1
|
Kaur D, Agrahari M, Bhattacharya A, Bhattacharya S. The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology. Mol Genet Genomics 2022; 297:1-18. [PMID: 34999963 DOI: 10.1007/s00438-021-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
Genome sequence analysis of Entamoeba species revealed various classes of transposable elements. While E. histolytica and E. dispar are rich in non-long terminal repeat (LTR) retrotransposons, E. invadens contains predominantly DNA transposons. Non-LTR retrotransposons of E. histolytica constitute three families of long interspersed nuclear elements (LINEs), and their short, nonautonomous partners, SINEs. They occupy ~ 11% of the genome. The EhLINE1/EhSINE1 family is the most abundant and best studied. EhLINE1 is 4.8 kb, with two ORFs that encode functions needed for retrotransposition. ORF1 codes for the nucleic acid-binding protein, and ORF2 has domains for reverse transcriptase (RT) and endonuclease (EN). Most copies of EhLINEs lack complete ORFs. ORF1p is expressed constitutively, but ORF2p is not detected. Retrotransposition could be demonstrated upon ectopic over expression of ORF2p, showing that retrotransposition machinery is functional. The newly retrotransposed sequences showed a high degree of recombination. In transcriptomic analysis, RNA-Seq reads were mapped to individual EhLINE1 copies. Although full-length copies were transcribed, no full-length 4.8 kb transcripts were seen. Rather, sense transcripts mapped to ORF1, RT and EN domains. Intriguingly, there was strong antisense transcription almost exclusively from the RT domain. These unique features of EhLINE1 could serve to attenuate retrotransposition in E. histolytica.
Collapse
|
2
|
Talavera-López C, Messenger LA, Lewis MD, Yeo M, Reis-Cunha JL, Matos GM, Bartholomeu DC, Calzada JE, Saldaña A, Ramírez JD, Guhl F, Ocaña-Mayorga S, Costales JA, Gorchakov R, Jones K, Nolan MS, Teixeira SMR, Carrasco HJ, Bottazzi ME, Hotez PJ, Murray KO, Grijalva MJ, Burleigh B, Grisard EC, Miles MA, Andersson B. Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:614665. [PMID: 33747978 PMCID: PMC7966520 DOI: 10.3389/fcimb.2021.614665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.
Collapse
Affiliation(s)
- Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- European Bioinformatics Institute, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Machado Matos
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | | | - José E. Calzada
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Azael Saldaña
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Grupo de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Tropical Parasitology Research Center, Universidad de Los Andes, Bogotá, Colombia
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Rodion Gorchakov
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Melissa S. Nolan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hernán José Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kristy O. Murray
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Edmundo C. Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Govindaraju A, Cortez JD, Reveal B, Christensen SM. Endonuclease domain of non-LTR retrotransposons: loss-of-function mutants and modeling of the R2Bm endonuclease. Nucleic Acids Res 2016; 44:3276-87. [PMID: 26961309 PMCID: PMC4838377 DOI: 10.1093/nar/gkw134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/07/2023] Open
Abstract
Non-LTR retrotransposons are an important class of mobile elements that insert into host DNA by target-primed reverse transcription (TPRT). Non-LTR retrotransposons must bind to their mRNA, recognize and cleave their target DNA, and perform TPRT at the site of DNA cleavage. As DNA binding and cleavage are such central parts of the integration reaction, a better understanding of the endonuclease encoded by non-LTR retrotransposons is needed. This paper explores the R2 endonuclease domain from Bombyx mori using in vitro studies and in silico modeling. Mutations in conserved sequences located across the putative PD-(D/E)XK endonuclease domain reduced DNA cleavage, DNA binding and TPRT. A mutation at the beginning of the first α-helix of the modeled endonuclease obliterated DNA cleavage and greatly reduced DNA binding. It also reduced TPRT when tested on pre-cleaved DNA substrates. The catalytic K was located to a non-canonical position within the second α-helix. A mutation located after the fourth β-strand reduced DNA binding and cleavage. The motifs that showed impaired activity form an extensive basic region. The R2 biochemical and structural data are compared and contrasted with that of two other well characterized PD-(D/E)XK endonucleases, restriction endonucleases and archaeal Holliday junction resolvases.
Collapse
Affiliation(s)
- Aruna Govindaraju
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| | - Jeremy D. Cortez
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| | - Brad Reveal
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| | - Shawn M. Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019-0498, USA
| |
Collapse
|
4
|
Comparative in-silico genome analysis of Leishmania (Leishmania) donovani: A step towards its species specificity. Meta Gene 2014; 2:782-98. [PMID: 25606461 PMCID: PMC4287845 DOI: 10.1016/j.mgene.2014.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/12/2014] [Accepted: 10/04/2014] [Indexed: 12/24/2022] Open
Abstract
Comparative genome analysis of recently sequenced Leishmania (L.) donovani was unexplored so far. The present study deals with the complete scanning of L. (L.) donovani genome revealing its interspecies variations. 60 distinctly present genes in L. (L.) donovani were identified when the whole genome was compared with Leishmania (L.) infantum. Similarly 72, 159, and 265 species specific genes were identified in L. (L.) donovani when compared to Leishmania (L.) major, Leishmania (L.) mexicana and Leishmania (Viannia) braziliensis respectively. The cross comparison of L. (L.) donovani in parallel with the other sequenced species of leishmanial led to the identification of 55 genes which are highly specific and expressed exclusively in L. (L.) donovani. We found mainly the discrepancies of surface proteins such as amastins, proteases, and peptidases. Also 415 repeat containing proteins in L. (L.) donovani and their differential distribution in other leishmanial species were identified which might have a potential role during pathogenesis. The genes identified can be evaluated as drug targets for anti-leishmanial treatment, exploring the scope for extensive future investigations. Comparative genome analysis identifies 55 species specific L. (L.) donovani genes. Discrepancies of surface proteins such as amastins, proteases, and peptidases are identified in L. (L.) donovani. Apical Membrane Antigen (AMA1) might be a novel factor which helps L. (L.) donovani invasion. Novel A2 and amastin genes in L. (L.) donovani genome are identified. Our study identifies differential gene distribution in L. (L.) donovani with respect to other leishmanial species.
Collapse
|
5
|
Teixeira SM, de Paiva RMC, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35:1-17. [PMID: 22481868 PMCID: PMC3313497 DOI: 10.1590/s1415-47572012005000008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023] Open
Abstract
In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
6
|
Novikova OS, Blinov AG. Origin, evolution, and distribution of different groups of non-LTR retrotransposons among eukaryotes. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540902001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Patrick KL, Luz PM, Ruan JP, Shi H, Ullu E, Tschudi C. Genomic rearrangements and transcriptional analysis of the spliced leader-associated retrotransposon in RNA interference-deficient Trypanosoma brucei. Mol Microbiol 2008; 67:435-47. [PMID: 18067542 PMCID: PMC2610267 DOI: 10.1111/j.1365-2958.2007.06057.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Trypanosoma brucei genome is colonized by the site-specific non-LTR retrotransposon SLACS, or spliced leader-associated conserved sequence, which integrates exclusively into the spliced leader (SL) RNA genes. Although there is evidence that the RNA interference (RNAi) machinery regulates SLACS transcript levels, we do not know whether RNAi deficiency affects the genomic stability of SLACS, nor do we understand the mechanism of SLACS transcription. Here, we report that prolonged culturing of RNAi-deficient T. brucei cells, but not wild-type cells, results in genomic rearrangements of SLACS. Furthermore, two populations of SLACS transcripts persist in RNAi-deficient cells: a full-length transcript of approximately 7 kb and a heterogeneous population of small SLACS transcripts ranging in size from 450 to 550 nt. We provide evidence that SLACS transcription initiates at the +1 of the interrupted SL RNA gene and proceeds into the 5' UTR and open reading frame 1 (ORF1). This transcription is carried out by an RNA polymerase with alpha-amanitin sensitivity reminiscent of SL RNA synthesis and is dependent on the SL RNA promoter. Additionally, we show that both sense and antisense small SLACS transcripts originate from ORF1 and that they are associated with proteins in vivo. We speculate that the small SLACS transcripts serve as substrates for the production of siRNAs to regulate SLACS expression.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | | | | | | | | | |
Collapse
|
8
|
Ekanayake DK, Cipriano MJ, Sabatini R. Telomeric co-localization of the modified base J and contingency genes in the protozoan parasite Trypanosoma cruzi. Nucleic Acids Res 2007; 35:6367-77. [PMID: 17881368 PMCID: PMC2095807 DOI: 10.1093/nar/gkm693] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/14/2007] [Accepted: 08/22/2007] [Indexed: 12/20/2022] Open
Abstract
Base J or beta-d-glucosylhydroxymethyluracil is a modification of thymine residues within the genome of kinetoplastid parasites. In organisms known to contain the modified base, J is located mainly within the telomeric repeats. However, in Trypanosoma brucei, a small fraction of J is also located within the silent subtelomeric variant surface glycoprotein (VSG) gene expression sites, but not in the active expression site, suggesting a role for J in regulating telomeric genes involved in pathogenesis. With the identification of surface glycoprotein genes adjacent to telomeres in the South American Trypanosome, Trypanosoma cruzi, we became interested in the telomeric distribution of base J. Analysis of J and telomeric repeat sequences by J immunoblots and Southern blots following DNA digestion, reveals approximately 25% of J outside the telomeric repeat sequences. Moreover, the analysis of DNA sequences immunoprecipitated with J antiserum, localized J within subtelomeric regions rich in life-stage-specific surface glycoprotein genes involved in pathogenesis. Interestingly, the pattern of J within these regions is developmentally regulated. These studies provide a framework to characterize the role of base J in the regulation of telomeric gene expression/diversity in T. cruzi.
Collapse
Affiliation(s)
| | | | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Smith DF, Peacock CS, Cruz AK. Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol 2007; 37:1173-86. [PMID: 17645880 PMCID: PMC2696322 DOI: 10.1016/j.ijpara.2007.05.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/18/2007] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
Recent progress in sequencing the genomes of several Leishmania species, causative agents of cutaneous, mucocutaneous and visceral leishmaniasis, is revealing unusual features of potential relevance to parasite virulence and pathogenesis in the host. While the genomes of Leishmania major, Leishmania braziliensis and Leishmania infantum are highly similar in content and organisation, species-specific genes and mechanisms distinguish one from another. In particular, the presence of retrotransposons and the components of a putative RNA interference machinery in L. braziliensis suggest the potential for both greater diversity and more tractable experimentation in this Leishmania Viannia species.
Collapse
Affiliation(s)
- Deborah F Smith
- Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
10
|
Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LRO, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 2007; 39:839-47. [PMID: 17572675 PMCID: PMC2592530 DOI: 10.1038/ng2053] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 05/04/2007] [Indexed: 12/23/2022]
Abstract
Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.
Collapse
Affiliation(s)
- Christopher S Peacock
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bringaud F, Bartholomeu DC, Blandin G, Delcher A, Baltz T, El-Sayed NMA, Ghedin E. The Trypanosoma cruzi L1Tc and NARTc non-LTR retrotransposons show relative site specificity for insertion. Mol Biol Evol 2005; 23:411-20. [PMID: 16267142 DOI: 10.1093/molbev/msj046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The trypanosomatid protozoan Trypanosoma cruzi contains long autonomous (L1Tc) and short nonautonomous (NARTc) non-long terminal repeat retrotransposons. NARTc (0.25 kb) probably derived from L1Tc (4.9 kb) by 3'-deletion. It has been proposed that their apparent random distribution in the genome is related to the L1Tc-encoded apurinic/apyrimidinic endonuclease (APE) activity, which repairs modified residues. To address this question we used the T. cruzi (CL-Brener strain) genome data to analyze the distribution of all the L1Tc/NARTc elements present in contigs larger than 10 kb. This data set, which represents 0.91x sequence coverage of the haploid nuclear genome ( approximately 55 Mb), contains 419 elements, including 112 full-length L1Tc elements (14 of which are potentially functional) and 84 full-length NARTc. Approximately half of the full-length elements are flanked by a target site duplication, most of them (87%) are 12 bp long. Statistical analyses of sequences flanking the full-length elements show the same highly conserved pattern upstream of both the L1Tc and NARTc retrotransposons. The two most conserved residues are a guanine and an adenine, which flank the site where first-strand cleavage is performed by the element-encoded endonuclease activity. This analysis clearly indicates that the L1Tc and NARTc elements display relative site specificity for insertion, which suggests that the APE activity is not responsible for first-strand cleavage of the target site.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, UMR-5162 Centre National de la Recherche Scientifique, Université Victor Segalen Bordeaux 2, Bordeaux Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lorenzi HA, Robledo G, Levin MJ. The VIPER elements of trypanosomes constitute a novel group of tyrosine recombinase-enconding retrotransposons. Mol Biochem Parasitol 2005; 145:184-94. [PMID: 16297462 DOI: 10.1016/j.molbiopara.2005.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/02/2005] [Accepted: 10/04/2005] [Indexed: 11/29/2022]
Abstract
VIPER was initially characterized as a 2326bp LTR-like retroelement associated to SIRE, a short interspersed repetitive element specific of Trypanosoma cruzi. It carried a single ORF that coded for a putative reverse transcriptase-RNAse H protein, suggesting that it could be a truncated copy of a longer retroelement. Herein we report the identification and characterization of a complete 4480bp long VIPER in the T. cruzi genome. The complete VIPER harbored three non-overlapped domains encoding for a GAG-like, a tyrosine recombinase and a reverse transcriptase-RNAse H proteins. VIPER elements were also found in the genomes of Trypanosoma brucei and Trypanosoma vivax, but not in Leishmania sp. On the basis of its reverse transcriptase phylogeny, VIPER was classified as an LTR retroelement. However, VIPER was structurally related to the tyrosine recombinase encoding retroelements, DIRS and Ngaro. Phylogenetic analysis showed that VIPER's tyrosine recombinase grouped with the transposases RCI1 of Escherichia coli and Ye24 and Ye72 of Haemophilus influenzae within a major branch of prokaryotic recombinases. Taken together, VIPER's structure, the nature of its tyrosine recombinase, the unique features of its reverse transcriptase catalytic consensus motif and the fact that it was found in Trypanosomes, an early branching eukaryote, suggest that VIPER may be the closest relative of the founder element of the tyrosine recombinase encoding retrotransposons known up to date. Our analysis revealed that tyrosine recombinase-encoding retroelements were originated as early in evolution as non-LTR retroelements and suggests that VIPER, Ngaro and DIRS elements may constitute a third group of retrotransposons, distinct from both LTR and non-LTR retroelements.
Collapse
Affiliation(s)
- Hernan A Lorenzi
- Laboratorio de Biologia Molecular de la Enfermedad de Chagas (LaBMECh) INGEBI, National Research Council (CONICET), Centro de Genomica Aplicada (CeGA), University of Buenos Aires, Vuelta de Obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
13
|
Bringaud F, Ghedin E, Blandin G, Bartholomeu DC, Caler E, Levin MJ, Baltz T, El-Sayed NM. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Mol Biochem Parasitol 2005; 145:158-70. [PMID: 16257065 DOI: 10.1016/j.molbiopara.2005.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 09/25/2005] [Accepted: 09/27/2005] [Indexed: 11/22/2022]
Abstract
The ingi and L1Tc non-LTR retrotransposons--which constitute the ingi clade--are abundant in the genome of the trypanosomatid species Trypanosoma brucei and Trypanosoma cruzi, respectively. The corresponding retroelements, however, are not present in the genome of a closely related trypanosomatid, Leishmania major. To study the evolution of non-LTR retrotransposons in trypanosomatids, we have analyzed all ingi/L1Tc elements and highly degenerate ingi/L1Tc-related sequences identified in the recently completed T. brucei, T. cruzi and L. major genomes. The coding sequences of 242 degenerate ingi/L1Tc-related elements (DIREs) in all three genomes were reconstituted by removing the numerous frame shifts. Three independent phylogenetic analyses conducted on the conserved domains encoded by these elements show that all DIREs, including the 52 L. major DIREs, form a monophyletic group belonging to the ingi clade. This indicates that the trypanosomatid ancestor contained active mobile elements that have been retained in the Trypanosoma species, but were lost from L. major genome, where only remnants (DIRE) are detectable. All 242 DIREs analyzed group together according to their species origin with the exception of 11 T. cruzi DIREs which are close to the T. brucei ingi/DIRE families. Considering the absence of known horizontal transfer between the African T. brucei and the South-American T. cruzi, this suggests that this group of elements evolved at a lower rate when compared to the other trypanosomatid elements. Interestingly, the only nucleotide sequence conserved between ingi and L1Tc (the first 79 residues) is also present at the 5'-extremity of all the full length DIREs and suggests a possible role for this conserved motif, as well as for DIREs.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle Des Trypanosomatides, Université Victor Segalen Bordeaux 2, UMR-5162 CNRS, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Requena JM, López MC, Alonso C. Genomic repetitive DNA elements of Trypanosoma cruzi. ACTA ACUST UNITED AC 2005; 12:279-83. [PMID: 15275193 DOI: 10.1016/0169-4758(96)10024-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Repetitive DNA sequences are interspersed throughout the genomes of mammals and other higher eukaryotes, and represent a substantial portion of the genome. Although it has been generally assumed that the redundant DNA is present only in the complex genomes of high order organisms, over the past few years a number of repetitive DNA sequences have been also detected in the protozoan parasite Trypanosoma cruzi. A compilation of the repetitive DNA sequences found in the T. cruzi genome is here presented by Jose Maria Requena, Manuel Carlos López and Carlos Alonso, who also speculate on their possible origin and functional implications regarding retrotransposition and gene regulation.
Collapse
Affiliation(s)
- J M Requena
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | |
Collapse
|
15
|
Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, Andersson B, Bontempi E, Eisen J, Angiuoli S, Wanless D, Von Arx A, Murphy L, Lennard N, Salzberg S, Adams MD, White O, Hall N, Stuart K, Fraser CM, El-Sayed NMA. Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 2004; 134:183-91. [PMID: 15003838 DOI: 10.1016/j.molbiopara.2003.11.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
The trypanosomatid protozoa Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are related human pathogens that cause markedly distinct diseases. Using information from genome sequencing projects currently underway, we have compared the sequences of large chromosomal fragments from each species. Despite high levels of divergence at the sequence level, these three species exhibit a striking conservation of gene order, suggesting that selection has maintained gene order among the trypanosomatids over hundreds of millions of years of evolution. The few sites of genome rearrangement between these species are marked by the presence of retrotransposon-like elements, suggesting that retrotransposons may have played an important role in shaping trypanosomatid genome organization. A degenerate retroelement was identified in L. major by examining the regions near breakage points of the synteny. This is the first such element found in L. major suggesting that retroelements were found in the common ancestor of all three species.
Collapse
Affiliation(s)
- Elodie Ghedin
- Parasity Genomics, The Institute for Genomics Research, 9712 Medical Center Dr. Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids-Trypanosoma brucei, Trypanosoma cruzi and Crithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations. Giardia lamblia contains three families of transposable elements. Two of these are subtleomeric in location while one is chromosome-internal. Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements in T. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions in trans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.
Collapse
Affiliation(s)
- Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | | | |
Collapse
|
17
|
Burke WD, Malik HS, Rich SM, Eickbush TH. Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia. Mol Biol Evol 2002; 19:619-30. [PMID: 11961096 DOI: 10.1093/oxfordjournals.molbev.a004121] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mobile elements that use reverse transcriptase to make new copies of themselves are found in all major lineages of eukaryotes. The non-long terminal repeat (non-LTR) retrotransposons have been suggested to be the oldest of these eukaryotic elements. Phylogenetic analysis of non-LTR elements suggests that they have predominantly undergone vertical transmission, as opposed to the frequent horizontal transmissions found for other mobile elements. One prediction of this vertical model of inheritance is that the oldest lineages of eukaryotes should exclusively harbor the oldest lineages of non-LTR retrotransposons. Here we characterize the non-LTR retrotransposons present in one of the most primitive eukaryotes, the diplomonad Giardia lamblia. Two families of elements were detected in the WB isolate of G. lamblia currently being used for the genome sequencing project. These elements are clearly distinct from all other previously described non-LTR lineages. Phylogenetic analysis indicates that these Genie elements (for Giardia early non-LTR insertion element) are among the oldest known lineages of non-LTR elements consistent with strict vertical descent. Genie elements encode a single open reading frame with a carboxyl terminal endonuclease domain. Genie 1 is site specific, as seven to eight copies are present in a single tandem array of a 771-bp repeat near the telomere of one chromosome. The function of this repeat is not known. One additional, highly divergent, element within the Genie 1 lineage is not located in this tandem array but is near a second telomere. Four different telomere addition sites could be identified within or near the Genie elements on each of these chromosomes. The second lineage of non-LTR elements, Genie 2, is composed of about 10 degenerate copies. Genie 2 elements do not appear to be site specific in their insertion. An unusual aspect of Genie 2 is that all copies contain inverted repeats up to 172 bp in length.
Collapse
Affiliation(s)
- William D Burke
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
18
|
McClure MA, Donaldson E, Corro S. Potential multiple endonuclease functions and a ribonuclease H encoded in retroposon genomes. Virology 2002; 296:147-58. [PMID: 12036326 DOI: 10.1006/viro.2002.1392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the retroposons, the source of the endonuclease activity is known to be variable and can be provided as either a retroviral-like integrase or a protein similar to the cellular apurinic-apyrimidinic endonuclease. It has also been reported that other retroposon and retrointron sequences have limited similarity to various eubacterial endonucleases. We investigated whether any retroposon genomes possibly encode multiple endonuclease functions. Amino acid alignments were generated and analyzed for the presence of the characterized ordered-series-of-motifs (OSM) representative of four different endonuclease functions. The results indicate that SLACS, CZAR, CRE1, CRE2, and some Trypanosoma brucei retroposon sequences encode multiple putative endonuclease functions. Interestingly, one of the endonuclease functions is embedded within the potential ribonuclease H sequence found in SLACS, CZAR, CRE1, CRE2, and R2BM retroposons.
Collapse
Affiliation(s)
- Marcella A McClure
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA.
| | | | | |
Collapse
|
19
|
Malik HS, Eickbush TH. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. Genetics 2000; 154:193-203. [PMID: 10628980 PMCID: PMC1460889 DOI: 10.1093/genetics/154.1.193] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition.
Collapse
Affiliation(s)
- H S Malik
- Department of Biology, University of Rochester, Rochester, New York 14627-0211, USA
| | | |
Collapse
|
20
|
Tran AN, Andersson B, Pettersson U, Aslund L. A chromosome-specific dispersed gene family in Trypanosoma cruzi. Mol Biochem Parasitol 1999; 100:229-34. [PMID: 10391385 DOI: 10.1016/s0166-6851(99)00049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A N Tran
- Department of Genetics and Pathology, Biomedical Center, Uppsala University, Sweden
| | | | | | | |
Collapse
|
21
|
Nakajima-Shimada J, Aoki T. Inhibition by 3'-azido-3'-deoxythymidine (AZT) of Trypanosoma cruzi growth in mammalian cells and a possible mechanism of action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:719-22. [PMID: 9598158 DOI: 10.1007/978-1-4615-5381-6_138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Nakajima-Shimada
- Department of Parasitology, Juntendo University, School of Medicine, Tokyo, Japan
| | | |
Collapse
|
22
|
Takahashi H, Okazaki S, Fujiwara H. A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Res 1997; 25:1578-84. [PMID: 9092665 PMCID: PMC146635 DOI: 10.1093/nar/25.8.1578] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The telomeres of the silkworm, Bombyx mori, consist of pentanucleotide repeats (TTAGG)n . We previously characterized the non-LTR element TRAS1, which terminates with oligo (A) in a head to tail orientation at the exact position (between A and C) of the (CCTAA) n repeats. Here we characterized another family of telomere-specific non-LTR retrotransposon named SART1. The SART1 family was inserted at another site of the (TTAGG) n in a reverse orientation from that of TRAS1. The complete unit of SART1, 6.7 kb in length with a poly (A) stretch, contains two open reading frames encoding putative gag and pol products, overlapping by 54 bp in the -1 reading frame. Most of the 600 SART1 copies in the silkworm haploid genome are completely conserved in structure without 5'truncation. All SART1 sequences analyzed were inserted at the same position (between T and A) within the (TTAGG) n repeats. Fluorescence in situ hybridization showed that many of the SART1 copies were localized in the chromosomal ends. A phylogenetic tree showed that the SART1, TRAS1 and two other site-specific elements, R1 and RT, which insert into 28S ribosomal RNA genes in insects, belong to the same group. Based on the orientation for the chromosomal insertion and structural similarities, these elements could be further classified into two subgroups, R1/TRAS1 and RT/SART1, suggesting that the target specificity of the two telomere-associated elements was changed independently.
Collapse
Affiliation(s)
- H Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | |
Collapse
|
23
|
Blinov AG, Sobanov YV, Scherbik SV, Aimanova KG. The Chironomus (Camptochironomus) tentans genome contains two non-LTR retrotransposons. Genome 1997; 40:143-50. [PMID: 9061921 DOI: 10.1139/g97-021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cDNA library from salivary gland cells of Chironomus tentans was screened with a probe containing the NLRCth1 non-LTR (long terminal repeat) retrotransposon from Chironomus thummi. Several positive clones were obtained and one of them, p62, was characterized by in situ hybridization and sequencing. The sequencing analysis showed that this clone contained a 4607 bp nucleotide sequence of a new transposable element that hybridized in situ to more than 100 sites over all four C. tentans chromosomes. The detailed analysis of this sequence revealed the presence of the 3'-end of open reading frame 1 (ORF1), a complete ORF2, and a 1.3-kb 3'-end untranslated region (UTR). The new element has been designated NLRCt2 (non-LTR retrotransposon 2 from C. tentans). A comparison of the nucleotide sequences of NLRCth1 and NLRCt2 showed 30% similarity in the region of ORF1 and 70% similarity in the region of ORF2. Based on the results of Southern blot analysis, two transposable elements have been found in the C. tentans genome, one of which is identical to NLRCth1 from C. thummi. This may be explained by horizontal transmission. The second element, NLRCt2, has been found in two different forms in the C. tentans genome. These can be distinguished by the presence of the 1.3-kb 3'-end UTR in one of the forms. Since the cDNA clone investigated was isolated from a tissue-specific cDNA library, the data showed that NRLCt2 is expressed in somatic cells.
Collapse
Affiliation(s)
- A G Blinov
- Institute of Cytology and Genetics, Siberian Department of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
24
|
Abstract
Transposable elements are discrete mobile DNA segments that can insert into non-homologous target sites. Diverse patterns of target site selectivity are observed: Some elements display considerable target site selectivity and others display little obvious selectivity, although none appears to be truly "random." A variety of mechanisms for target site selection are used: Some elements use direct interactions between the recombinase and target DNA whereas other elements depend upon interactions with accessory proteins that communicate both with the target DNA and the recombinase. The study of target site selectivity is useful in probing recombination mechanisms, in studying genome structure and function, and also in providing tools for genome manipulation.
Collapse
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
25
|
Abstract
Trypanosoma brucei and Trypanosoma cruzi cause different human diseases. As strategies for immune evasion, T. brucei undergone antigenic variation whereas T. cruzi becomes an intracellular organism. This fundamental difference is reflected by major differences in their genome organizations. Recent comparisons of their gene sequences indicate that these two trypanosome species are highly divergent evolutionarily.
Collapse
Affiliation(s)
- J E Donelson
- Department of Biochemistry, University of Iowa, Iowa City, USA
| |
Collapse
|
26
|
Abstract
Like many other protozoam parasites, Trypanosoma cruzi (the causative agent of Chagas disease) has a plastic genome. Chromosome size polymorphisms occur in different strains of T. cruzi as well as among clones originating from the same strain, Despite this polymorphism, major interchromosomal rearrangements appear to be rare since several linkage groups of chromosomal markers are well conserved among different T. cruzi strains. In addition, some correlation has been found between karyotype variability and classification by multilocus enzyme electrophoresis. In this review, Jan Henriksson, Lena Aslund and Ulf Petterson discuss the genomic variability and suggest that amplication of repetitive sequences or members of gene families make a major contribution to the chromosomal size variation
Collapse
Affiliation(s)
- J Henriksson
- Department of Medical Genetics, Biomedical Center, Uppsala University, Box 589, S-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
27
|
Bontempi EJ, Búa J, Aslund L, Porcel B, Segura EL, Henriksson J, Orn A, Pettersson U, Ruiz AM. Isolation and characterization of a gene from Trypanosoma cruzi encoding a 46-kilodalton protein with homology to human and rat tyrosine aminotransferase. Mol Biochem Parasitol 1993; 59:253-62. [PMID: 8101971 DOI: 10.1016/0166-6851(93)90223-k] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The complete sequence of a gene encoding a 46-kDa protein of Trypanosoma cruzi is presented. The first ATG complies with the consensus sequence for initiation of translation. A single band of 2 kb was highlighted by hybridizing a probe from the 46-kDa protein gene to a Northern filter containing total T. cruzi RNA. The gene is present in 50-80 copies per cell and most of them are contained in 2 tandem arrays on large T. cruzi chromosomes (> 2000 kb). A strong homology with rat and human tyrosine aminotransferase was detected. Homology with a Trypanosoma brucei retrotransposon was found in the nonsense strand of the intergenic region.
Collapse
Affiliation(s)
- E J Bontempi
- Instituto Nacional de Diagnóstico e Investigación de la Enfermedad de Chagas, Ministerio de Salud y Acción Social, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:935-58. [PMID: 1542609 PMCID: PMC312073 DOI: 10.1093/nar/20.4.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|