1
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
2
|
Mosquera J, Armisen R, Zhao H, Rojas DA, Maldonado E, Tapia JC, Colombo A, Hayman MJ, Marcelain K. Identification of Ski as a target for Aurora A kinase. Biochem Biophys Res Commun 2011; 409:539-43. [PMID: 21600873 DOI: 10.1016/j.bbrc.2011.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/12/2022]
Abstract
Ski is a negative regulator of the transforming growth factor-β and other signalling pathways. The absence of SKI in mouse fibroblasts leads to chromosome segregation defects and genomic instability, suggesting a role for Ski during mitosis. At this stage, Ski is phosphorylated but to date little is known about the kinases involved in this process. Here, we show that Aurora A kinase is able to phosphorylate Ski in vitro. In vivo, Aurora A and Ski co-localized at the centrosomes and co-immunoprecipitated. Conversely, a C-terminal truncation mutant of Ski (SkiΔ491-728) lacking a coiled-coil domain, displayed decreased centrosomal localization. This mutant no longer co-immunoprecipitated with Aurora-A in vivo, but was still phosphorylated in vitro, indicating that the Ski-Aurora A interaction takes place at the centrosomes. These data identify Ski as a novel target of Aurora A and contribute to an understanding of the role of these proteins in the mitotic process.
Collapse
Affiliation(s)
- Jocelyn Mosquera
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 2009; 19:47-57. [PMID: 19114989 DOI: 10.1038/cr.2008.324] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ski and the closely related SnoN were discovered as oncogenes by their ability to transform chicken embryo fibroblasts upon overexpression. While elevated expressions of Ski and SnoN have also been reported in many human cancer cells and tissues, consistent with their pro-oncogenic activity, emerging evidence also suggests a potential anti-oncogenic activity for both. In addition, Ski and SnoN have been implicated in regulation of cell differentiation, especially in the muscle and neuronal lineages. Multiple cellular partners of Ski and SnoN have been identified in an effort to understand the molecular mechanisms underlying the complex roles of Ski and SnoN. In this review, we summarize recent findings on the biological functions of Ski and SnoN, their mechanisms of action and how their levels of expression are regulated.
Collapse
Affiliation(s)
- Julien Deheuninck
- UC Berkeley, Department of Molecular and Cellular Biology, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA
| | | |
Collapse
|
4
|
Longerich T, Breuhahn K, Odenthal M, Petmecky K, Schirmacher P. Factors of transforming growth factor beta signalling are co-regulated in human hepatocellular carcinoma. Virchows Arch 2004; 445:589-96. [PMID: 15455231 DOI: 10.1007/s00428-004-1118-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 08/04/2004] [Indexed: 01/06/2023]
Abstract
Transforming growth factor beta (TGFbeta) is a central mitoinhibitory factor for epithelial cells, and alterations of TGFbeta signalling have been demonstrated in many different human cancers. We have analysed human hepatocellular carcinomas (HCCs) for potential pro-tumourigenic alterations in regard to expression of Smad4 and mutations and expression changes of the pro-oncogenic transcriptional co-repressors Ski and SnoN, as well as mRNA levels of matrix metalloproteinase-2 (MMP2), which is transcriptionally regulated by TGFbeta. Smad4 mRNA was detected in all HCCs; while, using immunohistology, loss of Smad4 expression was found in 10% of HCCs. Neither mutations in the transformation-relevant sequences nor significant pro-tumourigenic expression changes of the Ski and SnoN genes were detected. In HCC cell lines, expression of both genes was regulated, potentially involving phosphorylation. Ski showed a distinct nuclear speckled pattern, indicating recruitment to active transcription complexes. MMP2 mRNA levels were increased in 19% of HCCs, whereas MMP2 mRNA was not detectable in HCC cell lines, suggesting that MMP2 was derived only from tumour stroma cells. Transcript levels of Smad4, Ski, SnoN and MMP2 correlated well. These data argue against a significant role of Ski and SnoN in human hepatocarcinogenesis and suggest that, in the majority of HCCs, the analysed factors are co-regulated by an upstream mechanism, potentially by TGFbeta itself.
Collapse
Affiliation(s)
- Thomas Longerich
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Strasse 9, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
5
|
Jiménez M, Pérez de Castro I, Benet M, García JF, Inghirami G, Pellicer A. TheRgrOncogene Induces Tumorigenesis in Transgenic Mice. Cancer Res 2004; 64:6041-9. [PMID: 15342385 DOI: 10.1158/0008-5472.can-03-3389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the oncogenic potential of Rgr in vivo, we have generated several transgenic Rgr mouse lines, which express the oncogene under the control of different promoters. These studies revealed that Rgr expression leads to the generation of various pathological alterations, including fibrosarcomas, when its transgenic expression is restricted to nonlymphoid tissues. Moreover, the overall incidence and latency of fibrosarcomas were substantially increased and shortened, respectively, in a p15INK4b-defective background. More importantly, we also have demonstrated that Rgr expression in thymocytes of transgenic mice induces severe alterations in the development of the thymocytes, which eventually lead to a high incidence of thymic lymphomas. This study demonstrates that oncogenic Rgr can induce expression of p15INK4b and, more importantly, that both Rgr and p15INK4b cooperate in the malignant phenotype in vivo. These findings provide new insights into the tumorigenic role of Rgr as a potent oncogene and show that p15INK4b can act as a tumor suppressor gene.
Collapse
Affiliation(s)
- María Jiménez
- Department of Pathology and New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
6
|
Macdonald M, Wan Y, Wang W, Roberts E, Cheung TH, Erickson R, Knuesel MT, Liu X. Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene 2004; 23:5643-53. [PMID: 15122324 DOI: 10.1038/sj.onc.1207733] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is known that excess amounts of Ski, or any member of its proto-oncoprotein family, causes disruption of the transforming growth factor beta signal transduction pathway, thus causing oncogenic transformation of cells. Previous studies indicate that Ski is a relatively unstable protein whose expression levels can be regulated by ubiquitin-mediated proteolysis. Here, we investigate the mechanism by which the stability of Ski is regulated. We show that the steady-state levels of Ski protein are controlled post-translationally by cell cycle-dependent proteolysis, wherein Ski is degraded during the interphase of the cell cycle but is relatively stable during mitosis. Furthermore, we demonstrate that the ubiquitin-conjugating enzyme Cdc34 mediates cell cycle-dependent Ski degradation both in vitro and in vivo. Overexpression of dominant-negative Cdc34 stabilizes Ski and enhances its ability to antagonize TGF-beta signaling. Our data suggest that regulated proteolysis of Ski is one of the key mechanisms that control the threshold levels of this proto-oncoprotein, and thus prevents epithelial cells from becoming TGF-beta resistant.
Collapse
Affiliation(s)
- Mara Macdonald
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pearson-White S, McDuffie M. Defective T-cell activation is associated with augmented transforming growth factor Beta sensitivity in mice with mutations in the Sno gene. Mol Cell Biol 2003; 23:5446-59. [PMID: 12861029 PMCID: PMC165712 DOI: 10.1128/mcb.23.15.5446-5459.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene Sno has been shown to be a negative regulator of transforming growth factor beta (TGF-beta) signaling in vitro, using overexpression and artificial reporter systems. To examine Sno function in vivo, we made two targeted deletions at the Sno locus: a 5' deletion, with reduced Sno protein (hypomorph), and an exon 1 deletion removing half the protein coding sequence, in which Sno protein is undetectable in homozygotes (null). Homozygous Sno hypomorph and null mutant mice are viable without gross developmental defects. We found that Sno mRNA is constitutively expressed in normal thymocytes and splenic T cells, with increased expression 1 h following T-cell receptor ligation. Although thymocyte and splenic T-cell populations appeared normal in mutant mice, T-cell proliferation in response to activating stimuli was defective in both mutant strains. This defect could be reversed by incubation with either anti-TGF-beta antibodies or exogenous interleukin-2 (IL-2). Together, these findings suggest that Sno-dependent suppression of TGF-beta signaling is required for upregulation of growth factor production and normal T-cell proliferation following receptor ligation. Indeed, both IL-2 and IL-4 levels are reduced in response to anti-CD3 epsilon stimulation of mutant T cells, and transfected Sno activated an IL-2 reporter system in non-T cells. Mutant mouse embryo fibroblasts also exhibited a reduced cell proliferation rate that could be reversed by administration of anti-TGF-beta. Our data provide strong evidence that Sno is a significant negative regulator of antiproliferative TGF-beta signaling in both T cells and other cell types in vivo.
Collapse
Affiliation(s)
- S Pearson-White
- Department of Microbiology, Health Sciences Center, University of Virginia Medical Center, Jordan Hall, Box 800734, Room 7034, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
8
|
Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003; 22:3123-9. [PMID: 12793438 DOI: 10.1038/sj.onc.1206452] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Collapse
Affiliation(s)
- Estela E Medrano
- Departments of Molecural and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Xu W, Angelis K, Danielpour D, Haddad MM, Bischof O, Campisi J, Stavnezer E, Medrano EE. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci U S A 2000; 97:5924-9. [PMID: 10811875 PMCID: PMC18535 DOI: 10.1073/pnas.090097797] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.
Collapse
Affiliation(s)
- W Xu
- Huffington Center on Aging and Departments of Molecular and Cellular Biology and Dermatology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 1999; 13:2196-206. [PMID: 10485843 PMCID: PMC316985 DOI: 10.1101/gad.13.17.2196] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad proteins are critical signal transducers downstream of the receptors of the transforming growth factor-beta (TGFbeta) superfamily. On phosphorylation and activation by the active TGFbeta receptor complex, Smad2 and Smad3 form hetero-oligomers with Smad4 and translocate into the nucleus, where they interact with different cellular partners, bind to DNA, regulate transcription of various downstream response genes, and cross-talk with other signaling pathways. Here we show that a nuclear oncoprotein, Ski, can interact directly with Smad2, Smad3, and Smad4 on a TGFbeta-responsive promoter element and repress their abilities to activate transcription through recruitment of the nuclear transcriptional corepressor N-CoR and possibly its associated histone deacetylase complex. Overexpression of Ski in a TGFbeta-responsive cell line renders it resistant to TGFbeta-induced growth inhibition and defective in activation of JunB expression. This ability to overcome TGFbeta-induced growth arrest may be responsible for the transforming activity of Ski in human and avian cancer cells. Our studies suggest a new paradigm for inactivation of the Smad proteins by an oncoprotein through transcriptional repression.
Collapse
Affiliation(s)
- K Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Dahl R, Kieslinger M, Beug H, Hayman MJ. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc Natl Acad Sci U S A 1998; 95:11187-92. [PMID: 9736711 PMCID: PMC21617 DOI: 10.1073/pnas.95.19.11187] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Ski oncogene has dramatic effects on the differentiation of several different cell types. It induces the differentiation of quail embryo cells into myoblasts and arrests the differentiation of chicken hematopoietic cells. The mechanism that Ski uses to carry out these disparate biological activities is unknown. However, we were struck by the similarity of these effects to those of certain members of the nuclear hormone receptor family. Both Ski and the thyroid hormone receptor-derived oncogene v-ErbA can arrest the differentiation of avian erythroblasts, and v-Ski-transformed avian multipotent progenitor cells resemble murine hematopoietic cells that express a dominant-negative form of the retinoic acid receptor, RARalpha. In this paper, we have tested the hypothesis that v-Ski and its cellular homologue c-Ski exert their effects by interfering with nuclear hormone receptor-induced transcription. We demonstrate that Ski associates with the RAR complex and can repress transcription from a retinoic acid response element. The physiological significance of this finding is demonstrated by the ability of high concentrations of a RARalpha-specific ligand to abolish v-Ski-induced transformation of the multipotent progenitors. These results strongly suggest that the ability of Ski to alter cell differentiation is caused in part by the modulation of RAR signaling pathways.
Collapse
Affiliation(s)
- R Dahl
- Department of Molecular Genetics and Microbiology and Institute of Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5222, USA
| | | | | | | |
Collapse
|
12
|
Tarapore P, Richmond C, Zheng G, Cohen SB, Kelder B, Kopchick J, Kruse U, Sippel AE, Colmenares C, Stavnezer E. DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic Acids Res 1997; 25:3895-903. [PMID: 9380514 PMCID: PMC146989 DOI: 10.1093/nar/25.19.3895] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ski oncoprotein has been found to bind non-specifically to DNA in association with unindentified nuclear factors. In addition, Ski has been shown to activate transcription of muscle-specific and viral promoters/enhancers. The present study was undertaken to identify Ski's DNA binding and transcriptional activation partners by identifying specific DNA binding sites. We used nuclear extracts from a v-Ski-transduced mouse L-cell line and selected Ski-bound sequences from a pool of degenerate oligonucleotides with anti-Ski monoclonal antibodies. Two sequences were identified by this technique. The first (TGGC/ANNNNNT/GCCAA) is the previously identified binding site of the nuclear factor I (NFI) family of transcription factors. The second (TCCCNNGGGA) is the binding site of Olf-1/EBF. By electophoretic mobility shift assays we find that Ski is a component of one or more NFI complexes but we fail to detect Ski in Olf-1/EBF complexes. We show that Ski binds NFI proteins and activates transcription of NFI reporters, but only in the presence of NFI. We also find that homodimerization of Ski is essential for co-activation with NFI. However, the C-terminal dimerization domain of c-Ski, which is missing in v-Ski, can be substituted by the leucine zipper domain of GCN4.
Collapse
Affiliation(s)
- P Tarapore
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Engert JC, Servaes S, Sutrave P, Hughes SH, Rosenthal N. Activation of a muscle-specific enhancer by the Ski proto-oncogene. Nucleic Acids Res 1995; 23:2988-94. [PMID: 7659522 PMCID: PMC307140 DOI: 10.1093/nar/23.15.2988] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In transgenic mice, muscle-specific expression of the c-ski oncogene induces hypertrophy exclusively in a subset of fast muscle fibers. Here we report that regulatory elements from two genes expressed in fast fibers, myosin light chain 1/3 (MLC) and muscle creatine kinase (MCK), were activated when co-transfected with c-ski expression vectors in myoblasts. The expression from the MLC enhancer was reduced when the c-ski oncogene was cotransfected with MyoD into NIH3T3 fibroblasts. Activation of the MLC enhancer by Ski also occurred in vivo, since bigenic progeny generated by mating MLC-CAT and MSV-skitransgenic mice displayed higher CAT activity in their muscles than did the MLC-CAT parental line. Identification of gene targets for the fiber-specific action of the c-ski gene product provides a molecular model that could be used for the further dissection of Ski-induced hypertrophy, both in tissue culture and in vivo.
Collapse
Affiliation(s)
- J C Engert
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
14
|
Furuta Y, Aizawa S, Suda Y, Ikawa Y, Nakasgoshi H, Nishina Y, Ishii S. Degeneration of skeletal and cardiac muscles in c-myb transgenic mice. Transgenic Res 1993; 2:199-207. [PMID: 8364603 DOI: 10.1007/bf01977350] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to reveal cellular processes sensitive to abnormal c-myb expression in vivo, transgenic mice were produced by introducing the c-myb nuclear proto-oncogene under the ubiquitous transcriptional regulatory unit of the cytoplasmic beta-actin gene. Expression of c-myb in thymus did not cause apparent abnormality, but the mice unexpectedly developed degenerative abnormalities in skeletal and cardiac muscles; this occurred predominantly in males. Expression of c-myb in skeletal muscle was correlated with an inflammation of muscle and was accompanied by vacuolar degeneration of muscle fibres, their regeneration, and lymphocyte infiltration. The identical pathological progression in cardiac muscle was associated with cardiomegaly.
Collapse
Affiliation(s)
- Y Furuta
- Laboratories of Molecular Oncology, Institute of Physical and Chemical Research, (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Grimes HL, Szente BE, Goodenow MM. C-ski cDNAs are encoded by eight exons, six of which are closely linked within the chicken genome. Nucleic Acids Res 1992; 20:1511-6. [PMID: 1579443 PMCID: PMC312231 DOI: 10.1093/nar/20.7.1511] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The c-ski locus extends a minimum of 65 kb in the chicken genome and is expressed as multiple mRNAs resulting from alternative exon usage. Four exons comprising approximately 1.5 kb of cDNA sequence have been mapped within the chicken c-ski locus. However, c-ski cDNAs include almost 3 kb of sequence for which the exon structure was not defined. From our studies using the polymerase chain reaction and templates of RNA and genomic DNA, it is clear that c-ski cDNAs are encoded by a minimum of eight exons. A long 3' untranslated region is contiguous in the genome with the distal portion of the ski open reading frame such that exon 8 is composed of both coding and noncoding sequences. Exons 2 and 3 are separated by more than 25 kb of genomic sequence. In contrast, exons 3 through 8, representing more than half the length of c-ski cDNA sequences, are closely linked within 10 kb in the chicken genome.
Collapse
Affiliation(s)
- H L Grimes
- Graduate Program in Immunology and Molecular Pathology, J.Hillis Miller Health Center, University of Florida, Gainesville 32610
| | | | | |
Collapse
|
16
|
Petropoulos CJ, Hughes SH. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol 1991; 65:3728-37. [PMID: 2041092 PMCID: PMC241397 DOI: 10.1128/jvi.65.7.3728-3737.1991] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have constructed a series of replication-competent retrovirus vectors to introduce and express gene cassettes in avian cells. To characterize these vectors, we inserted the coding sequences for the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the chicken beta-actin gene promoter or the mouse metallothionein 1 gene promoter. In all cases, we found the structure of integrated proviruses to be stable during serial cell passage in vitro. Chloramphenicol acetyltransferase activity was detected biochemically and immunocytochemically in infected cells. Cassettes were inserted in the vectors in the same or in the opposite orientation with respect to viral transcription. Although both orientations were functional, the cassettes inserted in the forward orientation were usually expressed at higher levels than the corresponding backward constructions. The level of expression was strongly influenced by surrounding proviral sequences, particularly by the transcriptional enhancer elements within the retrovirus long terminal repeat sequences. Expression was higher with vectors that contained the polymerase (pol) region of the Bryan high-titer strain of Rous sarcoma virus. Inclusion of the Bryan pol region also improved vector replication in the chemically transformed quail fibroblast line QT6.
Collapse
Affiliation(s)
- C J Petropoulos
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | |
Collapse
|