1
|
Kilzheimer M, Quandt J, Langhans J, Weihrich P, Wirth T, Brunner C. NF-κB-dependent signals control BOB.1/OBF.1 and Oct2 transcriptional activity in B cells. Eur J Immunol 2015; 45:3441-53. [DOI: 10.1002/eji.201545475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/30/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Affiliation(s)
| | - Jasmin Quandt
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
| | - Julia Langhans
- Department of Otorhinolaryngology; Ulm University; Ulm Germany
| | - Petra Weihrich
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
- Department of Otorhinolaryngology; Ulm University; Ulm Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
| | - Cornelia Brunner
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
- Department of Otorhinolaryngology; Ulm University; Ulm Germany
| |
Collapse
|
2
|
Chou YY, Lu SC. Inhibition by rapamycin of the lipoteichoic acid-induced granulocyte-colony stimulating factor expression in mouse macrophages. Arch Biochem Biophys 2011; 508:110-9. [PMID: 21295008 DOI: 10.1016/j.abb.2011.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 12/22/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a cytokine which involves in anti-inflammation and inflammation as well. Rapamycin is an inhibitor of mTOR which also plays a role in innate immunity. This study investigated the effect of rapamycin on the lipoteichoic acid (LTA)-induced expression of G-CSF in macrophages and its underlying mechanism. Our data show that LTA induced G-CSF expression in RAW264.7 and bone marrow-derived macrophages and that this effect was inhibited by rapamycin. Analysis of the G-CSF 5' flanking sequence revealed that the -283 to +35 fragment, which contains CSF and octamer elements, was required for maximal promoter activity in response to LTA stimulation. Western blot analyses of proteins that bind to the CSF and octamer element show that LTA increased protein levels of NF-κB, C/EBPβ and Oct-2, and that rapamycin inhibited the LTA-induced increase in Oct-2 protein levels, but not the others. Knockdown of Oct-2 by RNA interference resulted in a decrease in LTA-induced G-CSF mRNA levels. Moreover, forced expression of Oct-2 by transfection with the pCG-Oct-2 plasmid overcame the inhibitory effect of rapamycin on the LTA-induced increase in G-CSF mRNA levels and promoter activity. This study demonstrates that rapamycin reduces G-CSF expression in LTA-treated macrophages by inhibiting Oct-2 expression.
Collapse
Affiliation(s)
- Yuan-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
3
|
Nardelli DT, Kevin Luk KH, Kotloski NJ, Warner TF, Torrealba JR, Callister SM, Schell RF. Role of IL-17, transforming growth factor-beta, and IL-6 in the development of arthritis and production of anti-outer surface protein A borreliacidal antibodies in Borrelia-vaccinated and -challenged mice. ACTA ACUST UNITED AC 2008; 53:265-74. [PMID: 18522647 DOI: 10.1111/j.1574-695x.2008.00431.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We showed recently that the adaptive immune events leading to the development of arthritis in Borrelia burgdorferi isolate 297-vaccinated and Borrelia bissettii-challenged mice involve IL-17. Here, we show in Borrelia-vaccinated and -challenged mice that two cytokines known to induce the production of IL-17, IL-6 and transforming growth factor (TGF)-beta, are also involved in the development of arthritis. Vaccinated and challenged mice administered either anti-TGF-beta or anti-IL-6 antibodies developed histopathologic changes of the hind paws similar to or greater than untreated control mice. By contrast, simultaneous blockage of these cytokines reduced the severity of arthritis in Borrelia-vaccinated and -challenged mice. Moreover, administration of anti-IL-17 antibodies to these dual-antibody-treated mice completely prevented the development of histopathologic changes of the ankle joints, significantly reduced edema of the hind paws, and prevented the production of anti-outer surface protein A borreliacidal antibodies. These findings demonstrate a role for the combined effects of IL-17, IL-6, and TGF-beta in the adaptive immune events leading to the development of Borrelia-induced arthritis.
Collapse
Affiliation(s)
- Dean T Nardelli
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Heckman CA, Duan H, Garcia PB, Boxer LM. Oct transcription factors mediate t(14;18) lymphoma cell survival by directly regulating bcl-2 expression. Oncogene 2006; 25:888-98. [PMID: 16186795 DOI: 10.1038/sj.onc.1209127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-1 and Oct-2 are members of the POU homeodomain family of transcriptional regulators and are critical for normal embryonic development. Gene-targeting studies showed that Oct-1 and Oct-2 are largely dispensable for B-cell development and immunoglobulin production, although both Oct-2 and Bob-1 are required for a proper immune response and germinal center formation. In these studies, we investigated the role of Oct factors in B-cell lymphomas. Recent investigations have shown increased expression of Oct-2 and Bob-1 in lymphomas, and we observed greatly increased levels of Oct-2 in lymphoma cells with the t(14;18) translocation. Decreased expression of Oct-1, Oct-2, or Bob-1 by RNA interference resulted in apoptosis and down-regulation of bcl-2 expression. Furthermore, Oct-2 induced bcl-2 promoter activity and mediated this effect through three regions in the bcl-2 P2 promoter. Although these regions did not contain canonical octamer motifs, we observed the direct interaction of Oct-2 with all three sites both in vitro by EMSA and in vivo by chromatin immunoprecipitation assay. Moreover, by mutation analysis we found that the ability of Oct-2 to activate bcl-2 required C/EBP, Cdx, and TATA-binding sites. Oct-2, therefore, acts as a cell survival factor in t(14;18) lymphoma cells by directly activating the antiapoptotic gene bcl-2.
Collapse
Affiliation(s)
- C A Heckman
- Center for Molecular Biology in Medicine, Palo Alto VAHCS, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
5
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
6
|
Sáez AI, Artiga MJ, Sánchez-Beato M, Sánchez-Verde L, García JF, Camacho FI, Franco R, Piris MA. Analysis of octamer-binding transcription factors Oct2 and Oct1 and their coactivator BOB.1/OBF.1 in lymphomas. Mod Pathol 2002; 15:211-20. [PMID: 11904338 DOI: 10.1038/modpathol.3880518] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct1 and Oct2 are transcription factors of the POU homeo-domain family that bind to the Ig gene octamer sites, regulating B-cell-specific genes. The function of these transcription factors is dependent on the activity of B-cell-restricted coactivators such as BOB.1/OBF.1. Independent studies of the expression of these proteins in non-Hodgkin's lymphoma have been restricted to single markers, and most lack data concerning immunohistochemical expression. Thus, we have investigated the expression of Oct1, Oct2, and BOB.1/OBF.1 in human reactive lymphoid tissue and in a series of 140 Hodgkin and non-Hodgkin's lymphomas. None of these proteins was found to be restricted to B cells, although only B cells expressed high levels of all three markers. Additionally, germinal center B cells showed stronger Oct2 and BOB.1/OBF.1 staining. Consequently, most B-cell lymphomas showed reactivity for all three antibodies. Oct2 expression was significantly higher in germinal center-derived lymphomas, although other B-cell lymphomas also displayed a high level of Oct2 expression. Although T-cell lymphomas and Hodgkin's lymphomas expressed some of these proteins, they commonly exhibited less reactivity than B-cell lymphomas. Despite not being entirely cell-specific, the strong nuclear expression of Oct2 and BOB.1/OBF.1 by germinal center- derived lymphomas makes these antibodies a potentially useful tool in lymphoma diagnosis.
Collapse
Affiliation(s)
- Ana-Isabel Sáez
- Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Komatsu A, Otsuka A, Ono M. Novel regulatory regions found downstream of the rat B29/Ig-beta gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1227-36. [PMID: 11856356 DOI: 10.1046/j.1432-1033.2002.02757.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To search for novel regulatory regions, we examined the features of chromatin structure in the rat B29/Ig-beta gene and its flanking regions by determining DNase I hypersensitive sites (DHS) in plasmacytoma-derived Y3 cells. Six Y3 cell-specific DHS were detected at -8.6, promoter, +0.7, +4.4, +6.0, and +8.7 kb. The DHS at +4.4, +6.0, and +8.7 kb were present in the intergenic region between B29/Ig-beta and growth hormone (GH) genes and were mapped inside conserved sequences in rat and humans. In transient transfection into Y3 cells, 2.9-kb DNA containing the +4.4 and +6.0-kb DHS demonstrated six times more enhancing activity than B29/Ig-beta promoter alone. Three intergenic DHS each possessed enhancing activity that was highest in the +4.4-kb region. In the electrophoretic mobility shift assay, a major band shift was demonstrated with Y3 nuclear extract and 0.3-kb DNA containing the +4.4-kb region with a conserved 0.22-kb sequence. By footprint analysis, 20 bases in the middle of the 0.3-kb DNA were protected by Y3 nuclear extract in which the consensus binding site for the OCT family was present. Deletion of the footprinted region reduced enhancing activity to that of the B29/Ig-beta promoter alone. The sequence responsible for the major band shift and transcriptional enhancing activity in the conserved +4.4-kb region thus coincided with the 20-bp footprinted region.
Collapse
Affiliation(s)
- Ayano Komatsu
- Life Science Course, Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | | | | |
Collapse
|
8
|
Laurencikiene J, Deveikaite V, Severinson E. HS1,2 enhancer regulation of germline epsilon and gamma2b promoters in murine B lymphocytes: evidence for specific promoter-enhancer interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3257-65. [PMID: 11544313 DOI: 10.4049/jimmunol.167.6.3257] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During an immune response, activated B cells develop into high rate Ig-secreting plasma cells. They also switch from production of IgM to IgG, IgA, or IgE. This process requires a DNA recombination event, which is regulated at the transcriptional level by the production of isotype-specific, sterile germline (GL) transcripts. Induction of these transcripts is controlled by GL promoters and, possibly, by IgH 3' enhancers. We investigated the interaction of the GL epsilon and gamma2b promoters with the HS1,2 enhancer using transiently transfected mouse primary B cells and cell lines. The constructs used for the transfections contained a GL promoter upstream and HS1,2 downstream of a luciferase reporter gene. Both GL epsilon and gamma2b promoters synergized strongly with the HS1,2 enhancer in activated primary B cells, a mature B cell line, and a plasma cell line. We show that the major activity of HS1,2 in activated primary B cells occurs within a 310-bp fragment that includes NF-kappaB, OCT, and NF of activated B cells (Ets/AP-1) sites. By mutating the consensus sequences for various transcription factors, we have determined which sites in HS1,2 are important for synergy with the GL epsilon and gamma2b promoters. Our findings indicate that different sites in HS1,2 might selectively interact with the GL epsilon and gamma2b promoters. We also provide evidence that B cell-specific activator protein is not an absolute suppressor of HS1,2 activity.
Collapse
Affiliation(s)
- J Laurencikiene
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
9
|
Garrett TA, Rosser MF, Raetz CR. Signal transduction triggered by lipid A-like molecules in 70Z/3 pre-B lymphocyte tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:246-56. [PMID: 10064907 DOI: 10.1016/s1388-1981(99)00014-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The lipid A (endotoxin) moiety of lipopolysaccharide (LPS) elicits rapid cellular responses from many cell types, including macrophages, lymphocytes, and monocytes. In CD14 transfected 70Z/3 pre-B lymphocyte tumor cells, these responses include activation of the MAP kinase homolog, p38, activation of NF-kappaB, and transcription of kappa light chains, leading to the assembly of surface IgM. In this work, we explored the specificity of the response with regard to lipid structure, and the requirement for p38 kinase activity prior to NF-kappaB activation in control and CD14 transfected 70Z/3 (CD14-70Z/3) cells. A p38-specific inhibitor, SB203580, was used to block p38 kinase activity in cells. CD14-70Z/3 cells were incubated with 1-50 microM SB203580, and then stimulated with LPS. Nuclear extracts were prepared, and NF-kappaB activation was measured using an electrophoretic mobility shift assay. SB203580 did not inhibit LPS induced NF-kappaB activation. In addition, LPS failed to activate p38 tyrosine phosphorylation in 70Z/3 cells lacking CD14, in spite of rapid NF-kappaB activation and robust surface IgM production with appropriate higher doses of LPS. LPS stimulation of p38 phosphorylation, NF-kappaB activation, and surface IgM expression were all blocked completely by lipid A-like endotoxin antagonists whether or not CD14 was present. Acidic glycerophospholipids and ceramides did not mimic lipid A-like molecules either as agonists or antagonists in this system. Our data support the hypothesis that lipid A-mediated activation of cells requires stimulation of a putative lipid A sensor that is downstream of CD14, but upstream of p38 and NF-kappaB.
Collapse
Affiliation(s)
- T A Garrett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
10
|
Bendall HH, Scherer DC, Edson CR, Ballard DW, Oltz EM. Transcription factor NF-kappaB regulates inducible Oct-2 gene expression in precursor B lymphocytes. J Biol Chem 1997; 272:28826-8. [PMID: 9360945 DOI: 10.1074/jbc.272.46.28826] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The POU transcription factors Oct-1 and Oct-2 regulate the activity of octamer-dependent promoters, including those that direct transcription from rearranged immunoglobulin genes. Unlike Oct-1, which is constitutively expressed in many cell types, Oct-2 expression is restricted primarily to B lymphocytes and can be induced in precursor B cells by stimulation with bacterial lipopolysaccharide (LPS). However, the precise factors that mediate this induction mechanism remain unknown. In the present study, we monitored Oct-2 expression in cells arrested for the activation of NF-kappaB, an LPS-responsive member of the Rel transcription factor family. Despite stimulation with LPS, disruption of the NF-kappaB signaling pathway in precursor B cells led to the loss of inducible Oct-2 DNA binding activity in vitro and the suppression of Oct-2-directed transcription in vivo. This biochemical defect correlated with a specific block to Oct-2 gene expression at the level of transcription, whereas the expression of Oct-1 was unaffected. The finding that Oct-2 is under NF-kappaB control highlights an important cross-talk mechanism involving two distinct transcription factor families that regulate B lymphocyte function.
Collapse
Affiliation(s)
- H H Bendall
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
11
|
Kataoka M, Yoshiyama K, Matsuura K, Hijiya N, Higuchi Y, Yamamoto S. Structure of the murine CD156 gene, characterization of its promoter, and chromosomal location. J Biol Chem 1997; 272:18209-15. [PMID: 9218457 DOI: 10.1074/jbc.272.29.18209] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The murine cell surface antigen mCD156 is a glycoprotein that is expressed in monocytic cell lines and consists of a metalloprotease domain, a disintegrin domain, a cysteine-rich domain, and an epidermal growth factor-like domain in the extracellular region. The mCD156 gene is composed of 24 exons and 23 introns and spans approximately 14 kilobases. The first exon encodes most of the signal peptide sequence, and the transmembrane region is encoded by a single exon (19). In contrast, the other regions are composed of multiple exons. Of these, exons 7-12 and 12-15 encode a metalloprotease domain and a disintegrin domain, respectively. Sequence analysis of the 5'-flanking DNA revealed many potential regulatory motifs. Chloramphenicol acetyltransferase analysis demonstrated that nucleotides at positions -183, -334, and -623 contained cis-acting enhancing elements in a mouse monocytic cell line, aHINS-B3. Nucleotides at positions -183 and -390 contained elements responsible for lipopolysaccharide (LPS) inducibility, although several other 5'-flanking regions were also involved in LPS responsiveness. Regions -202, -507, and -659 play a role in interferon-gamma inducibility. Some of the potential regulatory motifs and other unknown cis elements may be involved in the constitutive expression, and LPS and interferon-gamma inducibilities. The mCD156 gene was mapped to chromosome 7, region F3-F4.
Collapse
Affiliation(s)
- M Kataoka
- Department of Pathology, Oita Medical University, Hasama-machi Oita 879-55 Japan
| | | | | | | | | | | |
Collapse
|
12
|
Jeon YJ, Han SH, Yang KH, Kaminski NE. Induction of liver-associated transforming growth factor beta 1 (TGF-beta 1) mRNA expression by carbon tetrachloride leads to the inhibition of T helper 2 cell-associated lymphokines. Toxicol Appl Pharmacol 1997; 144:27-35. [PMID: 9169066 DOI: 10.1006/taap.1997.8126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute treatment of B6C3F1 mice with a hepatotoxic dose (500 mg/kg) of carbon tetrachloride (CCl4) produced a marked but transient increase in transforming growth factor beta 1 (TGF-beta 1) mRNA expression in the liver within 24 hr. We have previously shown that an identical dose of CCl4 also produces a marked increase in serum TGF-beta 1 concentrations which peak at 48 hr and produce a marked inhibition of the anti-sRBC IgM antibody forming cell (AFC) response. Similar increases in TGF-beta 1 transcripts scripts in the liver were also induced by an acute hepatotoxic dose (600 mg/kg) of acetaminophen. No increase in TGF-beta 1 mRNA expression was detected in the spleen following treatment with either agent. Direct addition of TGF-beta 1 (0.05-1.0 ng/ml) to naive splenocyte cultures produced a marked and dose-related inhibition of the anti-sRBC IgM AFC response. Under the same conditions, TGF-beta 1 induced a marked decrease in IL-4 and IL-5 mRNA expression in sRBC-sensitized splenocytes. Concomitantly, TGF-beta 1 induced a rapid increase in NF-kappa B/Rel trans-acting factor binding within the first 24 hr post-sRBC sensitization of splenocytes. Conversely, NF-kappa B/Rel binding activity was inhibited on Days 2 through 4 in sRBC-sensitized splenocytes in the presence of TGF-beta 1. The increase in NF-kappa B/Rel binding within 24 hr following sRBC sensitization is consistent with the positive influence TGF-beta 1 exerts on Th1 cytokines such as IL-2 and IFN-gamma. Conversely the decrease in NF-kappa B/Rel binding at the later time period during the AFC response (Days 2-4) coincides with the inhibitory effects TGF-beta 1 exerted on IgM production by B cells.
Collapse
Affiliation(s)
- Y J Jeon
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, USA
| | | | | | | |
Collapse
|
13
|
Vodovotz Y. Control of nitric oxide production by transforming growth factor-beta1: mechanistic insights and potential relevance to human disease. Nitric Oxide 1997; 1:3-17. [PMID: 9701040 DOI: 10.1006/niox.1996.0105] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies on the multifunctional nature of the transforming growth factor-beta (TGF-beta) family of cytokines and the enzyme nitric oxide synthase (NOS) have suggested that they mediate a wide variety of vital processes in evolutionarily divergent organisms. Numerous mechanistic studies have investigated the consequences of the regulation of NO by the TGF-beta's for mammalian physiology. Studies with several cell types in vitro indicate that TGF-beta1 negatively controls the expression of the enzyme responsible for the prolonged production of large amounts NO, the inducible nitric oxide synthase (NOS2; iNOS), by reducing the expression and activity of NOS2 at multiple levels. Recent studies with TGF-beta1 null mice or mice which overexpress TGF-beta1 suggest that this cytokine may be a primary negative regulator of NOS2 in vivo. The interaction between NOS2 and TGF-beta1 may represent a central homeostatic mechanism in mammalian physiology with implications for a variety of human diseases.
Collapse
Affiliation(s)
- Y Vodovotz
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Goldring CE, Reveneau S, Algarté M, Jeannin JF. In vivo footprinting of the mouse inducible nitric oxide synthase gene: inducible protein occupation of numerous sites including Oct and NF-IL6. Nucleic Acids Res 1996; 24:1682-7. [PMID: 8649986 PMCID: PMC145849 DOI: 10.1093/nar/24.9.1682] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A wide variety of cells usefully but sometimes destructively produce nitric oxide via inducible nitric oxide synthase (iNOS). Data obtained by gel shift analysis and reporter assays have linked murine iNOS gene induction by cytokines and bacterial products with the binding of a number of proteins to a proximal promoter, as well as to a distal enhancer of the iNOS gene. Nevertheless, these techniques do not necessarily reflect protein occupation of sites in vivo. To address this, we have used dimethyl sulphate in vivo footprinting to determine binding events in the two murine iNOS transcription control regions, using a classical lipopolysaccharide induction of RAW 264.7 macrophages. Protein-DNA interactions are absent before activation. Exposure to lipopolysaccharide induces protection at a NF-kappaB site and hypersensitivity at a shared gamma-activated site/interferon-stimulated response element within the enhancer. Protections are seen at a NF-IL6, and an Oct site within the promoter. We also observe modulations in guanine methylation at two regions which do not correspond to any known putative binding elements. Furthermore, we confirm the probable involvement of interferon regulatory factor-1 (binding to its -901 to -913 site) and the binding of NF-kappaB to its proximal site. Our data demonstrate an abundance of hitherto-unrecognised protein-DNA binding events upon simple lipopolysaccharide activation of the iNOS gene and suggests a role for protein-protein interactions in its transcriptional induction.
Collapse
Affiliation(s)
- C E Goldring
- Cancer Immunotherapy Laboratory, Ecole Pratique des Hautes Etudes, Faculté de Médecine, Dijon, France
| | | | | | | |
Collapse
|
15
|
Abstract
The transcription factors Oct-2, NF-kappa B and PU.1 have been implicated in regulating the development of B lymphocytes. Genetic approaches have been used to analyze the developmental functions of these regulatory proteins. Using gene targeting in murine embryonic stem cells, PU.1 is shown to be required for the development of progenitor B cells. Strikingly, PU.1 is also essential for the development of T lymphoid, granulocytic and monocytic progenitors. Transcription factors of the NF-kappa B/Rel family, which appear to regulate immunoglobulin kappa gene expression, are shown to be a target of the viral transforming protein (v-abl) which arrests B lineage development at the precursor B stage. This suggests a mechanism by which v-abl blocks precursor B cell differentiation. The Oct-2 transcription factor was considered to represent a development regulator of immunoglobulin gene expression. Using gene targeting in a murine B cell, Oct-2 is shown to be dispensable for immunoglobulin gene expression. This suggests the existence of an alternate pathway, involving the ubiquitous related protein, Oct-1, in immunoglobulin gene regulation.
Collapse
Affiliation(s)
- H Singh
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, IL 60637 USA
| |
Collapse
|
16
|
Corcoran LM, Karvelas M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1994; 1:635-45. [PMID: 7600291 DOI: 10.1016/1074-7613(94)90035-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oct-2, a POU homeodomain protein expressed primarily in B cells, is a powerful transcriptional activator that binds to DNA at sites appropriately placed for major effects on immunoglobulin gene expression. Our examination of B cell development and function in Oct-2 null mice did not support an essential role for Oct-2 early in B cell development. Rather, Oct-2 was required later, when B cells were induced to differentiate to antibody-secreting cells. We show here that Oct-2 is not required for normal immunoglobulin production by mature B lymphocytes. Instead, it is essential for a normal proliferative response to polyclonal mitogens. Responses to signals from activated T cells are unaffected. The requirement for Oct-2 maps to an early activation step in G1, during which B cells make the commitment to progress through the cell cycle and to divide.
Collapse
Affiliation(s)
- L M Corcoran
- Walter and Eliza Hall Institute of Medical Research Post Office, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
17
|
Rhodes LD, Paull AT, Sibley CH. Two different IFN-gamma nonresponsive variants derived from the B-cell lymphoma 70Z/3. Immunogenetics 1994; 40:199-209. [PMID: 8039828 DOI: 10.1007/bf00167080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The kappa immunoglobulin (Igk) light chain locus is transcriptionally silent in the mouse B-cell lymphoma 70Z/3. However, exposure to lipopolysaccharide (LPS) or interferon-gamma (IFN) causes a marked increase in Igk transcription. By immunoselection, we isolated two variants that are nonresponsive to IFN. One variant, AT7.2, has retained its response to LPS (IFN-LPS+), whereas the other, AT3.3, is also nonresponsive to LPS (IFN-LPS-). Stable transfection of an intact Igk gene does not rescue the phenotype of either variant. Both variants have intact Igk genes and neither is deficient in the binding or uptake of IFN. Nuclear extracts from LPS-treated wild-type 70Z/3 cells show strong increases in three transcription factors: OTF-2, NF-kappa B, and kBF-A. Remarkably, when the IFN-LPS- variant is treated with LPS, all three transcription factors are still observed in the nuclear extracts. Treatment of wild-type cells with either LPS or IFN also causes a decrease in nuclear complexes that bind to two other regions of the Igk intron enhancer, the octenh and the E kappa MHCIC regions. Both of these changes are also observed after LPS or IFN treatment of the IFN-LPS- variant. Thus, this variant transduces the IFN and LPS signals at least into the nuclear compartment, but still fails to activate Igk transcription. In contrast, the IFN-LPS+ variant decreases neither the octenh nor the E kappa MHCIC binding complexes in response to IFN. This variant may be defective in transducing the IFN signal to the nucleus. These variants will be useful in studying the activation of Igk transcription and the IFN signaling pathway in B cells.
Collapse
Affiliation(s)
- L D Rhodes
- Department of Biological Structure, University of Washington, Seattle 98195
| | | | | |
Collapse
|
18
|
Thomson JA, Parsons PG, Sturm RA. In vivo and in vitro expression of octamer binding proteins in human melanoma metastases, brain tissue, and fibroblasts. PIGMENT CELL RESEARCH 1993; 6:13-22. [PMID: 8502621 DOI: 10.1111/j.1600-0749.1993.tb00576.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pattern of octamer sequence-specific DNA binding proteins expressed in human melanoma was examined in nuclear extracts of seven surgically-isolated tumors, short-term cultures of these tumors, and 25 human melanoma cell lines to determine the in vivo and in vitro distribution of the melanocytic-associated Oct-M1 and Oct-M2 octamer binding activities. In the biopsy tissue and cultured melanoma cells of a metastasis from the cerebellum, two other binding activities (N-Oct-2 and N-Oct-6) in addition to the Oct-M1, Oct-M2 and the generally expressed Oct-1 protein were detected; this profile was consistent with that seen in normal human and mouse brain tissue. Melanoma tissue removed from lymph nodes and cell lines established from them also showed Oct-1, Oct-M1, Oct-M2, and N-Oct-2. N-Oct-2 was distinguished from the comigrating Oct-2A activity by failure to react with Oct-2A-specific antibody. All but one of the 25 melanoma cell lines exhibited Oct-1, Oct-M1, and Oct-M2 and/or N-Oct-2 activity, whereas cultured normal melanocytes expressed only Oct-1 and Oct-M1. In contrast to murine fibroblasts, which express only Oct-1, human fibroblast strains also expressed Oct-2A binding activity, which was confirmed by reactivity with Oct-2A antibody and the presence of Oct-2A mRNA and indicated that Oct-2A has a more general role than that of a lymphoid-specific transcription factor. Overall, the results indicate that expression of neural-specific Oct factors in human melanoma is (1) aberrant compared with normal melanocytes, (2) can be modulated by the surrounding tissue in a brain metastasis, and (3) may be part of the altered program of differentiation accompanying transformation.
Collapse
Affiliation(s)
- J A Thomson
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Herston, Australia
| | | | | |
Collapse
|
19
|
Botfield MC, Jancso A, Weiss MA. Biochemical characterization of the Oct-2 POU domain with implications for bipartite DNA recognition. Biochemistry 1992; 31:5841-8. [PMID: 1610826 DOI: 10.1021/bi00140a020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B-cell specific regulation of immunoglobulin gene expression provides a model for the interaction of promoter and enhancer elements with eukaryotic sequence-specific DNA binding proteins. A critical element of this system, the octamer site (5'-ATGCAAAT-3'), is recognized by the B-cell transcription factor Oct-2. Octamer recognition is mediated by the POU domain, a conserved structural motif which--like the zinc finger and leucine zipper--defines a family of related transcription factors. Homologies among POU sequences suggest a bipartite structure, consisting of an N-terminal POU-specific subdomain and C-terminal variant homeodomain connected by a linker of variable length and sequence. As a first step toward a molecular understanding of the Oct-2 POU domain and its mechanism of DNA recognition, we have overexpressed in Escherichia coli the intact POU domain and subdomains as thrombin-cleavable fusion proteins and have purified these fragments to homogeneity following digestion with thrombin. Biochemical and biophysical characterization yields the following results. (i) The intact POU domain (166 residues) is monomeric and exhibits high-affinity octamer-specific DNA-binding activity. (ii) Limited proteolytic digestion demonstrates that the POU domain contains two proteolytically stable subdomains (the POU-specific subdomain and the variant homeodomain) connected by a proteolytically sensitive linker. (iii) The isolated subdomains are each monomeric and do not interact to form noncovalent heterodimers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Botfield
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|