1
|
Bremers E, Butler JH, Do Amaral LS, Merino EF, Almolhim H, Zhou B, Baptista RP, Totrov M, Carlier PR, Cassera MB. Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity. ACS Infect Dis 2025; 11:529-542. [PMID: 39808111 PMCID: PMC11828674 DOI: 10.1021/acsinfecdis.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus Plasmodium. Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite. To better understand its mechanism of action, we selected for and characterized resistance to PRC1590 in Plasmodium falciparum. Through in vitro selection of resistance to PRC1590, we have identified that a single-nucleotide polymorphism on the parasite's multidrug resistance protein 1 (PfMDR1 G293V) mediates resistance to PRC1590. This mutation results in stereospecific resistance and sensitizes parasites to other antimalarials, such as mefloquine, quinine, and MMV019017. Intraerythrocytic asexual stage specificity assays have revealed that PRC1590 is most potent during the trophozoite stage when the parasite forms a single digestive vacuole (DV) and actively digests hemoglobin. Moreover, fluorescence microscopy revealed that PRC1590 disrupts the function of the DV, indicating a potential molecular target associated with this organelle. Our findings mark a significant step in understanding the mechanism of resistance and the mode of action of this emerging class of antimalarials. In addition, our results suggest a potential link between resistance mediated by PfMDR1 and PRC1590's molecular target. This research underscores the pressing need for future research aimed at investigating the intricate relationship between a compound's chemical scaffold, molecular target, and resistance mutations associated with PfMDR1.
Collapse
Affiliation(s)
- Emily
K. Bremers
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Joshua H. Butler
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Leticia S. Do Amaral
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Emilio F. Merino
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Hanan Almolhim
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bo Zhou
- Department
of Pharmaceutical Sciences, University of
Illinois Chicago, Chicago, Illinois 60612, United States
| | - Rodrigo P. Baptista
- Department
of Medicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Maxim Totrov
- MolSoft
LLC, San Diego, California 92121, United States
| | - Paul R. Carlier
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Pharmaceutical Sciences, University of
Illinois Chicago, Chicago, Illinois 60612, United States
| | - Maria Belen Cassera
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
MalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, et alMalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441 DOI: 10.12688/wellcomeopenres.16168.1] [Show More Authors] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
3
|
MalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, et alMalariaGEN, Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441.2 DOI: 10.12688/wellcomeopenres.16168.2] [Show More Authors] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
4
|
Tavella TA, da Silva NSM, Spillman N, Kayano ACAV, Cassiano GC, Vasconcelos AA, Camargo AP, da Silva DCB, Fontinha D, Salazar Alvarez LC, Ferreira LT, Peralis Tomaz KC, Neves BJ, Almeida LD, Bargieri DY, Lacerda MVGD, Lemos Cravo PV, Sunnerhagen P, Prudêncio M, Andrade CH, Pinto Lopes SC, Carazzolle MF, Tilley L, Bilsland E, Borges JC, Maranhão Costa FT. Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity. ACS Infect Dis 2021; 7:759-776. [PMID: 33689276 PMCID: PMC8042658 DOI: 10.1021/acsinfecdis.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.
Collapse
Affiliation(s)
- Tatyana Almeida Tavella
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Noeli Soares Melo da Silva
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Natalie Spillman
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Ana Carolina Andrade Vitor Kayano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Gustavo Capatti Cassiano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrielle Ayumi Vasconcelos
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Antônio Pedro Camargo
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Djane Clarys Baia da Silva
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Kaira Cristina Peralis Tomaz
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
| | - Ludimila Dias Almeida
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária “Armando Salles Oliveira”, São Paulo 05508-000, Brazil
| | | | - Pedro Vitor Lemos Cravo
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Stefanie Costa Pinto Lopes
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Leann Tilley
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Elizabeth Bilsland
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Júlio César Borges
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| |
Collapse
|
5
|
McDaniels JM, Huckaby AC, Carter SA, Lingeman S, Francis A, Congdon M, Santos W, Rathod PK, Guler JL. Extrachromosomal DNA amplicons in antimalarial-resistant Plasmodium falciparum. Mol Microbiol 2021; 115:574-590. [PMID: 33053232 PMCID: PMC8246734 DOI: 10.1111/mmi.14624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022]
Abstract
Extrachromosomal (ec) DNAs are genetic elements that exist separately from the genome. Since ecDNA can carry beneficial genes, they are a powerful adaptive mechanism in cancers and many pathogens. For the first time, we report ecDNA contributing to antimalarial resistance in Plasmodium falciparum, the most virulent human malaria parasite. Using pulse field gel electrophoresis combined with PCR-based copy number analysis, we detected two ecDNA elements that differ in migration and structure. Entrapment in the electrophoresis well and low susceptibility to exonucleases revealed that the biologically relevant ecDNA element is large and complex in structure. Using deep sequencing, we show that ecDNA originates from the chromosome and expansion of an ecDNA-specific sequence may improve its segregation or expression. We speculate that ecDNA is maintained using established mechanisms due to shared characteristics with the mitochondrial genome. Implications of ecDNA discovery in this organism are wide-reaching due to the potential for new strategies to target resistance development.
Collapse
Affiliation(s)
| | - Adam C. Huckaby
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | | | | | - Audrey Francis
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | | | | | | | - Jennifer L. Guler
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
- Division of Infectious Diseases and International HealthDepartment of MedicineUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
6
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
7
|
Huckaby AC, Granum CS, Carey MA, Szlachta K, Al-Barghouthi B, Wang YH, Guler JL. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res 2019; 47:1615-1627. [PMID: 30576466 PMCID: PMC6393310 DOI: 10.1093/nar/gky1268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Antimalarial resistance is a major obstacle in the eradication of the human malaria parasite, Plasmodium falciparum. Genome amplifications, a type of DNA copy number variation (CNV), facilitate overexpression of drug targets and contribute to parasite survival. Long monomeric A/T tracks are found at the breakpoints of many Plasmodium resistance-conferring CNVs. We hypothesize that other proximal sequence features, such as DNA hairpins, act with A/T tracks to trigger CNV formation. By adapting a sequence analysis pipeline to investigate previously reported CNVs, we identified breakpoints in 35 parasite clones with near single base-pair resolution. Using parental genome sequence, we predicted the formation of stable hairpins within close proximity to all future breakpoint locations. Especially stable hairpins were predicted to form near five shared breakpoints, establishing that the initiating event could have occurred at these sites. Further in-depth analyses defined characteristics of these 'trigger sites' across the genome and detected signatures of error-prone repair pathways at the breakpoints. We propose that these two genomic signals form the initial lesion (hairpins) and facilitate microhomology-mediated repair (A/T tracks) that lead to CNV formation across this highly repetitive genome. Targeting these repair pathways in P. falciparum may be used to block adaptation to antimalarial drugs.
Collapse
Affiliation(s)
- Adam C Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Claire S Granum
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Maureen A Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Basel Al-Barghouthi
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Gallagher AL, Miller SR. Expression of Novel Gene Content Drives Adaptation to Low Iron in the Cyanobacterium Acaryochloris. Genome Biol Evol 2018; 10:1484-1492. [PMID: 29850825 PMCID: PMC6007379 DOI: 10.1093/gbe/evy099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/24/2022] Open
Abstract
Variation in genome content is a potent mechanism of microbial adaptation. The genomes of members of the cyanobacterial genus Acaryochloris vary greatly in gene content as a consequence of the idiosyncratic retention of both recent gene duplicates and plasmid-encoded genes acquired by horizontal transfer. For example, the genome of Acaryochloris strain MBIC11017, which was isolated from an iron-limited environment, is enriched in duplicated and novel genes involved in iron assimilation. Here, we took an integrative approach to characterize the adaptation of Acaryochloris MBIC11017 to low environmental iron availability and the relative contributions of the expression of duplicated versus novel genes. We observed that Acaryochloris MBIC11017 grew faster and to a higher yield in the presence of nanomolar concentrations of iron than did a closely related strain. These differences were associated with both a higher rate of iron assimilation and a greater abundance of iron assimilation transcripts. However, recently duplicated genes contributed little to increased transcript dosage; rather, the maintenance of these duplicates in the MBIC11017 genome is likely due to the sharing of ancestral dosage by expression reduction. Instead, novel, horizontally transferred genes are responsible for the differences in transcript abundance. The study provides insights on the mechanisms of adaptive genome evolution and gene expression in Acaryochloris.
Collapse
Affiliation(s)
| | - Scott R Miller
- Division of Biological Sciences, The University of Montana
| |
Collapse
|
9
|
Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J 2017; 16:152. [PMID: 28420389 PMCID: PMC5395969 DOI: 10.1186/s12936-017-1806-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/07/2017] [Indexed: 12/29/2022] Open
Abstract
Background Parasite resistance to anti-malarials represents a great obstacle for malaria elimination. The majority of studies have investigated the association between single-nucleotide polymorphisms (SNPs) and drug resistance; however, it is becoming clear that the copy number variation (CNV) is also associated with this parasite phenotype. To provide a baseline for molecular surveillance of anti-malarial drug resistance in the Brazilian Amazon, the present study characterized the genetic profile of both markers in the most common genes associated with drug resistance in Plasmodium falciparum and Plasmodium vivax isolates. Additionally, these data were compared to data published elsewhere applying a systematic review of the literature published over a 20-year time period. Methods The genomic DNA of 67 patients infected by P. falciparum and P. vivax from three Brazilian States was obtained between 2002 and 2012. CNV in P. falciparum multidrug resistance gene-1 (pfmdr1), GTP cyclohydrolase 1 (pfgch1) and P. vivax multidrug resistance gene-1 (pvmdr1) were assessed by real-time PCR assays. SNPs in the pfmdr1 and pfcrt genes were assessed by PCR–RFLP. A literature search for studies that analysed CNP in the same genes of P. falciparum and P. vivax was conducted between May 2014 and March 2017 across four databases. Results All analysed samples of P. falciparum carried only one copy of pfmdr1 or pfgch1. Although the pfcrt K76T polymorphism, a determinant of CQ resistance, was present in all samples genotyped, the pfmdr1 N86Y was absent. For P. vivax isolates, an amplification rate of 20% was found for the pvmdr1 gene. The results of the study are in agreement with the low amplification rates for pfmdr1 gene evidenced in the Americas and Africa, while higher rates have been described in Southeast Asia. For P. vivax, very low rates of amplification for pvmdr1 have been described worldwide, with exceptions in French Guiana, Cambodia, Thailand and Brazil. Conclusions The present study was the first to evaluate gch1 CNV in P. falciparum isolates from Brazil, showing an absence of amplification of this gene more than 20 years after the withdrawal of the Brazilian antifolates therapeutic scheme. Furthermore, the rate of pvmdr1 amplification was significantly higher than that previously reported for isolates circulating in Northern Brazil. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1806-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Luíz Costa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Lara Cotta Amaral
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Auburn S, Serre D, Pearson RD, Amato R, Sriprawat K, To S, Handayuni I, Suwanarusk R, Russell B, Drury E, Stalker J, Miotto O, Kwiatkowski DP, Nosten F, Price RN. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand. J Infect Dis 2016; 214:1235-42. [PMID: 27456706 PMCID: PMC5034950 DOI: 10.1093/infdis/jiw323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 01/13/2023] Open
Abstract
In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research institute, Ohio
| | - Richard D. Pearson
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Rossarin Suwanarusk
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | - Olivo Miotto
- Wellcome Trust Sanger Institute, Hinxton,Medical Research Council Centre for Genomics and Global Health,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics,Medical Research Council Centre for Genomics and Global Health
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom,Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom
| |
Collapse
|
11
|
Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, Nair S, White MM, Dziekan J, Ling C, Proux S, Konghahong K, Jeeyapant A, Woodrow CJ, Imwong M, McGready R, Lwin KM, Day NPJ, White NJ, Nosten F. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai-Myanmar Border (2003-2013): The Role of Parasite Genetic Factors. Clin Infect Dis 2016; 63:784-791. [PMID: 27313266 PMCID: PMC4996140 DOI: 10.1093/cid/ciw388] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Deployment of mefloquine-artesunate (MAS3) on the Thailand-Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. METHODS Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. RESULTS Polymerase chain reaction (PCR)-adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. CONCLUSIONS The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand-Myanmar border.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Elizabeth A Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tim J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Zbynek Bozdech
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Marina McDew White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Jerzy Dziekan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Atthanee Jeeyapant
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
12
|
DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 2015; 78:469-86. [PMID: 25184562 DOI: 10.1128/mmbr.00059-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.
Collapse
|
13
|
Cheeseman IH, McDew-White M, Phyo AP, Sriprawat K, Nosten F, Anderson TJC. Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites. Mol Biol Evol 2014; 32:1080-90. [PMID: 25534029 PMCID: PMC4379400 DOI: 10.1093/molbev/msu397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We explored the potential of pooled sequencing to swiftly and economically identify selective sweeps due to emerging artemisinin (ART) resistance in a South-East Asian malaria parasite population. ART resistance is defined by slow parasite clearance from the blood of ART-treated patients and mutations in the kelch gene (chr. 13) have been strongly implicated to play a role. We constructed triplicate pools of 70 slow-clearing (resistant) and 70 fast-clearing (sensitive) infections collected from the Thai–Myanmar border and sequenced these to high (∼150-fold) read depth. Allele frequency estimates from pools showed almost perfect correlation (Lin’s concordance = 0.98) with allele frequencies at 93 single nucleotide polymorphisms measured directly from individual infections, giving us confidence in the accuracy of this approach. By mapping genome-wide divergence (FST) between pools of drug-resistant and drug-sensitive parasites, we identified two large (>150 kb) regions (on chrs. 13 and 14) and 17 smaller candidate genome regions. To identify individual genes within these genome regions, we resequenced an additional 38 parasite genomes (16 slow and 22 fast-clearing) and performed rare variant association tests. These confirmed kelch as a major molecular marker for ART resistance (P = 6.03 × 10−6). This two-tier approach is powerful because pooled sequencing rapidly narrows down genome regions of interest, while targeted rare variant association testing within these regions can pinpoint the genetic basis of resistance. We show that our approach is robust to recurrent mutation and the generation of soft selective sweeps, which are predicted to be common in pathogen populations with large effective population sizes, and may confound more traditional gene mapping approaches.
Collapse
Affiliation(s)
| | | | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
14
|
Guler JL, Freeman DL, Ahyong V, Patrapuvich R, White J, Gujjar R, Phillips MA, DeRisi J, Rathod PK. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications. PLoS Pathog 2013; 9:e1003375. [PMID: 23717205 PMCID: PMC3662640 DOI: 10.1371/journal.ppat.1003375] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH) inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes. Malaria parasites kill up to a million people around the world every year. Emergence of resistance to drugs remains a key obstacle against elimination of malaria. In the laboratory, parasites can efficiently acquire resistance to experimental antimalarials by changing DNA at the target locus. This happens efficiently even for an antimalarial that the parasite has never encountered in a clinical setting. In this study, we formally demonstrate how parasites achieve this feat: first, individual parasites in a population of millions randomly amplify large regions of DNA between short sequence repeats of adenines (A) or thymines (T) that are peppered throughout the malaria parasite genome. The rare lucky parasite that amplifies DNA coding for the target of the antimalarial, along with dozens of its neighboring genes, gains an evolutionary advantage and survives. In a second step, to withstand increasing drug pressure and to achieve higher levels of resistance, each parasite line makes additional copies of this region. This second expansion does not rely on the random A/T-based DNA rearrangements but, instead, a more precise amplification mechanism that retains the unique signature of co-amplified genes created earlier in each parasite. Generation of multiple copies of the target genes in the parasite genome may be the beginning of other beneficial changes for the parasite, including the future acquisition of mutations.
Collapse
Affiliation(s)
- Jennifer L. Guler
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Daniel L. Freeman
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Vida Ahyong
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Rapatbhorn Patrapuvich
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Ramesh Gujjar
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joseph DeRisi
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Pradipsinh K. Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci 2012; 279:5048-57. [PMID: 22977152 PMCID: PMC3497230 DOI: 10.1098/rspb.2012.1108] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 01/13/2023] Open
Abstract
A subject of extensive study in evolutionary theory has been the issue of how neutral, redundant copies can be maintained in the genome for long periods of time. Concurrently, examples of adaptive gene duplications to various environmental conditions in different species have been described. At this point, it is too early to tell whether or not a substantial fraction of gene copies have initially achieved fixation by positive selection for increased dosage. Nevertheless, enough examples have accumulated in the literature that such a possibility should be considered. Here, I review the recent examples of adaptive gene duplications and make an attempt to draw generalizations on what types of genes may be particularly prone to be selected for under certain environmental conditions. The identification of copy-number variation in ecological field studies of species adapting to stressful or novel environmental conditions may improve our understanding of gene duplications as a mechanism of adaptation and its relevance to the long-term persistence of gene duplications.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- Institució Catalana de Recerca i Estudis Avançats, Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra, 88 Dr Aiguader, Barcelona 08003, Spain.
| |
Collapse
|
16
|
Abstract
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require approximately 12 alpha-helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein.
Collapse
Affiliation(s)
- I Bosch
- Harvard Medical School, The Dana-Faber Cancer Institute, Boston, MA, U.S.A
| | | |
Collapse
|
17
|
Pillai DR, Lau R, Khairnar K, Lepore R, Via A, Staines HM, Krishna S. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections. Malar J 2012; 11:131. [PMID: 22540925 PMCID: PMC3422158 DOI: 10.1186/1475-2875-11-131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/27/2012] [Indexed: 11/28/2022] Open
Abstract
Background Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. Methods Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. Results Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 – 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 – 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 – 11.6) versus 16.3 (10.7 – 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. Conclusions These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed.
Collapse
Affiliation(s)
- Dylan R Pillai
- Centre for Infection and Immunity, Division of Clinical Sciences, St, George's, University of London, London SW17 0RE, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
pfmdr1 amplification is related to increased Plasmodium falciparum in vitro sensitivity to the bisquinoline piperaquine. Antimicrob Agents Chemother 2012; 56:3615-9. [PMID: 22508315 DOI: 10.1128/aac.06350-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The 4-aminoquinoline bisquinoline piperaquine is an important partner drug in one of the presently recommended artemisinin combination therapies. Recent clinical trials have confirmed its high efficacy in combination with dihydroartemisinin. Resistance to piperaquine alone has, however, been documented. Amplification in copy number of the Plasmodium falciparum multidrug resistance locus on chromosome 5, containing the pfmdr1 gene, has been shown to confer resistance to structurally unrelated antimalarials. Through the determination of the 50% inhibitory concentrations (IC(50)s) and IC(90)s for piperaquine and chloroquine in a set of 46 adapted P. falciparum cultures originating from the Thai-Burmese border, we have characterized the regions around the pfmdr1 gene and identified a significant association between the presence of pfmdr1 duplications and enhanced sensitivity to piperaquine (P = 0.005 for IC(50) and P = 0.002 for IC(90)) and chloroquine, reaching statistical significance at IC(90)s (P = 0.026). These results substantiate the potential importance of pfmdr1 copy number amplifications in the efficacy of the combination therapy piperaquine-dihydroartemisinin. It supports the rational use of 4-aminoquinolines and artemisinin-based compounds, as they independently select for mutually incompatible combinations of mutations.
Collapse
|
19
|
Samarakoon U, Gonzales JM, Patel JJ, Tan A, Checkley L, Ferdig MT. The landscape of inherited and de novo copy number variants in a Plasmodium falciparum genetic cross. BMC Genomics 2011; 12:457. [PMID: 21936954 PMCID: PMC3191341 DOI: 10.1186/1471-2164-12-457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. RESULTS We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. CONCLUSIONS CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.
Collapse
Affiliation(s)
- Upeka Samarakoon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chavchich M, Gerena L, Peters J, Chen N, Cheng Q, Kyle DE. Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum. Antimicrob Agents Chemother 2010; 54:2455-64. [PMID: 20350946 PMCID: PMC2876417 DOI: 10.1128/aac.00947-09] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/08/2009] [Accepted: 03/17/2010] [Indexed: 01/07/2023] Open
Abstract
Artemisinin and its derivatives are the most rapidly acting and efficacious antimalarial drugs currently available. Although resistance to these drugs has not been documented, there is growing concern about the potential for resistance to develop. In this paper we report the selection of parasite resistance to artelinic acid (AL) and artemisinin (QHS) in vitro and the molecular changes that occurred during the selection. Exposure of three Plasmodium falciparum lines (W2, D6, and TM91C235) to AL resulted in decreases in parasite susceptibilities to AL and QHS, as well as to mefloquine, quinine, halofantrine, and lumefantrine. The changes in parasite susceptibility were accompanied by increases in the copy number, mRNA expression, and protein expression of the pfmdr1 gene in the resistant progenies of W2 and TM91C235 parasites but not in those of D6 parasites. No changes were detected in the coding sequences of the pfmdr1, pfcrt, pfatp6, pftctp, and pfubcth genes or in the expression levels of pfatp6 and pftctp. Our data demonstrate that P. falciparum lines have the capacity to develop resistance to artemisinin derivatives in vitro and that this resistance is achieved by multiple mechanisms, to include amplification and increased expression of pfmdr1, a mechanism that also confers resistance to mefloquine. This observation is of practical importance, because artemisinin drugs are often used in combination with mefloquine for the treatment of malaria.
Collapse
Affiliation(s)
- Marina Chavchich
- Australian Army Malaria Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, Q4051, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Q4029, Australia, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, Florida 33612
| | - Lucia Gerena
- Australian Army Malaria Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, Q4051, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Q4029, Australia, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, Florida 33612
| | - Jennifer Peters
- Australian Army Malaria Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, Q4051, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Q4029, Australia, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, Florida 33612
| | - Nanhua Chen
- Australian Army Malaria Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, Q4051, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Q4029, Australia, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, Florida 33612
| | - Qin Cheng
- Australian Army Malaria Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, Q4051, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Q4029, Australia, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, Florida 33612
| | - Dennis E. Kyle
- Australian Army Malaria Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, Q4051, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Q4029, Australia, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, Florida 33612
| |
Collapse
|
21
|
Vinayak S, Alam MT, Sem R, Shah NK, Susanti AI, Lim P, Muth S, Maguire JD, Rogers WO, Fandeur T, Barnwell JW, Escalante AA, Wongsrichanalai C, Ariey F, Meshnick SR, Udhayakumar V. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis 2010; 201:1551-60. [PMID: 20367478 PMCID: PMC3096139 DOI: 10.1086/651949] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The emergence of artesunate-mefloquine (AS+MQ)-resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. METHODS We characterized 13 microsatellite loci flanking (+/-99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. RESULTS Genetic analysis revealed no difference in the mean (+/- standard deviation) expected heterozygosity (H(e)) at loci around single (0.75+/-0.03) and multiple (0.76+/-0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean H(e) (+/-SD) around mutant allele (0.56+/-0.05), compared with wild-type allele (0.84+/-0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. CONCLUSION The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds.
Collapse
Affiliation(s)
- Sumiti Vinayak
- Atlanta Research and Education Foundation, Centers for Disease Control and Prevention, Atlanta, Georgia
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Md Tauqeer Alam
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rithy Sem
- National Malaria Center, Phnom Penh, Cambodia
- US Naval Medical Research Unit No. 2, Jakarta, Indonesia
| | - Naman K. Shah
- Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill
| | | | - Pharath Lim
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sinuon Muth
- National Malaria Center, Phnom Penh, Cambodia
| | | | | | - Thierry Fandeur
- Institut Pasteur, Unité d’Immunologie Moléculaire des Parasites, France
| | - John W. Barnwell
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | - Steven R. Meshnick
- Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic Vector Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
22
|
Nkhoma S, Nair S, Mukaka M, Molyneux ME, Ward SA, Anderson TJC. Parasites bearing a single copy of the multi-drug resistance gene (pfmdr-1) with wild-type SNPs predominate amongst Plasmodium falciparum isolates from Malawi. Acta Trop 2009; 111:78-81. [PMID: 19426667 PMCID: PMC2746100 DOI: 10.1016/j.actatropica.2009.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 12/05/2008] [Accepted: 01/26/2009] [Indexed: 11/23/2022]
Abstract
We genotyped 160 P. falciparum infections from Malawi for pfmdr-1 copy number changes and SNPs associated with in vivo tolerance and poor in vitro sensitivity to the component drugs of Coartem. We also measured in vitro susceptibility of 49 of these isolates to a variety of drugs in clinical use or with a potential for use in Africa. All 160 infections carried a single copy of pfmdr-1 but 34% exhibited sequence variation at 4 of the 5 polymorphic sites in pfmdr-1. Isolates carrying 86-Asn and 184-Tyr pfmdr-1 alleles were significantly less sensitive (p<0.001) to mefloquine, lumefantrine, artemether and dihydroartemisinin compared with those bearing 86-Tyr and 184-Phe polymorphisms. This study provides baseline measures prior to policy change: continued surveillance for changes in baseline drug susceptibility, pfmdr-1 copy number and SNPs, and other putative Coartem resistance loci will be necessary to provide an early warning of emerging Coartem resistance in this setting.
Collapse
Affiliation(s)
- Standwell Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.
| | | | | | | | | | | |
Collapse
|
23
|
Anderson TJC, Patel J, Ferdig MT. Gene copy number and malaria biology. Trends Parasitol 2009; 25:336-43. [PMID: 19559648 PMCID: PMC2839409 DOI: 10.1016/j.pt.2009.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/26/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Alteration in gene copy number provides a simple way to change expression levels and alter phenotype. This was fully appreciated by bacteriologists more than 25 years ago, but the extent and implications of copy number polymorphism (CNP) have only recently become apparent in other organisms. New methods demonstrate the ubiquity of CNPs in eukaryotes and their medical importance in humans. CNP is also widespread in the Plasmodium falciparum genome and has an important and underappreciated role in determining phenotype. In this review, we summarize the distribution of CNP, its evolutionary dynamics within populations, its functional importance and its mode of evolution.
Collapse
Affiliation(s)
- Tim J C Anderson
- Southwest Foundation for Biomedical Research, San Antonio, TX 78245, USA.
| | | | | |
Collapse
|
24
|
Duffy MF, Byrne TJ, Carret C, Ivens A, Brown GV. Ectopic recombination of a malaria var gene during mitosis associated with an altered var switch rate. J Mol Biol 2009; 389:453-69. [PMID: 19389407 PMCID: PMC3898907 DOI: 10.1016/j.jmb.2009.04.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/14/2009] [Accepted: 04/16/2009] [Indexed: 01/27/2023]
Abstract
The Plasmodium falciparum var multigene family encodes P. falciparum erythrocyte membrane protein 1, which is responsible for the pathogenic traits of antigenic variation and adhesion of infected erythrocytes to host receptors during malaria infection. Clonal antigenic variation of P. falciparum erythrocyte membrane protein 1 is controlled by the switching between exclusively transcribed var genes. The tremendous diversity of the var gene repertoire both within and between parasite strains is critical for the parasite's strategy of immune evasion. We show that ectopic recombination between var genes occurs during mitosis, providing P. falciparum with opportunities to diversify its var repertoire, even during the course of a single infection. We show that the regulation of the recombined var gene has been disrupted, resulting in its persistent activation although the regulation of most other var genes is unaffected. The var promoter and intron of the recombined var gene are not responsible for its atypically persistent activity, and we conclude that altered subtelomeric cis sequence is the most likely cause of the persistent activity of the recombined var gene.
Collapse
Affiliation(s)
- Michael F Duffy
- Department of Medicine at RMH, University of Melbourne, Parkville 3050, Australia.
| | | | | | | | | |
Collapse
|
25
|
Jiang H, Yi M, Mu J, Zhang L, Ivens A, Klimczak LJ, Huyen Y, Stephens RM, Su XZ. Detection of genome-wide polymorphisms in the AT-rich Plasmodium falciparum genome using a high-density microarray. BMC Genomics 2008; 9:398. [PMID: 18724869 PMCID: PMC2543026 DOI: 10.1186/1471-2164-9-398] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/25/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic mapping is a powerful method to identify mutations that cause drug resistance and other phenotypic changes in the human malaria parasite Plasmodium falciparum. For efficient mapping of a target gene, it is often necessary to genotype a large number of polymorphic markers. Currently, a community effort is underway to collect single nucleotide polymorphisms (SNP) from the parasite genome. Here we evaluate polymorphism detection accuracy of a high-density 'tiling' microarray with 2.56 million probes by comparing single feature polymorphisms (SFP) calls from the microarray with known SNP among parasite isolates. RESULTS We found that probe GC content, SNP position in a probe, probe coverage, and signal ratio cutoff values were important factors for accurate detection of SFP in the parasite genome. We established a set of SFP calling parameters that could predict mSFP (SFP called by multiple overlapping probes) with high accuracy (> or = 94%) and identified 121,087 mSFP genome-wide from five parasite isolates including 40,354 unique mSFP (excluding those from multi-gene families) and approximately 18,000 new mSFP, producing a genetic map with an average of one unique mSFP per 570 bp. Genomic copy number variation (CNV) among the parasites was also cataloged and compared. CONCLUSION A large number of mSFP were discovered from the P. falciparum genome using a high-density microarray, most of which were in clusters of highly polymorphic genes at chromosome ends. Our method for accurate mSFP detection and the mSFP identified will greatly facilitate large-scale studies of genome variation in the P. falciparum parasite and provide useful resources for mapping important parasite traits.
Collapse
Affiliation(s)
- Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Yi
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louie Zhang
- Medical School of Drexel University, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Al Ivens
- Pathogen Microarrays Group, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Leszek J Klimczak
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yentram Huyen
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert M Stephens
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Imwong M, Pukrittayakamee S, Pongtavornpinyo W, Nakeesathit S, Nair S, Newton P, Nosten F, Anderson TJC, Dondorp A, Day NPJ, White NJ. Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrob Agents Chemother 2008; 52:2657-9. [PMID: 18443118 PMCID: PMC2443893 DOI: 10.1128/aac.01459-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 01/22/2008] [Accepted: 04/10/2008] [Indexed: 11/20/2022] Open
Abstract
Plasmodium vivax mdr1 gene amplification, quantified by real-time PCR, was significantly more common on the western Thailand border (6 of 66 samples), where mefloquine pressure has been intense, than elsewhere in southeast Asia (3 of 149; P = 0.02). Five coding mutations in pvmdr1, independent of gene amplification, were also found.
Collapse
Affiliation(s)
- Mallika Imwong
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok 10400, Thailand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Discordant patterns of genetic variation at two chloroquine resistance loci in worldwide populations of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2008; 52:2212-22. [PMID: 18411325 DOI: 10.1128/aac.00089-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the chloroquine resistance (CQR) transporter gene of Plasmodium falciparum (Pfcrt; chromosome 7) play a key role in CQR, while mutations in the multidrug resistance gene (Pfmdr1; chromosome 5) play a significant role in the parasite's resistance to a variety of antimalarials and also modulate CQR. To compare patterns of genetic variation at Pfcrt and Pfmdr1 loci, we investigated 460 blood samples from P. falciparum-infected patients from four Asian, three African, and three South American countries, analyzing microsatellite (MS) loci flanking Pfcrt (five loci [approximately 40 kb]) and Pfmdr1 (either two loci [approximately 5 kb] or four loci [approximately 10 kb]). CQR Pfmdr1 allele-associated MS haplotypes showed considerably higher genetic diversity and higher levels of subdivision than CQR Pfcrt allele-associated MS haplotypes in both Asian and African parasite populations. However, both Pfcrt and Pfmdr1 MS haplotypes showed similar levels of low diversity in South American parasite populations. Median-joining network analyses showed that the Pfcrt MS haplotypes correlated well with geography and CQR Pfcrt alleles, whereas there was no distinct Pfmdr1 MS haplotype that correlated with geography and/or CQR Pfmdr1 alleles. Furthermore, multiple independent origins of CQR Pfmdr1 alleles in Asia and Africa were inferred. These results suggest that variation at Pfcrt and Pfmdr1 loci in both Asian and African parasite populations is generated and/or maintained via substantially different mechanisms. Since Pfmdr1 mutations may be associated with resistance to artemisinin combination therapies that are replacing CQ, particularly in Africa, it is important to determine if, and how, the genetic characteristics of this locus change over time.
Collapse
|
28
|
López-Casamichana M, Orozco E, Marchat LA, López-Camarillo C. Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica. BMC Mol Biol 2008; 9:35. [PMID: 18402694 PMCID: PMC2324109 DOI: 10.1186/1471-2199-9-35] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/10/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In eukaryotic and prokaryotic cells, homologous recombination is an accurate mechanism to generate genetic diversity, and it is also used to repair DNA double strand-breaks. RAD52 epistasis group genes involved in recombinational DNA repair, including mre11, rad50, nsb1/xrs2, rad51, rad51c/rad57, rad51b/rad55, rad51d, xrcc2, xrcc3, rad52, rad54, rad54b/rdh54 and rad59 genes, have been studied in human and yeast cells. Notably, the RAD51 recombinase catalyses strand transfer between a broken DNA and its undamaged homologous strand, to allow damaged region repair. In protozoan parasites, homologous recombination generating antigenic variation and genomic rearrangements is responsible for virulence variation and drug resistance. However, in Entamoeba histolytica the protozoan parasite responsible for human amoebiasis, DNA repair and homologous recombination mechanisms are still unknown. RESULTS In this paper, we initiated the study of the mechanism for DNA repair by homologous recombination in the primitive eukaryote E. histolytica using UV-C (150 J/m2) irradiated trophozoites. DNA double strand-breaks were evidenced in irradiated cells by TUNEL and comet assays and evaluation of the EhH2AX histone phosphorylation status. In E. histolytica genome, we identified genes homologous to yeast and human RAD52 epistasis group genes involved in DNA double strand-breaks repair by homologous recombination. Interestingly, the E. histolytica RAD52 epistasis group related genes were differentially expressed before and after UV-C treatment. Next, we focused on the characterization of the putative recombinase EhRAD51, which conserves the typical architecture of RECA/RAD51 proteins. Specific antibodies immunodetected EhRAD51 protein in both nuclear and cytoplasmic compartments. Moreover, after DNA damage, EhRAD51 was located as typical nuclear foci-like structures in E. histolytica trophozoites. Purified recombinant EhRAD51 exhibited DNA binding and pairing activities and exchanging reactions between homologous strands in vitro. CONCLUSION E. histolytica genome contains most of the RAD52 epistasis group related genes, which were differentially expressed when DNA double strand-breaks were induced by UV-C irradiation. In response to DNA damage, EhRAD51 protein is overexpressed and relocalized in nuclear foci-like structures. Functional assays confirmed that EhRAD51 is a bonafide recombinase. These data provided the first insights about the potential roles of the E. histolytica RAD52 epistasis group genes and EhRAD51 protein function in DNA damage response of this ancient eukaryotic parasite.
Collapse
Affiliation(s)
- Mavil López-Casamichana
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México DF, México
| | - Esther Orozco
- Departamento de Patología Experimental, CINVESTAV-IPN, México DF, México
| | - Laurence A Marchat
- Programa Institucional de Biomedicina Molecular, ENMH-IPN, México DF, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México DF, México
| |
Collapse
|
29
|
Uhlemann AC, McGready R, Ashley EA, Brockman A, Singhasivanon P, Krishna S, White NJ, Nosten F, Price RN. Intrahost selection of Plasmodium falciparum pfmdr1 alleles after antimalarial treatment on the northwestern border of Thailand. J Infect Dis 2007; 195:134-41. [PMID: 17152017 PMCID: PMC4337981 DOI: 10.1086/509809] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/22/2006] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Increased pfmdr1 copy number is associated with reduced susceptibility to structurally unrelated antimalarial drugs. We assessed how administration of different antimalarial drugs altered pfmdr1 polymorphism in parasites from patients who experienced treatment failure. METHODS In studies conducted on the northwestern border of Thailand, amplifications and single-nucleotide polymorphisms in pfmdr1 were compared before and after antimalarial drug treatment. RESULTS Intrahost changes in pfmdr1 copy number were observed in 20% (26/132) of patients with recurrent infections. Among infections that recrudesced after mefloquine-containing regimens, increases in pfmdr1 copy number occurred in 68% (95% confidence interval [CI], 46%-85%), and decreases occurred in 2% (95% CI, 0.4%-11%) of isolates; corresponding proportions after artemether-lumefantrine were 25% (2/8) and 11% (2/19); after quinine, 50% (1/2) and 40% (4/10); and after artemisinins alone, 0% (0/10) and 19% (3/16) of isolates (overall P<.001). CONCLUSIONS Intrahost selection based on pfmdr1 copy number occurs frequently in parasite populations within individual patients. Amplification confers multidrug resistance but probably imposes a significant fitness cost to the parasites.
Collapse
Affiliation(s)
- Anne-Catrin Uhlemann
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George’s, University of London, London
| | - Rose McGready
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Tak Province, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Tak Province, Mahidol University, Bangkok, Thailand
| | - Alan Brockman
- Shoklo Malaria Research Unit, Tak Province, Mahidol University, Bangkok, Thailand
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Sanjeev Krishna
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George’s, University of London, London
| | - Nicholas J. White
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Tak Province, Mahidol University, Bangkok, Thailand
| | - Ric N. Price
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| |
Collapse
|
30
|
Sidhu ABS, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA. Decreasing pfmdr1 copy number in plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 2006; 194:528-35. [PMID: 16845638 PMCID: PMC2978021 DOI: 10.1086/507115] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/16/2006] [Indexed: 11/04/2022] Open
Abstract
The global dissemination of drug-resistant Plasmodium falciparum is spurring intense efforts to implement artemisinin (ART)-based combination therapies for malaria, including mefloquine (MFQ)-artesunate and lumefantrine (LUM)-artemether. Clinical studies have identified an association between an increased risk of MFQ, MFQ-artesunate, and LUM-artemether treatment failures and pfmdr1 gene amplification. To directly address the contribution that pfmdr1 copy number makes to drug resistance, we genetically disrupted 1 of the 2 pfmdr1 copies in the drug-resistant FCB line, which resulted in reduced pfmdr1 mRNA and protein expression. These knockdown clones manifested a 3-fold decrease in MFQ IC(50) values, compared with that for the FCB line, verifying the role played by pfmdr1 expression levels in mediating resistance to MFQ. These clones also showed increased susceptibility to LUM, halofantrine, quinine, and ART. No change was observed for chloroquine. These results highlight the importance of pfmdr1 copy number in determining P. falciparum susceptibility to multiple agents currently being used to combat malaria caused by multidrug-resistant parasites.
Collapse
Affiliation(s)
- Amar Bir Singh Sidhu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
31
|
Elliott SR, Duffy MF, Byrne TJ, Beeson JG, Mann EJ, Wilson DW, Rogerson SJ, Brown GV. Cross-reactive surface epitopes on chondroitin sulfate A-adherent Plasmodium falciparum-infected erythrocytes are associated with transcription of var2csa. Infect Immun 2005; 73:2848-56. [PMID: 15845490 PMCID: PMC1087379 DOI: 10.1128/iai.73.5.2848-2856.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria in pregnancy is associated with placental accumulation of Plasmodium falciparum-infected erythrocytes (IE) that adhere to chondroitin sulfate A (CSA). Adhesion is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1), a variant parasite protein expressed on the surface of IE and encoded by var genes. Rabbit antiserum was generated against the CSA-adherent P. falciparum line CS2, in which the dominant var transcribed is var2csa, a relatively conserved var gene that has been associated with CSA adhesion. Anti-CS2 recognized genetically distinct CSA-adherent P. falciparum lines but not CD36-adherent parent lines. Reactivity with anti-CS2 correlated with the level of adhesion to CSA. Fluorescence-activated cell sorting according to binding of anti-CS2 showed reactivity was associated with CSA adhesion and transcription of var2csa. These data are consistent with the hypothesis that var2csa encodes a PfEMP1 expressed on the surface of IE, which mediates adhesion to CSA and is relatively conserved between genetically distinct strains of P. falciparum.
Collapse
Affiliation(s)
- Salenna R Elliott
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Victoria 3050 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Malaria, the most prevalent and most pernicious parasitic disease of humans, is estimated to kill between one and two million people, mainly children, each year. Resistance has emerged to all classes of antimalarial drugs except the artemisinins and is responsible for a recent increase in malaria-related mortality, particularly in Africa. The de novo emergence of resistance can be prevented by the use of antimalarial drug combinations. Artemisinin-derivative combinations are particularly effective, since they act rapidly and are well tolerated and highly effective. Widespread use of these drugs could roll back malaria.
Collapse
Affiliation(s)
- Nicholas J White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
33
|
Mehlotra RK, Fujioka H, Roepe PD, Janneh O, Ursos LM, Jacobs-Lorena V, McNamara DT, Bockarie MJ, Kazura JW, Kyle DE, Fidock DA, Zimmerman PA. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc Natl Acad Sci U S A 2001; 98:12689-94. [PMID: 11675500 PMCID: PMC60115 DOI: 10.1073/pnas.221440898] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2001] [Accepted: 08/21/2001] [Indexed: 11/18/2022] Open
Abstract
The mechanistic basis for chloroquine resistance (CQR) in Plasmodium falciparum recently has been linked to the polymorphic gene pfcrt. Alleles associated with CQR in natural parasite isolates harbor threonine (T), as opposed to lysine (K) at amino acid 76. P. falciparum CQR strains of African and Southeast Asian origin carry pfcrt alleles encoding an amino acid haplotype of CVIET (residues 72-76), whereas most South American CQR strains studied carry an allele encoding an SVMNT haplotype; chloroquine-sensitive strains from malarious regions around the world carry a CVMNK haplotype. Upon investigating the origin of pfcrt alleles in Papua New Guinean (PNG) P. falciparum we found either the chloroquine-sensitive-associated CVMNK or CQR-associated SVMNT haplotypes previously seen in Brazilian isolates. Remarkably we did not find the CVIET haplotype observed in CQR strains from Southeast Asian regions more proximal to PNG. Further we found a previously undescribed CQR phenotype to be associated with the SVMNT haplotype from PNG and South America. This CQR phenotype is significantly less responsive to verapamil chemosensitization compared with the effect associated with the CVIET haplotype. Consistent with this, we observed that verapamil treatment of P. falciparum isolates carrying pfcrt SVMNT is associated with an attenuated increase in digestive vacuole pH relative to CVIET pfcrt-carrying isolates. These data suggest a key role for pH-dependent changes in hematin receptor concentration in the P. falciparum CQR mechanism. Our findings also suggest that P. falciparum CQR has arisen through multiple evolutionary pathways associated with pfcrt K76T.
Collapse
Affiliation(s)
- R K Mehlotra
- Division of Geographic Medicine, Case Western Reserve University, University Hospitals of Cleveland, School of Medicine, W147D, 2109 Adelbert Road, Cleveland, OH 44106-4983, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reed MB, Caruana SR, Batchelor AH, Thompson JK, Crabb BS, Cowman AF. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc Natl Acad Sci U S A 2000; 97:7509-14. [PMID: 10861015 PMCID: PMC16576 DOI: 10.1073/pnas.97.13.7509] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythrocyte invasion by Plasmodium requires molecules present both on the merozoite surface and within the specialized organelles of the apical complex. The Plasmodium erythrocyte binding protein family includes the Plasmodium falciparum sialic acid-binding protein, EBA-175 (erythrocyte binding antigen-175), which binds sialic acid present on glycophorin A of human erythrocytes. We address the role of the conserved 3'-cysteine rich region, the transmembrane, and cytoplasmic domains through targeted gene disruption. Truncation of EBA-175 had no measurable effect on either the level of EBA-175 protein expression or its subcellular localization. Similarly, there appears to be no impairment in the ability of soluble EBA-175 to be released into the culture supernatant after schizont rupture. Additionally, the 3'-cys rich region, transmembrane, and cytoplasmic domains of EBA-175 are apparently non-essential for merozoite invasion. In contrast, erythrocyte invasion via the EBA-175/glycophorin A route appears to have been disrupted to such a degree that the mutant lines have undergone a stable switch in invasion phenotype. As such, EBA-175 appears to have been functionally inactivated within the truncation mutants. The sialic acid-independent invasion pathway within the mutant parasites accounts for approximately 85% of invasion into normal erythrocytes. These data demonstrate the ability of P. falciparum to utilize alternate pathways for invasion of red blood cells, a property that most likely provides a substantial survival advantage in terms of overcoming host receptor heterogeneity and/or immune pressure.
Collapse
Affiliation(s)
- M B Reed
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 3050
| | | | | | | | | | | |
Collapse
|
35
|
Field LM, Devonshire AL. Structure and organization of amplicons containing the E4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer). Biochem J 1997; 322 ( Pt 3):867-71. [PMID: 9148762 PMCID: PMC1218268 DOI: 10.1042/bj3220867] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insecticide resistance in the aphid Myzus persicae results primarily from the amplification of genes encoding the insecticide-detoxifying esterase, E4. Here we report the analysis of flanking DNA co-amplified with the E4 gene. The 5' end of this gene has an untranslated leader sequence interspersed by two introns, and the promoter region lacks TATA and CAAT boxes. The DNA breakpoint involved in the generation of the amplification is just upstream (approx. 250 bp) of the putative E4 transcription start site; thus the E4 gene is very close to the 5' end of the approx. 24 kb amplicon. PCR primers specific to the 'novel joint' generated during the amplification have been used to show that a wide range of aphid clones have the same amplicons, arranged as a series of head-to-tail direct repeats. Long-distance mapping has revealed the structure of these repeats. This has important implications for understanding both the generation of the amplified genes and the origin and spread of insecticide resistance in M. persicae.
Collapse
Affiliation(s)
- L M Field
- IACR-Rothamsted, Harpenden, Herts. AL5 2JQ, UK
| | | |
Collapse
|
36
|
Carnaby S, Katelaris PH, Naeem A, Farthing MJ. Genotypic heterogeneity within Giardia lamblia isolates demonstrated by M13 DNA fingerprinting. Infect Immun 1994; 62:1875-80. [PMID: 8168952 PMCID: PMC186430 DOI: 10.1128/iai.62.5.1875-1880.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There has been considerable speculation regarding the possible relationship between the phenotypic and genotypic heterogeneity seen among human isolates of Giardia lamblia and the wide clinical spectrum of human giardiasis. Several workers have suggested that human giardiasis may be a mixed infection consisting of variant strains or subgroups which are present in the same infection and which are selectable, but it is not clear whether these apparent variant strains represent a truly heterogeneous infection or whether the genotypic heterogeneity observed is due to the susceptibility of the Giardia genome to a high rate of structural genetic rearrangement. We have therefore studied variation in Giardia intestinalis genotypes in 19 isolates in vitro and in vivo by using the technique of M13 DNA fingerprinting. Genotypes of isolates changed with time when cultured under standard conditions and when pressured with bile. Sequential isolates and their clones taken from a patient with chronic giardiasis both before and after several treatments with metronidazole had different genotypes. Finally, clones of isolate WB had different initial genotypes, which changed after 4 months in culture. These findings suggest that the apparent genotypic heterogeneity at least in these G. intestinalis isolates is more likely to be due to the plasticity of the Giardia genome than to the presence of a truly mixed population of strains within the same infection.
Collapse
Affiliation(s)
- S Carnaby
- Department of Gastroenterology, St. Bartholomew's Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
37
|
Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci U S A 1994; 91:1143-7. [PMID: 8302844 PMCID: PMC521470 DOI: 10.1073/pnas.91.3.1143] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two chloroquine-resistant cloned isolates of Plasmodium falciparum were subjected to mefloquine selection to test if this resulted in alterations in chloroquine sensitivity and amplification of the pfmdr1 gene. The mefloquine-resistant lines derived by this selection were shown to have amplified and overexpressed the pfmdr1 gene and its protein product (Pgh1). Macrorestriction maps of chromosome 5, where pfmdr1 is encoded, showed that this chromosome has increased in size in response to mefloquine selection, indicating the presence of a gene(s) in this area of the genome that confers a selective advantage in the presence of mefloquine. Concomitant with the increase in mefloquine resistance was a corresponding increase in the level of resistance to halofantrine and quinine, suggesting a true multidrug-resistance phenotype. The mefloquine-selected parasite lines also showed an inverse relationship between the level of chloroquine resistance and increased pfmdr1 gene copy number. These results have important implications for the derivation of amplified copies of the pfmdr1 gene in field isolates, as they suggest that quinine pressure may be involved.
Collapse
Affiliation(s)
- A F Cowman
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | |
Collapse
|
38
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:4109-22. [PMID: 1508704 PMCID: PMC334108 DOI: 10.1093/nar/20.15.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|