1
|
Nested genes CDA12 and CDA13 encode proteins associated with membrane trafficking in the ciliate Tetrahymena thermophila. EUKARYOTIC CELL 2009; 8:899-912. [PMID: 19286988 DOI: 10.1128/ec.00342-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe a novel pair of nested genes, CDA12 and CDA13, from Tetrahymena thermophila. Both are implicated in membrane trafficking associated with cell division and conjugation. Green fluorescent protein localization reveals Cda12p decoration of diverse membrane-bound compartments, including mobile, subcortical tubulovesicular compartments; perinuclear vesicles; and candidates for recycling endosomes. Cda13p decorates intracellular foci located adjacent to cortically aligned mitochondria and their neighboring Golgi networks. The expression of antisense CDA12 RNA in transformants produces defects in cytokinesis, macronuclear segregation, and the processing of pinosomes to downstream compartments. Antisense CDA13 RNA expression produces a conjugation phenotype, resulting in the failure of mating pairs to separate, as well as failures in postconjugation cytokinesis and macronuclear fission. This study offers insight into the membrane trafficking events linking endosome and Golgi network activities, cytokinesis, and karyokinesis and the unique membrane-remodeling events that accompany conjugation in the ciliate T. thermophila. We also highlight an unusual aspect of genome organization in Tetrahymena, namely, the existence of nested, antisense genes.
Collapse
|
2
|
A class II histone deacetylase acts on newly synthesized histones in Tetrahymena. EUKARYOTIC CELL 2008; 7:471-82. [PMID: 18178773 DOI: 10.1128/ec.00409-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Newly synthesized histones are acetylated prior to their deposition into nucleosomes. Following nucleosome formation and positioning, they are rapidly deacetylated, an event that coincides with further maturation of the chromatin fiber. The histone deacetylases (HDACs) used for histone deposition and de novo chromatin formation are poorly understood. In the ciliate Tetrahymena thermophila, transcription-related deacetylation in the macronucleus is physically separated from deposition-related deacetylation in the micronucleus. This feature was utilized to identify an HDAC named Thd2, a class II HDAC that acts on newly synthesized histones to remove deposition-related acetyl moieties. The THD2 transcript is alternatively spliced, and the major form contains a putative inositol polyphosphate kinase (IPK) domain similar to Ipk2, an enzyme that promotes chromatin remodeling by SWI/SNF remodeling complexes. Cells lacking Thd2, which retain deposition-related acetyl moieties on new histones, exhibit chromatin and cytological phenotypes indicative of a role for Thd2 in chromatin maturation, including the proteolytic processing of histone H3.
Collapse
|
3
|
Smith JJ, Yakisich JS, Kapler GM, Cole ES, Romero DP. A beta-tubulin mutation selectively uncouples nuclear division and cytokinesis in Tetrahymena thermophila. EUKARYOTIC CELL 2004; 3:1217-26. [PMID: 15470250 PMCID: PMC522614 DOI: 10.1128/ec.3.5.1217-1226.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 06/23/2004] [Indexed: 11/20/2022]
Abstract
The ciliated protozoan Tetrahymena thermophila contains two distinct nuclei within a single cell-the mitotic micronucleus and the amitotic macronucleus. Although microtubules are required for proper division of both nuclei, macronuclear chromosomes lack centromeres and the role of microtubules in macronuclear division has not been established. Here we describe nuclear division defects in cells expressing a mutant beta-tubulin allele that confers hypersensitivity to the microtubule-stabilizing drug paclitaxel. Macronuclear division is profoundly affected by the btu1-1 (K350M) mutation, producing cells with widely variable DNA contents, including cells that lack macronuclei entirely. Protein expressed by the btu1-1 allele is dominant over wild-type protein expressed by the BTU2 locus. Normal macronuclear division is restored when the btu1-1 allele is inactivated by targeted disruption or expressed as a truncated protein. Immunofluorescence studies reveal elongated microtubular structures that surround macronuclei that fail to migrate to the cleavage furrows. In contrast, other cytoplasmic microtubule-dependent processes, such as cytokinesis, cortical patterning, and oral apparatus assembly, appear to be unaffected in the mutant. Micronuclear division is also perturbed in the K350M mutant, producing nuclei with elongated early-anaphase spindle configurations that persist well after the initiation of cytokinesis. The K350M mutation affects tubulin dynamics, as the macronuclear division defect is exacerbated by three treatments that promote microtubule polymerization: (i) elevated temperatures, (ii) sublethal concentrations of paclitaxel, and (iii) high concentrations of dimethyl sulfoxide. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) with 3-methyladenine or wortmannin also induces amacronucleate cell formation in a btu1-1-dependent manner. Conversely, the myosin light chain kinase inhibitor ML-7 has no effect on nuclear division in the btu1-1 mutant strain. These findings provide new insights into microtubule dynamics and link the evolutionarily conserved PI 3-kinase signaling pathway to nuclear migration and/or division in Tetrahymena.
Collapse
Affiliation(s)
- Joshua J Smith
- Department of Pharmacology, Medical School, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
4
|
Smith JJ, Cole ES, Romero DP. Transcriptional control of RAD51 expression in the ciliate Tetrahymena thermophila. Nucleic Acids Res 2004; 32:4313-21. [PMID: 15304567 PMCID: PMC514391 DOI: 10.1093/nar/gkh771] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 11/15/2022] Open
Abstract
The expression of Rad51p, a DNA repair protein that mediates homologous recombination, is induced by DNA damage and during both meiosis and exconjugant development in the ciliate Tetrahymena thermophila. To completely investigate the transcriptional regulation of Tetrahymena RAD51 expression, reporter genes consisting of the RAD51 5' non-translated sequence (5' NTS) positioned upstream of either the firefly luciferase or green fluorescent protein coding sequences have been targeted for recombination at the macronuclear btu1-1 (K350M) locus of T. thermophila strain CU522. Expression from RAD51-luciferase reporter constructs has been directly quantified from transformant whole cell lysates. Luciferase is induced to maximum levels in transformants harboring the full-length RAD51-luciferase reporter gene following exposure to DNA damaging UV irradiation. A series of truncations, deletions, insertions, substitutions and inversions of the RAD51 5' NTS have led to the identification of three distinct transcriptional promoter elements. The first of these sequence elements is required for basal levels of transcription. The second modulates expression in the absence of DNA damage, whereas the third ensures increased RAD51 transcription in response to DNA damage and during meiosis. Tetrahymena RAD51 is tightly regulated through these transcriptional elements to produce the appropriate expression during conjugation, and in response to DNA damage.
Collapse
Affiliation(s)
- Joshua J Smith
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
5
|
Marsh TC, Cole ES, Romero DP. The transition from conjugal development to the first vegetative cell division is dependent on RAD51 expression in the ciliate Tetrahymena thermophila. Genetics 2001; 157:1591-8. [PMID: 11290715 PMCID: PMC1461587 DOI: 10.1093/genetics/157.4.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rad51p, the eukaryotic homolog of the prokaryotic recA protein, catalyzes strand exchange between single- and double-stranded DNA and is involved in both genetic recombination and double-strand break repair in the ciliate Tetrahymena thermophila. We have previously shown that disruption of the Tetrahymena RAD51 somatic macronuclear locus leads to defective germline micronuclear division and that conjugation of two somatic rad51 null strains results in an early meiotic arrest. We have constructed Tetrahymena strains that are capable of RAD51 expression from their parental macronuclei and are homozygous, rad51 nulls in their germline micronuclei. These rad51 null heterokaryons complete all of the early and middle stages of conjugation, including meiosis, haploid nuclear exchange, zygotic fusion, and the programmed chromosome fragmentations, sequence eliminations, and rDNA amplification that occur during macronuclear development. However, the rad51 null progeny fail to initiate the first vegetative cell division following conjugal development. Coincident with the developmental arrest is a disproportionate amplification of rDNA, despite the maintenance of normal total DNA content in the developing macronuclei. Fusion of arrested rad51 null exconjugants to wild-type cells is sufficient to overcome the arrest. Cells rescued by cytoplasmic fusion continue to divide, eventually recapitulating the micronuclear mitotic defects described previously for rad51 somatic nulls.
Collapse
Affiliation(s)
- T C Marsh
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
6
|
Ware TL, Wang H, Blackburn EH. Three telomerases with completely non-telomeric template replacements are catalytically active. EMBO J 2000; 19:3119-31. [PMID: 10856255 PMCID: PMC203363 DOI: 10.1093/emboj/19.12.3119] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomerase is a reverse transcriptase minimally composed of a reverse transcriptase protein subunit and an internal RNA component that contains the templating region. Point mutations of template RNA bases can cause loss of enzymatic activity, reduced processivity and misincorporation in vitro. Here we report the first complete replacement of the nine base TETRAHYMENA: thermophila telomerase templating region in vivo with non-telomeric sequences. Rather than ablating telomerase activity, three such replaced telomerases (U9, AUN and AU4) were effective in polymerization in vitro. In vivo, the AU4 and AUN genes caused telomere shortening. We demonstrated the fidelity of the AUN and U9 telomerases in vitro and utilized AUN telomerase to demonstrate that 5' end primer recognition by telomerase is independent of template base pairing. However, the mutant AUN template telomerase catalyzed an abnormal DNA cleavage reaction. For these U-only and AU- substituted templates, we conclude that base-specific interactions between the telomerase template and protein (or distant parts of the RNA) are not absolutely required for the minimal core telomerase functions of nucleotide addition and base discrimination.
Collapse
Affiliation(s)
- T L Ware
- Department of Biochemistry and Biophysics and Department of Microbiology and Immunology, Box 0414, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
7
|
Reischmann KP, Zhang Z, Kapler GM. Long range cooperative interactions regulate the initiation of replication in the Tetrahymena thermophila rDNA minichromosome. Nucleic Acids Res 1999; 27:3079-89. [PMID: 10454603 PMCID: PMC148533 DOI: 10.1093/nar/27.15.3079] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tetrahymena thermophila rDNA exists as a 21 kb palindromic minichromosome with two initiation sites for replication in each half palindrome. These sites localize to the imperfect, repeated 430 bp segments that include the nucleosome-free domains 1 and 2 (D1 and D2). To determine if the D1 and D2 segments act independently or in concert to control initiation, stable DNA transformation assays were performed. Single domain derivatives of the plasmid prD1 failed to support autonomous replication in Tetrahymena. Instead, such constructs propagated exclusively by integration into endogenous rDNA minichromosomes and displayed weak origin activity as detected by 2D gel electrophoresis. D1/D1 and D2/D2 derivatives also transformed Tetrahymena poorly, showing similar replication defects. Hence, the D1 and D2 segments are functionally non-redundant and cooperate rather than compete to control initiation. The observed replication defect was greatly reduced in a plasmid derivative that undergoes palindrome formation in Tetrahymena, suggesting that a compensatory mechanism overcomes this replication block. Finally, using a transient replication assay, we present evidence that phylogenetically-conserved type I elements directly regulate DNA replication. Taken together, our data support a model in which cooperative interactions between dispersed elements coordinately control the initiation of DNA replication.
Collapse
Affiliation(s)
- K P Reischmann
- Department of Medical Biochemistry and Genetics, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
8
|
Gallagher RC, Blackburn EH. A promoter region mutation affecting replication of the Tetrahymena ribosomal DNA minichromosome. Mol Cell Biol 1998; 18:3021-33. [PMID: 9566921 PMCID: PMC110681 DOI: 10.1128/mcb.18.5.3021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the ciliated protozoan Tetrahymena thermophila the ribosomal DNA (rDNA) minichromosome replicates partially under cell cycle control and is also subject to a copy number control mechanism. The relationship between rDNA replication and rRNA gene transcription was investigated by the analysis of replication, transcription, and DNA-protein interactions in a mutant rDNA, the rmm3 rDNA. The rmm3 (for rDNA maturation or maintenance mutant 3) rDNA contains a single-base deletion in the rRNA promoter region, in a phylogenetically conserved sequence element that is repeated in the replication origin region of the rDNA minichromosome. The multicopy rmm3 rDNA minichromosome has a maintenance defect in the presence of a competing rDNA allele in heterozygous cells. No difference in the level of rRNA transcription was found between wild-type and rmm3 strains. However, rmm3 rDNA replicating intermediates exhibited an enhanced pause in the region of the replication origin, roughly 750 bp upstream from the rmm3 mutation. In footprinting of isolated nuclei, the rmm3 rDNA lacked the wild-type dimethyl sulfate (DMS) footprint in the promoter region adjacent to the base change. In addition, a DMS footprint in the origin region was lost in the rmm3 rDNA minichromosome. This is the first reported correlation in this system between an rDNA minichromosome maintenance defect and an altered footprint in the origin region. Our results suggest that a promoter region mutation can affect replication without detectably affecting transcription. We propose a model in which interactions between promoter and origin region complexes facilitate replication and maintenance of the Tetrahymena rDNA minichromosome.
Collapse
Affiliation(s)
- R C Gallagher
- Department of Microbiology and Immunology, University of California at San Francisco, 94143-0414, USA
| | | |
Collapse
|
9
|
Huang LC, Wood EA, Cox MM. Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system. J Bacteriol 1997; 179:6076-83. [PMID: 9324255 PMCID: PMC179511 DOI: 10.1128/jb.179.19.6076-6083.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have created a system that utilizes the FLP recombinase of yeast to introduce exogenous cloned DNA reversibly at defined locations in the Escherichia coli chromosome. Recombination target (FRT) sites can be introduced permanently at random locations in the chromosome on a modified Tn5 transposon, now designed so that the inserted FRT can be detected and its location mapped with base pair resolution. FLP recombinase is provided as needed through the regulated expression of its gene on a plasmid. Exogenous DNA is introduced on a cloning vector that contains an FRT, selectable markers, and a replication origin designed to be deleted prior to electroporation for targeting purposes. High yields of targeted integrants are obtained, even in a recA background. This system permits rapid and precise excision of the introduced DNA when needed, without destroying the cells. The efficiency of targeting appears to be affected only modestly by transcription initiation upstream of the chromosomal FRT site. With rare exceptions, FRTs introduced to the bacterial chromosome are targeted with high efficiency regardless of their location. The system should facilitate studies of bacterial genome structure and function, simplify a wide range of chromosomal cloning applications, and generally enhance the utility of E. coli as an experimental organism in biotechnology.
Collapse
Affiliation(s)
- L C Huang
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
10
|
MacAlpine DM, Zhang Z, Kapler GM. Type I elements mediate replication fork pausing at conserved upstream sites in the Tetrahymena thermophila ribosomal DNA minichromosome. Mol Cell Biol 1997; 17:4517-25. [PMID: 9234709 PMCID: PMC232305 DOI: 10.1128/mcb.17.8.4517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two-dimensional gel electrophoresis was used to study replication of the Tetrahymena thermophila ribosomal DNA (rDNA) minichromosome. During vegetative growth, the rDNA is replicated exclusively from origins in the 5' nontranscribed spacer (NTS). Whereas replication fork movement through the rest of the chromosome appears to be continuous, movement through the 5' NTS is not. Replication forks arrest transiently at three prominent replication fork pausing sites (RFPs) located in or immediately adjacent to nucleosome-free regions of the 5' NTS. Pausing at these sites is dramatically diminished during replication in Escherichia coli, suggesting that chromatin organization or Tetrahymena-specific proteins may be required. A conserved tripartite sequence was identified at each pausing site. Mutations in type I elements diminish pausing at proximal RFPs. Hence, type I elements, previously shown to control replication initiation, also regulate elongation of existing replication forks. Studies with rDNA transformants revealed a strong directional bias for fork pausing. Strong pausing only occurred in forks moving toward the rRNA-coding region. We propose that fork pausing in the 5' NTS evolved to synchronize replication and transcription of the downstream rRNA genes.
Collapse
Affiliation(s)
- D M MacAlpine
- Department of Medical Biochemistry and Genetics, Texas A&M University, College Station 77843-1114, USA
| | | | | |
Collapse
|
11
|
Cassidy-Hanley D, Bowen J, Lee JH, Cole E, VerPlank LA, Gaertig J, Gorovsky MA, Bruns PJ. Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 1997; 146:135-47. [PMID: 9136007 PMCID: PMC1207932 DOI: 10.1093/genetics/146.1.135] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mating Tetrahymena thermophila were bombarded with ribosomal DNA-coated particles at various times in development. Both macronuclear and micronuclear transformants were recovered. Optimal developmental stages for transformation occurred during meiosis for the micronucleus and during anlagen formation for the macronucleus. Evidence is given for transient retention of the introduced plasmid. Genetic and molecular tests confirmed that sexually heritable transformation was associated with integration at the homologous site in the recipient micronuclear chromosome.
Collapse
Affiliation(s)
- D Cassidy-Hanley
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
McCormick-Graham M, Romero DP. A single telomerase RNA is sufficient for the synthesis of variable telomeric DNA repeats in ciliates of the genus Paramecium. Mol Cell Biol 1996; 16:1871-9. [PMID: 8657163 PMCID: PMC231174 DOI: 10.1128/mcb.16.4.1871] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Paramecium telomeric DNA consists largely of a random distribution of TTGGGG and TTTGGG repeats. Given the precise nature of other ciliate telomerases, it has been postulated that there are two distinct types of the Paramecium enzyme, each synthesizing perfect telomeric repeats: one with a template RNA that specifies the addition of TTTGGG and the second dictating the synthesis of TTGGGG repeats. We have cloned and sequenced telomerase RNA genes from Paramecium tetraurelia, P. primaurelia, P. multimicronucleatum, and P. caudatum. Surprisingly, a single gene encodes telomerase RNA in all four species, although an apparently nontranscribed pseudogene is also present in the genome of P. primaurelia. The overall lengths of the telomerase RNAs range between 202 and 209 nucleotides, and they can be folded into a conserved secondary structure similar to that derived for other ciliate RNAs. All Paramecium telomerase RNAs examined include a template specific for the synthesis of TTGGGG telomeric repeats, which has not been posttranscriptionally edited to account for the conventional synthesis of TTTGGG repeats. On the basis of these results, possible mechanisms for the synthesis of variable telomeric repeats by Paramecium telomerase are discussed.
Collapse
Affiliation(s)
- M McCormick-Graham
- Department of Pharmacology, School of Medicine, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
13
|
Pan WJ, Gallagher RC, Blackburn EH. Replication of an rRNA gene origin plasmid in the Tetrahymena thermophila macronucleus is prevented by transcription through the origin from an RNA polymerase I promoter. Mol Cell Biol 1995; 15:3372-81. [PMID: 7760833 PMCID: PMC230571 DOI: 10.1128/mcb.15.6.3372] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the somatic macronucleus of the ciliate Tetrahymena thermophila, the palindromic rRNA gene (rDNA) minichromosome is replicated from an origin near the center of the molecule in the 5' nontranscribed spacer. The replication of this rDNA minichromosome is under both cell cycle and copy number control. We addressed the effect on origin function of transcription through this origin region. A construct containing a pair of 1.9-kb tandem direct repeats of the rDNA origin region, containing the origin plus a mutated (+G), but not a wild type, rRNA promoter, is initially maintained in macronuclei as an episome. Late, linear and circular replicons with long arrays of tandem repeats accumulate (W.-J. Pan and E. H. Blackburn, Nucleic Acids Res, in press). We present direct evidence that the +G mutation inactivates this rRNA promoter. It lacks the footprint seen on the wild-type promoter and produces no detectable in vivo transcript. Independent evidence that the failure to maintain wild-type 1.9-kb repeats was caused by transcription through the origin came from placing a short DNA segment containing the rRNA gene transcriptional termination region immediately downstream of the wild-type rRNA promoter. Insertion of this terminator sequence in the correct, but not the inverted, orientation restored plasmid maintenance. Hence, origin function was restored by inactivating the rRNA promoter through the +G mutation or causing termination before transcripts from a wild-type promoter reached the origin region. We propose that transcription by RNA polymerase I through the rDNA origin inhibits replication by preventing replication factors from assembling at the origin.
Collapse
Affiliation(s)
- W J Pan
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | | | |
Collapse
|
14
|
Du C, Sanzgiri RP, Shaiu WL, Choi JK, Hou Z, Benbow RM, Dobbs DL. Modular structural elements in the replication origin region of Tetrahymena rDNA. Nucleic Acids Res 1995; 23:1766-74. [PMID: 7784181 PMCID: PMC306934 DOI: 10.1093/nar/23.10.1766] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication.
Collapse
Affiliation(s)
- C Du
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Pan WJ, Blackburn EH. Tandem repeats of the 5' non-transcribed spacer of Tetrahymena rDNA function as high copy number autonomous replicons in the macronucleus but do not prevent rRNA gene dosage regulation. Nucleic Acids Res 1995; 23:1561-9. [PMID: 7784211 PMCID: PMC306898 DOI: 10.1093/nar/23.9.1561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number.
Collapse
Affiliation(s)
- W J Pan
- Department of Microbiology and Immunology, University of California-San Francisco 94143-0414, USA
| | | |
Collapse
|
16
|
Bénard M, Lagnel C, Pierron G. Site-specific initiation of DNA replication within the non-transcribed spacer of Physarum rDNA. Nucleic Acids Res 1995; 23:1447-53. [PMID: 7784195 PMCID: PMC306881 DOI: 10.1093/nar/23.9.1447] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Physarum polycephalum rRNA genes are found on extrachromosomal 60 kb linear palindromic DNA molecules. Previous work using electron microscope visualization suggested that these molecules are duplicated from one of four potential replication origins located in the 24 kb central non-transcribed spacer [Vogt and Braun (1977) Eur. J. Biochem., 80, 557-566]. Considering the controversy on the nature of the replication origins in eukaryotic cells, where both site-specific or delocalized initiations have been described, we study here Physarum rDNA replication by two dimensional agarose gel electrophoresis and compare the results to those obtained by electron microscopy. Without the need of cell treatment or enrichment in replication intermediates, we detect hybridization signals corresponding to replicating rDNA fragments throughout the cell cycle, confirming that the synthesis of rDNA molecules is not under the control of S-phase. The patterns of replication intermediates along rDNA minichromosomes are consistent with the existence of four site-specific replication origins, whose localization in the central non-transcribed spacer is in agreement with the electron microscope mapping. It is also shown that, on a few molecules, at least two origins are active simultaneously.
Collapse
Affiliation(s)
- M Bénard
- Organisation Fonctionnelle du Noyau, UPR 9044 CNRS, Villejuif, France
| | | | | |
Collapse
|
17
|
Abstract
Telomerase RNA is an integral part of telomerase, the ribonucleoprotein enzyme that catalyzes the synthesis of telomeric DNA. The RNA moiety contains a templating domain that directs the synthesis of a species-specific telomeric repeat and may also be important for enzyme structure and/or catalysis. Phylogenetic comparisons of telomerase RNA sequences from various Tetrahymena spp. and hypotrich ciliates have revealed two conserved secondary structure models that share many features. We have cloned and sequenced the telomerase RNA genes from an additional six Tetrahymena spp. (T. vorax, T. borealis, T. australis, T. silvana, T. capricornis and T. paravorax). Inclusion of these sequences, most notably that from T. paravorax, in a phylogenetic comparative analysis allowed us to more narrowly define structural elements that may be necessary for a minimal telomerase RNA. A primary sequence element, positioned 5' of the template and conserved between all previously known ciliate telomerase RNAs, has been reduced from 5'-(C)UGUCA-3' to the 4 nt sequence 5'-GUCA-3'. Conserved secondary structural features and the impact they have on the general organization of ciliate telomerase RNAs is discussed.
Collapse
Affiliation(s)
- M McCormick-Graham
- Department of Pharmacology, School of Medicine, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
18
|
Gaertig J, Gu L, Hai B, Gorovsky MA. High frequency vector-mediated transformation and gene replacement in Tetrahymena. Nucleic Acids Res 1994; 22:5391-8. [PMID: 7816630 PMCID: PMC332088 DOI: 10.1093/nar/22.24.5391] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recently, we developed a mass DNA-mediated transformation technique for the ciliated protozoan Tetrahymena thermophila that introduces transforming DNA by electroporation into conjugating cells. Other studies demonstrated that a neomycin resistance gene flanked by Tetrahymena H4-I gene regulatory sequences transformed Tetrahymena by homologous recombination within the H4-I locus when microinjected into the macronucleus. We describe the use of conjugant electrotransformation (CET) for gene replacement and for the development of new independently replicating vectors and a gene cassette that can be used as a selectable marker in gene knockout experiments. Using CET, the neomycin resistance gene flanked by H4-I sequences transformed Tetrahymena, resulting in the replacement of the H4-I gene or integrative recombination of the H4-I/neo/H4-I gene (but not vector sequences) in the 5' or 3' flanking region of the H4-I locus. Gene replacement was obtained with non-digested plasmid DNA but releasing the insert increased the frequency of replacement events about 6-fold. The efficiency of transformation by the H4-I/neo/H4-I selectable marker was unchanged when a single copy of the Tetrahymena rDNA replication origin was included on the transforming plasmid. However, the efficiency of transformation using CET increased greatly when a tandem repeat of the replication origin fragment was used. This high frequency of transformation enabled mapping of the region required for H4-I promoter function to within 333 bp upstream of the initiator ATG. Similarly approximately 300 bp of sequence downstream of the translation terminator TGA of the beta-tubulin 2 (BTU2) gene could substitute for the 3' region of the H4-I gene. This hybrid H4-I/neo/BTU2 gene did not transform Tetrahymena when subcloned on a plasmid lacking an origin of replication, but did transform at high frequency on a two origin plasmid. Thus, the H4-I/neo/BTU2 cassette is a selectable marker that can be used for gene knockout in Tetrahymena. As a first step toward constructing a vector suitable for cloning genes by complementation of mutations in Tetrahymena, we also demonstrated that the vector containing 2 origins and the H4-I/neo/BTU2 cassette can co-express a gene encoding a cycloheximide resistant ribosomal protein.
Collapse
Affiliation(s)
- J Gaertig
- Department of Biology, University of Rochester, NY 14627
| | | | | | | |
Collapse
|
19
|
Umthun AR, Hou Z, Sibenaller ZA, Shaiu WL, Dobbs DL. Identification of DNA-binding proteins that recognize a conserved type I repeat sequence in the replication origin region of Tetrahymena rDNA. Nucleic Acids Res 1994; 22:4432-40. [PMID: 7971273 PMCID: PMC308476 DOI: 10.1093/nar/22.21.4432] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An origin of DNA replication has been mapped within the 5' non-transcribed spacer region of the amplified macronuclear rRNA genes (rDNA) of Tetrahymena thermophila. Mutations in 33 nt conserved AT-rich Type I repeat sequences located in the origin region cause defects in the replication and/or maintenance of amplified rDNA in vivo. Fe(II)EDTA cleavage footprinting of restriction fragments containing the Type I repeat showed that most of the conserved nucleotides were protected by proteins in extracts of Tetrahymena cells. Two classes of proteins that bound the Type I repeat were identified and characterized using synthetic oligonucleotides in electrophoretic mobility shift assays. One of these, ds-TIBF, bound preferentially to duplex DNA and exhibited only moderate specificity for Type I repeat sequences. In contrast, a single-stranded DNA-binding protein, ssA-TIBF, specifically recognized the A-rich strand of the Type I repeat sequence. Deletion of the 5' or 3' borders of the conserved sequence significantly reduced binding of ssA-TIBF. The binding properties of ssA-TIBF, coupled with genetic evidence that Type I sequences function as cis-acting rDNA replication control elements in vivo, suggest a possible role for ssA-TIBF in rDNA replication in Tetrahymena.
Collapse
Affiliation(s)
- A R Umthun
- Department of Zoology and Genetics, Iowa State University, Ames 50011
| | | | | | | | | |
Collapse
|
20
|
Abstract
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.
Collapse
Affiliation(s)
- D M Prescott
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| |
Collapse
|
21
|
Gaertig J, Gorovsky MA. Efficient mass transformation of Tetrahymena thermophila by electroporation of conjugants. Proc Natl Acad Sci U S A 1992; 89:9196-200. [PMID: 1409625 PMCID: PMC50092 DOI: 10.1073/pnas.89.19.9196] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Conjugating cells of the ciliate Tetrahymena thermophila were electroporated in the presence of plasmid DNA containing a paromomycin-resistant ribosomal RNA gene (rDNA). Cells were selected with paromomycin following 12-24 hr of growth on nonselective medium. Resistant cells appeared after 2-3 days. Processing vectors containing the micronuclear rDNA and somatic vectors containing the macronuclear gene transformed the cells, with the former yielding frequencies up to 900 transformants per microgram of plasmid DNA. A ribosomal protein gene (rpL29) conferring cycloheximide resistance also transformed conjugating cells. The transformation efficiency of the plasmid containing only the rpL29 gene was increased by insertion of an rDNA replication origin and by cotransformation and preselection with an rDNA vector. These results indicate that electroporation can be used for the production of large numbers of transformed Tetrahymena.
Collapse
Affiliation(s)
- J Gaertig
- Department of Biology, University of Rochester, NY 14627
| | | |
Collapse
|