expressed in lymphoid tissues regulated by an unknown mechanism. We have cloned and sequenced the 20 kbp mouse dCK gene and approximately 1.7 kbp of the 5' flanking regions of both the human and mouse dCK genes. Five major inter-species conserved motifs were identified in the 5' region including the transcription initiation region, an SP1 site and two closely located putative octamer transcription factor sites. Luciferase reporter experiments showed that the human dCK 5' region efficiently initiated transcription but no tissue regulatory element could be identified.
Collapse
Affiliation(s)
- M Johansson
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, S-141 86, Stockholm, Sweden
| | | | | |
Collapse
|
10
|
Bert AG, Burrows J, Hawwari A, Vadas MA, Cockerill PN. Reconstitution of T cell-specific transcription directed by composite NFAT/Oct elements. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5646-55. [PMID: 11067921 DOI: 10.4049/jimmunol.165.10.5646] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complex nature of most promoters and enhancers makes it difficult to identify key determinants of tissue-specific gene expression. Furthermore, most tissue-specific genes are regulated by transcription factors that have expression profiles more widespread than the genes they control. NFAT is an example of a widely expressed transcription factor that contributes to several distinct patterns of cytokine gene expression within the immune system and where its role in directing specificity remains undefined. To investigate distinct combinatorial mechanisms employed by NFAT to regulate tissue-specific transcription, we examined a composite NFAT/AP-1 element from the widely active GM-CSF enhancer and a composite NFAT/Oct element from the T cell-specific IL-3 enhancer. The NFAT/AP-1 element was active in the numerous cell types that express NFAT, but NFAT/Oct enhancer activity was T cell specific even though Oct-1 is ubiquitous. Conversion of the single Oct site in the IL-3 enhancer to an AP-1 enabled activation outside of the T cell lineage. By reconstituting the activities of both the IL-3 enhancer and its NFAT/Oct element in a variety of cell types, we demonstrated that their T cell-specific activation required the lymphoid cofactors NIP45 and OCA-B in addition to NFAT and Oct family proteins. Furthermore, the Oct family protein Brn-2, which cannot recruit OCA-B, repressed NFAT/Oct enhancer activity. Significantly, the two patterns of combinatorial regulation identified in this study mirror the cell-type specificities of the cytokine genes that they govern. We have thus established that simple composite transcription factor binding sites can indeed establish highly specific patterns of gene expression.
Collapse
Affiliation(s)
- A G Bert
- Division of Human Immunology, Hanson Centre For Cancer Research, Institute for Medical and Veterinary Science, Adelaide, Australia
| | | | | | | | | |
Collapse
|
11
|
Chen H, Zhang P, Radomska HS, Hetherington CJ, Zhang DE, Tenen DG. Octamer binding factors and their coactivator can activate the murine PU.1 (spi-1) promoter. J Biol Chem 1996; 271:15743-52. [PMID: 8663022 DOI: 10.1074/jbc.271.26.15743] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PU.1 (spi-1), a member of the Ets transcription factor family, is predominantly expressed in myeloid and B cells, activates many B cell and myeloid genes, and is critical for development of both of these lineages. Our previous studies (Chen, H. M., Ray-Gallet, D., Zhang, P., Hetherington, C. J., Gonzalez, D. A., Zhang, D.-E., Moreau-Gachelin, F., and Tenen, D. G. (1995) Oncogene 11, 1549-1560) demonstrate that the PU.1 promoter directs cell type-specific reporter gene expression in myeloid cell lines, and that PU.1 activates its own promoter in an autoregulatory loop. Here we show that the murine PU.1 promoter is also specifically and highly functional in B cell lines as well. Oct-1 and Oct-2 can bind specifically to a site at base pair -55 in vitro, and this site is specifically protected in B cells in vivo. We also demonstrate that two other sites contribute to promoter activity in B cells; an Sp1 binding site adjacent to the octamer site, and the PU.1 autoregulatory site. Finally, we show that the B cell coactivator OBF-1/Bob1/OCA-B is only expressed in B cells and not in myeloid cells, and that OBF-1/Bob1/OCA-B can transactivate the PU.1 promoter in HeLa and myeloid cells. This B cell restricted coactivator may be responsible for the B cell specific expression of PU.1 mediated by the octamer site.
Collapse
Affiliation(s)
- H Chen
- Hematology/Oncology Division, Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ninkina NN, Buchman VL, Akopian AN, Lawson SN, Yamamoto M, Campbell E, Corcoran L, Wood JN. Nerve growth factor-regulated properties of sensory neurones in Oct-2 null mutant mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:233-44. [PMID: 8750882 DOI: 10.1016/0169-328x(95)00128-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The POU-domain transcription factor Oct-2 is expressed in both B lymphocytes and sensory neurones, where its expression is regulated by nerve growth factor (NGF). In order to define a possible role for Oct-2 in neurotrophin signalling, we examined the expression of an NGF-regulated channel (capsaicin-evoked ion fluxes), neuropeptides (substance P, calcitonin gene-related peptide), structural proteins (neurofilaments and peripherin) and receptors (trks) in dorsal root ganglion neurones derived from perinatal transgenic mice containing a defective Oct-2 structural gene. Northern blots show that central nervous tissue contains a larger than normal (> 10 kb) mRNA transcript corresponding in size to an Oct-2 transcript encoding a defective protein. PCR analysis shows the absence of normal Oct-2 transcripts in dorsal root ganglia. In null mutants, capsaicin sensitivity, and neuropeptide and cytoskeletal protein expression were unaffected by the loss of Oct-2 expression. The number of sensory neurones and the gross morphology of CNS tissues that normally express high levels of Oct-2 were also examined and found to be normal in the null mutant. Heterozygous animals show normal thresholds of sensitivity to noxious heat and normal inflammatory responses. Oct-2 does not therefore play an essential role in the NGF responsiveness of sensory neurones in these animals.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Blotting, Northern
- Brain/cytology
- Brain/physiology
- Calcium/metabolism
- Capsaicin/pharmacology
- Cells, Cultured
- Crosses, Genetic
- DNA Primers
- DNA-Binding Proteins/biosynthesis
- Female
- Ganglia, Spinal/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Heterozygote
- Male
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Nerve Growth Factors/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Octamer Transcription Factor-2
- Oligonucleotides, Antisense/pharmacology
- Polymerase Chain Reaction
- Spinal Cord/cytology
- Spinal Cord/physiology
- Transcription Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- N N Ninkina
- Department of Anatomy and Developmental Biology, University College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Serfling E, Avots A, Neumann M. The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1263:181-200. [PMID: 7548205 DOI: 10.1016/0167-4781(95)00112-t] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- E Serfling
- Institute of Pathology, University of Würzburg, Germany
| | | | | |
Collapse
|
14
|
Corcoran LM, Karvelas M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1994; 1:635-45. [PMID: 7600291 DOI: 10.1016/1074-7613(94)90035-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oct-2, a POU homeodomain protein expressed primarily in B cells, is a powerful transcriptional activator that binds to DNA at sites appropriately placed for major effects on immunoglobulin gene expression. Our examination of B cell development and function in Oct-2 null mice did not support an essential role for Oct-2 early in B cell development. Rather, Oct-2 was required later, when B cells were induced to differentiate to antibody-secreting cells. We show here that Oct-2 is not required for normal immunoglobulin production by mature B lymphocytes. Instead, it is essential for a normal proliferative response to polyclonal mitogens. Responses to signals from activated T cells are unaffected. The requirement for Oct-2 maps to an early activation step in G1, during which B cells make the commitment to progress through the cell cycle and to divide.
Collapse
Affiliation(s)
- L M Corcoran
- Walter and Eliza Hall Institute of Medical Research Post Office, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
15
|
Verrijzer CP, Van der Vliet PC. POU domain transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:1-21. [PMID: 8485147 DOI: 10.1016/0167-4781(93)90237-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C P Verrijzer
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| | | |
Collapse
|
16
|
Thomson JA, Parsons PG, Sturm RA. In vivo and in vitro expression of octamer binding proteins in human melanoma metastases, brain tissue, and fibroblasts. PIGMENT CELL RESEARCH 1993; 6:13-22. [PMID: 8502621 DOI: 10.1111/j.1600-0749.1993.tb00576.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pattern of octamer sequence-specific DNA binding proteins expressed in human melanoma was examined in nuclear extracts of seven surgically-isolated tumors, short-term cultures of these tumors, and 25 human melanoma cell lines to determine the in vivo and in vitro distribution of the melanocytic-associated Oct-M1 and Oct-M2 octamer binding activities. In the biopsy tissue and cultured melanoma cells of a metastasis from the cerebellum, two other binding activities (N-Oct-2 and N-Oct-6) in addition to the Oct-M1, Oct-M2 and the generally expressed Oct-1 protein were detected; this profile was consistent with that seen in normal human and mouse brain tissue. Melanoma tissue removed from lymph nodes and cell lines established from them also showed Oct-1, Oct-M1, Oct-M2, and N-Oct-2. N-Oct-2 was distinguished from the comigrating Oct-2A activity by failure to react with Oct-2A-specific antibody. All but one of the 25 melanoma cell lines exhibited Oct-1, Oct-M1, and Oct-M2 and/or N-Oct-2 activity, whereas cultured normal melanocytes expressed only Oct-1 and Oct-M1. In contrast to murine fibroblasts, which express only Oct-1, human fibroblast strains also expressed Oct-2A binding activity, which was confirmed by reactivity with Oct-2A antibody and the presence of Oct-2A mRNA and indicated that Oct-2A has a more general role than that of a lymphoid-specific transcription factor. Overall, the results indicate that expression of neural-specific Oct factors in human melanoma is (1) aberrant compared with normal melanocytes, (2) can be modulated by the surrounding tissue in a brain metastasis, and (3) may be part of the altered program of differentiation accompanying transformation.
Collapse
Affiliation(s)
- J A Thomson
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Herston, Australia
| | | | | |
Collapse
|
17
|
Luo Y, Fujii H, Gerster T, Roeder RG. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell 1992; 71:231-41. [PMID: 1423591 DOI: 10.1016/0092-8674(92)90352-d] [Citation(s) in RCA: 240] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel B cell-restricted activity, required for high levels of octamer/Oct-dependent transcription from an immunoglobulin heavy chain (IgH) promoter, was detected in an in vitro system consisting of HeLa cell-derived extracts complemented with fractionated B cell nuclear proteins. The factor responsible for this activity was designated Oct coactivator from B cells (OCA-B). OCA-B stimulates the transcription from an IgH promoter in conjunction with either Oct-1 or Oct-2 but shows no significant effect on the octamer/Oct-dependent transcription of the ubiquitously expressed histone H2B promoter and the transcription of USF- and Sp1-regulated promoters. Taken together, our results suggest that OCA-B is a tissue-, promoter-, and factor-specific coactivator and that OCA-B may be a major determinant for B cell-specific activation of immunoglobulin promoters. In light of the evidence showing physical and functional interactions between Oct factors and OCA-B, we propose a mechanism of action for OCA-B and discuss the implications of OCA-B for the transcriptional regulation of other tissue-specific promoters.
Collapse
Affiliation(s)
- Y Luo
- Laboratory of Biochemistry and Moelcular Biology, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
18
|
Abstract
B lymphocytes from the spleens of normal (BALB/c) and autoimmune (MRL/lpr) strains of mice express the SCD-2 form of stearoyl-CoA desaturase as opposed to the SCD-1 form of the gene which is expressed in liver. However, whereas BALB/c T cells did not express SCD-1 or SCD-2, both BALB/c thymocytes and MRL/lpr T cells expressed SCD-2, suggesting a developmental down-regulation of SCD-2 within the T cell lineage. Northern analyses also revealed the expression of SCD-2 in the T cell lines BW5147, CTLL-2 and HT-2 and in BCL1, a B cell line. SCD-1 expression was not detected in any of the lymphoid cells tested. Finally, we show that SCD-2 gene expression is inhibited by arachidonic acid (20:4). These results demonstrate the complexity of SCD-2 regulation in lymphoid cells.
Collapse
Affiliation(s)
- P W Tebbey
- Dept. of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354
| | | |
Collapse
|
19
|
Nelsen B, Sen R. Regulation of immunoglobulin gene transcription. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 133:121-49. [PMID: 1577586 DOI: 10.1016/s0074-7696(08)61859-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Analysis of the immunoglobulin gene suggests that their expression is controlled through the combinatorial action of tissue- and stage-specific factors (OTF-2, TF-microB, NF-kappa B), as well as more widely expressed E motif-binding factors such as E47/E12. Two basic issues cloud understanding of how these factors are involved in immunoglobulin gene regulation. First, cloning of these factors shows them to be members of families of proteins, all with similar DNA-binding specificities. OTF-2 is a member of the POU domain family, NF-kappa B is a related protein, and the microE5/kappa E2-binding factors are members of the bHLH family. Second, these binding sites and associated factors are involved in the regulation of many genes, not only the immunoglobulin genes, and in fact not only lymphoid-specific genes. These facts complicate understanding which member of a family is in fact responsible for interaction with, and activation of, a particular binding element in an enhancer/promoter. Recently, more detailed analysis of the interactions between such proteins and their related binding sites suggest that a certain level of specificity may in fact be encoded by the DNA element such that one family member of a protein is preferentially bound, or alternatively that the protein-DNA interactions that occur give subtle alterations in protein conformation that unmask an activation or protein-protein interactive domain. An additional level of regulation is imparted by combinatorial mechanisms such as adjacent DNA-binding elements and factors that may alter activity, as well as "cofactors" that, by forming a complex with the bound factor, affect its activation of a gene in a particular cell type. A third level of specificity may be obtained by factors such as NF-kappa B and the bHLH family due to their ability to create heterogeneous complexes, creating unique complexes in a tissue- or stage-specific manner. The multiple functions transcription factors such as NF-kappa B and OTF-2 play in the transcriptional regulation of multiple genes seems complex in contrast to a one factor, one gene regulation model. However, this type of organization may limit the number of factors lymphocytes would require if each lymphoid-specific gene were activated by a unique factor. Thus what appears to be complexity at the molecular level may reflect an economical organization at the cellular level. Investigation of the key factors controlling these genes suggests an ordered cascade of transcription factors becomes available in the cell during B cell differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Nelsen
- Rosenstiel Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | | |
Collapse
|
20
|
Moore KA, Scarpa M, Kooyer S, Utter A, Caskey CT, Belmont JW. Evaluation of lymphoid-specific enhancer addition or substitution in a basic retrovirus vector. Hum Gene Ther 1991; 2:307-15. [PMID: 1838933 DOI: 10.1089/hum.1991.2.4-307] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two novel retroviral vectors bearing lymphoid-specific enhancers were tested for improved expression of human adenosine deaminase (hADA) in tissue culture cells and in mouse bone marrow transplant recipients. These vectors carried either an added human T-cell receptor alpha-chain enhancer (delta N2TADA) or a substitution of the Moloney long terminal repeat (LTR) enhancer with the murine immunoglobulin mu heavy-chain first intron enhancer (delta N2 mu ADA). Each vector was produced at a titer of approximately 10(6) infectious units/ml and efficiently transduced hADA into murine fibroblast and myeloma cells in culture. No quantitative difference in expression was observed between the enhancer modified vectors and the basic retrovirus vector (delta N2ADA). In addition, each vector efficiently conferred hADA expression in lymphoid, myeloid, and erythroid cells of long-term transplanted mice. The majority of the transduced-marrow recipients demonstrated expression of the human enzyme for 4-8 months with each of the three vectors.
Collapse
MESH Headings
- Adenosine Deaminase/biosynthesis
- Adenosine Deaminase/genetics
- Animals
- Bone Marrow Transplantation
- Cells, Cultured
- Enhancer Elements, Genetic
- Fibroblasts
- Gene Expression Regulation, Viral
- Genetic Markers
- Genetic Vectors
- Humans
- Immunoglobulin mu-Chains/genetics
- Mice
- Mice, Inbred C3H
- Moloney murine leukemia virus/genetics
- Multiple Myeloma/pathology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Transduction, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K A Moore
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | |
Collapse
|
21
|
Kossakowska AE, Urbanski SJ. Differentiation of human B-cell malignant lymphomas is independent of the octamer lymphoid specific binding factor (Oct-2). Immunol Suppl 1991; 74:37-43. [PMID: 1937571 PMCID: PMC1384668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have shown previously that the presence and action of immunoglobulin gene promoter specific trans-acting factors correlates with the stages of 'differentiation' of human lymphoid neoplasms. The regulatory sequence described by us was located upstream of the octamer motif which is known to bind lymphoid specific trans-acting factor Oct-2. In the present study we attempted to establish if the Oct-2 factor was present in fresh human tissue of B-cell origin and if the levels of Oct-2 also correlated with the stages of human lymphoid differentiation. We applied DNA mobility shift assay using the same cases which we utilized in our previous work. We compared the levels of Oct-2 with the levels of ubiquitous octamer binding factor Oct-1. Oct-2 was present in all lymphoid cells of B-cell origin (from fresh surgical specimens and in long-term tissue cultured cells) with the exception of a pre-B-cell line NALM-6. The relative abundance of Oct-2 varied, however, and the ratio of Oct-2 to Oct-1 was variable in different types of B cells. This phenomenon did not correlate with the stages of differentiation of human lymphoid neoplasms. There was also no correlation between the expression of Oct-2 and levels of immunoglobulin-specific messenger RNAs. These findings indicate that the control of, immunoglobulin expression in relation to the differentiation of human B-cell neoplasms requires factors other than Oct-2.
Collapse
Affiliation(s)
- A E Kossakowska
- Department of Pathology, University of Calgary and Foothills Hospital, Alberta, Canada
| | | |
Collapse
|