1
|
Ma X, Qin Z, Johnson KB, Sweat LH, Dai S, Li G, Li C. Transcriptomic responses to shifts in light and nitrogen in two congeneric diatom species. Front Microbiol 2024; 15:1437274. [PMID: 39206371 PMCID: PMC11349689 DOI: 10.3389/fmicb.2024.1437274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Light and nitrogen availability are basic requirements for photosynthesis. Changing in light intensity and nitrogen concentration may require adaptive physiological and life process changes in phytoplankton cells. Our previous study demonstrated that two Thalassiosira species exhibited, respectively, distinctive physiological responses to light and nitrogen stresses. Transcriptomic analyses were employed to investigate the mechanisms behind the different physiological responses observed in two diatom species of the genus Thalassiosira. The results indicate that the congeneric species are different in their cellular responses to the same shifting light and nitrogen conditions. When conditions changed to high light with low nitrate (HLLN), the large-celled T. punctigera was photodamaged. Thus, the photosynthesis pathway and carbon fixation related genes were significantly down-regulated. In contrast, the small-celled T. pseudonana sacrificed cellular processes, especially amino acid metabolisms, to overcome the photodamage. When changing to high light with high nitrate (HLHN) conditions, the additional nitrogen appeared to compensate for the photodamage in the large-celled T. punctigera, with the tricarboxylic acid cycle (TCA cycle) and carbon fixation significantly boosted. Consequently, the growth rate of T. punctigera increased, which suggest that the larger-celled species is adapted for forming post-storm algal blooms. The impact of high light stress on the small-celled T. pseudonana was not mitigated by elevated nitrate levels, and photodamage persisted.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
| | - Zhen Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kevin B. Johnson
- Department of Biological Sciences, College of Science and Mathematics, Tarleton State University, Stephenville, TX, United States
| | - L. Holly Sweat
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Sheng Dai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
- Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, China
| | - Chaolun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Applied Marine Biology, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Molecular Regulation of Nitrate Responses in Plants. Int J Mol Sci 2018; 19:ijms19072039. [PMID: 30011829 PMCID: PMC6073361 DOI: 10.3390/ijms19072039] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Nitrogen is an essential macronutrient that affects plant growth and development. Improving the nitrogen use efficiency of crops is of great importance for the economic and environmental sustainability of agriculture. Nitrate (NO3−) is a major form of nitrogen absorbed by most crops and also serves as a vital signaling molecule. Research has identified key molecular components in nitrate signaling mainly by employing forward and reverse genetics as well as systems biology. In this review, we focus on advances in the characterization of genes involved in primary nitrate responses as well as the long-term effects of nitrate, especially in terms of how nitrate regulates root development.
Collapse
|
3
|
Wiemann P, Soukup AA, Folz JS, Wang PM, Noack A, Keller NP. CoIN: co-inducible nitrate expression system for secondary metabolites in Aspergillus nidulans. Fungal Biol Biotechnol 2018; 5:6. [PMID: 29564145 PMCID: PMC5851313 DOI: 10.1186/s40694-018-0049-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequencing of fungal species has demonstrated the existence of thousands of putative secondary metabolite gene clusters, the majority of them harboring a unique set of genes thought to participate in production of distinct small molecules. Despite the ready identification of key enzymes and potential cluster genes by bioinformatics techniques in sequenced genomes, the expression and identification of fungal secondary metabolites in the native host is often hampered as the genes might not be expressed under laboratory conditions and the species might not be amenable to genetic manipulation. To overcome these restrictions, we developed an inducible expression system in the genetic model Aspergillus nidulans. RESULTS We genetically engineered a strain of A. nidulans devoid of producing eight of the most abundant endogenous secondary metabolites to express the sterigmatocystin Zn(II)2Cys6 transcription factor-encoding gene aflR and its cofactor aflS under control of the nitrate inducible niiA/niaD promoter. Furthermore, we identified a subset of promoters from the sterigmatocystin gene cluster that are under nitrate-inducible AflR/S control in our production strain in order to yield coordinated expression without the risks from reusing a single inducible promoter. As proof of concept, we used this system to produce β-carotene from the carotenoid gene cluster of Fusarium fujikuroi. CONCLUSION Utilizing one-step yeast recombinational cloning, we developed an inducible expression system in the genetic model A. nidulans and show that it can be successfully used to produce commercially valuable metabolites.
Collapse
Affiliation(s)
- Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Hexagon Bio, Menlo Park, CA 94025 USA
| | - Alexandra A. Soukup
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 USA
| | - Jacob S. Folz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Davis Genome Center – Metabolomics, University of California, 451 Health Science Drive, Davis, CA 95616 USA
| | - Pin-Mei Wang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Ocean College, Zhejiang University, Hangzhou, 310058 Zhejiang Province People’s Republic of China
| | - Andreas Noack
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
4
|
Gomez-Gil L, Camara Almiron J, Rodriguez Carrillo PL, Olivares Medina CN, Bravo Ruiz G, Romo Rodriguez P, Corrales Escobosa AR, Gutierrez Corona F, Roncero MI. Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f.sp. lycopersici growth and pathogenicity. Curr Genet 2017; 64:493-507. [DOI: 10.1007/s00294-017-0766-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023]
|
5
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
6
|
Bultman KM, Kowalski CH, Cramer RA. Aspergillus fumigatus virulence through the lens of transcription factors. Med Mycol 2016; 55:24-38. [PMID: 27816905 DOI: 10.1093/mmy/myw120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 08/19/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Invasive aspergillosis (IA), most commonly caused by the filamentous fungus Aspergillus fumigatus, occurs in immune compromised individuals. The ability of A. fumigatus to proliferate in a multitude of environments is hypothesized to contribute to its pathogenicity and virulence. Transcription factors (TF) have long been recognized as critical proteins for fungal pathogenicity, as many are known to play important roles in the transcriptional regulation of pathways implicated in virulence. Such pathways include regulation of conidiation and development, adhesion, nutrient acquisition, adaptation to environmental stress, and interactions with the host immune system among others. In both murine and insect models of IA, TF loss of function in A. fumigatus results in cases of hyper- and hypovirulence as determined through host survival, fungal burden, and immune response analyses. Consequently, the study of specific TFs in A. fumigatus has revealed important insights into mechanisms of pathogenicity and virulence. Although in vitro studies have identified virulence-related functions of specific TFs, the full picture of their in vivo functions remain largely enigmatic and an exciting area of current research. Moreover, the vast majority of TFs remain to be characterized and studied in this important human pathogen. Here in this mini-review we provide an overview of selected TFs in A. fumigatus and their contribution to our understanding of this important human pathogen's pathogenicity and virulence.
Collapse
Affiliation(s)
- Katherine M Bultman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
7
|
Medici A, Krouk G. The primary nitrate response: a multifaceted signalling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5567-76. [PMID: 24942915 DOI: 10.1093/jxb/eru245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrate (NO3(-)) application strongly affects gene expression in plants. This regulation is thought to be crucial for their adaptation in response to a changing nutritional environment. Depending on the conditions preceding or concomitant with nitrate provision, the treatment can affect up to a 10th of genome expression in Arabidopsis thaliana. The early events occurring after NO3(-) provision are often called the Primary Nitrate Response (PNR). Despite this simple definition, PNR is a complex process that is difficult to properly delineate. Here we report the different concepts related to PNR, review the different molecular components known to control it, and show, using meta-analysis, that this concept/pathway is not monolithic. We especially bring our attention to the genome-wide effects of LBD37 and LBD38 overexpression, NLP7, and CHL1/NRT1.1 mutations.
Collapse
Affiliation(s)
- Anna Medici
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Pierre Viala, 34060 Montpellier cedex, France
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Pierre Viala, 34060 Montpellier cedex, France
| |
Collapse
|
8
|
Pseudo-constitutivity of nitrate-responsive genes in nitrate reductase mutants. Fungal Genet Biol 2013; 54:34-41. [PMID: 23454548 PMCID: PMC3657194 DOI: 10.1016/j.fgb.2013.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 01/15/2023]
Abstract
In fungi, transcriptional activation of genes involved in NO3- assimilation requires the presence of an inducer (nitrate or nitrite) and low intracellular concentrations of the pathway products ammonium or glutamine. In Aspergillus nidulans, the two transcription factors NirA and AreA act synergistically to mediate nitrate/nitrite induction and nitrogen metabolite derepression, respectively. In all studied fungi and in plants, mutants lacking nitrate reductase (NR) activity express nitrate-metabolizing enzymes constitutively without the addition of inducer molecules. Based on their work in A. nidulans, Cove and Pateman proposed an “autoregulation control” model for the synthesis of nitrate metabolizing enzymes in which the functional nitrate reductase molecule would act as co-repressor in the absence and as co-inducer in the presence of nitrate. However, NR mutants could simply show “pseudo-constitutivity” due to induction by nitrate which accumulates over time in NR-deficient strains. Here we examined this possibility using strains which lack flavohemoglobins (fhbs), and are thus unable to generate nitrate internally, in combination with nitrate transporter mutations (nrtA, nrtB) and a GFP-labeled NirA protein. Using different combinations of genotypes we demonstrate that nitrate transporters are functional also in NR null mutants and show that the constitutive phenotype of NR mutants is not due to nitrate accumulation from intracellular sources but depends on the activity of nitrate transporters. However, these transporters are not required for nitrate signaling because addition of external nitrate (10 mM) leads to standard induction of nitrate assimilatory genes in the nitrate transporter double mutants. We finally show that NR does not regulate NirA localization and activity, and thus the autoregulation model, in which NR would act as a co-repressor of NirA in the absence of nitrate, is unlikely to be correct. Results from this study instead suggest that transporter-mediated NO3- accumulation in NR deficient mutants, originating from traces of nitrate in the media, is responsible for the constitutive expression of NirA-regulated genes, and the associated phenotype is thus termed “pseudo-constitutive”.
Collapse
|
9
|
Marcet-Houben M, Ballester AR, de la Fuente B, Harries E, Marcos JF, González-Candelas L, Gabaldón T. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics 2012; 13:646. [PMID: 23171342 PMCID: PMC3532085 DOI: 10.1186/1471-2164-13-646] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/09/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Penicillium digitatum is a fungal necrotroph causing a common citrus postharvest disease known as green mold. In order to gain insight into the genetic bases of its virulence mechanisms and its high degree of host-specificity, the genomes of two P. digitatum strains that differ in their antifungal resistance traits have been sequenced and compared with those of 28 other Pezizomycotina. RESULTS The two sequenced genomes are highly similar, but important differences between them include the presence of a unique gene cluster in the resistant strain, and mutations previously shown to confer fungicide resistance. The two strains, which were isolated in Spain, and another isolated in China have identical mitochondrial genome sequences suggesting a recent worldwide expansion of the species. Comparison with the closely-related but non-phytopathogenic P. chrysogenum reveals a much smaller gene content in P. digitatum, consistent with a more specialized lifestyle. We show that large regions of the P. chrysogenum genome, including entire supercontigs, are absent from P. digitatum, and that this is the result of large gene family expansions rather than acquisition through horizontal gene transfer. Our analysis of the P. digitatum genome is indicative of heterothallic sexual reproduction and reveals the molecular basis for the inability of this species to assimilate nitrate or produce the metabolites patulin and penicillin. Finally, we identify the predicted secretome, which provides a first approximation to the protein repertoire used during invasive growth. CONCLUSIONS The complete genome of P. digitatum, the first of a phytopathogenic Penicillium species, is a valuable tool for understanding the virulence mechanisms and host-specificity of this economically important pest.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino 7, Paterna, Valencia, 46980, Spain
| | - Beatriz de la Fuente
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino 7, Paterna, Valencia, 46980, Spain
| | - Eleonora Harries
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino 7, Paterna, Valencia, 46980, Spain
| | - Luis González-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustin Escardino 7, Paterna, Valencia, 46980, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| |
Collapse
|
10
|
Schinko T, Berger H, Lee W, Gallmetzer A, Pirker K, Pachlinger R, Buchner I, Reichenauer T, Güldener U, Strauss J. Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol Microbiol 2010; 78:720-38. [PMID: 20969648 PMCID: PMC3020322 DOI: 10.1111/j.1365-2958.2010.07363.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
Nitrate is a dominant form of inorganic nitrogen (N) in soils and can be efficiently assimilated by bacteria, fungi and plants. We studied here the transcriptome of the short-term nitrate response using assimilating and non-assimilating strains of the model ascomycete Aspergillus nidulans. Among the 72 genes positively responding to nitrate, only 18 genes carry binding sites for the pathway-specific activator NirA. Forty-five genes were repressed by nitrate metabolism. Because nirA(-) strains are N-starved at nitrate induction conditions, we also compared the nitrate transcriptome with N-deprived conditions and found a partial overlap of differentially regulated genes between these conditions. Nitric oxide (NO)-metabolizing flavohaemoglobins were found to be co-regulated with nitrate assimilatory genes. Subsequent molecular characterization revealed that the strongly inducible FhbA is required for full activity of nitrate and nitrite reductase enzymes. The co-regulation of NO-detoxifying and nitrate/nitrite assimilating systems may represent a conserved mechanism, which serves to neutralize nitrosative stress imposed by an external NO source in saprophytic and pathogenic fungi. Our analysis using membrane-permeable NO donors suggests that signalling for NirA activation only indirectly depends on the nitrate transporters NrtA (CrnA) and NrtB (CrnB).
Collapse
Affiliation(s)
- Thorsten Schinko
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Harald Berger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Wanseon Lee
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Andreas Gallmetzer
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Robert Pachlinger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Ingrid Buchner
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| |
Collapse
|
11
|
Kanan GJM, Al-Najjar HE. Isolation and growth characterization of chlorate and/or bromate resistant mutants generated by spontaneous and induced foreword mutations at several gene loci in aspergillus niger. Braz J Microbiol 2010; 41:1099-111. [PMID: 24031593 PMCID: PMC3769762 DOI: 10.1590/s1517-838220100004000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 03/18/2010] [Accepted: 06/21/2010] [Indexed: 11/22/2022] Open
Abstract
We aimed her mainly to evaluate the contribution of newly employed bromate selection system, in obtaining new Aspergillus niger nitrate/nitrite assimilation defective mutants, through Ultraviolet treatment (UV), 1, 2, 7, 8-Diepoxyoctane (DEO), phenols mixture (Phx)) and spontaneous treatments. The newly employed bromate selection system was able to specify only two putative novel mutant types designated brn (bromate resistant but chlorate sensitive (RS) strain, which may specify nitrite specific transporter) and cbrn mutants (bromate resistant and chlorate resistant strain, which may specify nitrate/nitrite bispecific system). The most relevant and innovative findings of this research work involve the isolation of the RR ( cbrn) mutants (a new type of nitrate assimilation defective mutants), that could be useful for studying the bispecific nitrate /nitrite transporter system. The majority of obtained bromate resistant mutants (93.3% of the total mutants obtained by all treatments) were of the brn type, whereas the remaining percentage (6.76%) was given to cbrn strains. The highest percentages of brn mutant strains (48% and 58.6% of the total RS strains) were obtained with UA after spontaneous and Phx treatment, whereas Trp has generated 29% and 42% of RS strains after UV and DEO treatments, respectively. The obtained ratios of cbrn mutants were higher (i.e. in the range of 8.4%-11.64% of the total bromate mutants) with chemical treatments, especially when U.A or Pro was serving as sole N-sources at 25ºC rather than 37ºC. A 69% mutants` yield of Aspergillus niger mutant strains representing nine gene loci ( niaD, cnx-6 loci , nrt and nirA) were selected on the bases of chlorate (600 mM) toxicity. All chlorate resistant mutants were completely sensitive to bromate (250 mM). The niaD mutants showed the highest percentage (73.97%) of chlorate resistant mutants obtained with all tested treatments. The UV treatment has generated the highest ratio (86.9%) of niaD mutants, whereas, the least (61%) was obtained with Phx treatment. The highest percentage of cnx mutants (32%) was obtained with Phx treatment. The DEO treatment as compared to other tested treatments was the best to use for obtaining the highest ratios of either nrt (13.8%) mutants or nirA (1.9%) mutants.
Collapse
Affiliation(s)
- Ghassan J. M. Kanan
- Department of Biological Sciences, Mu’tah University, Karak – Jordan, P. O. Box f
| | | |
Collapse
|
12
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
13
|
Hu HC, Wang YY, Tsay YF. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:264-78. [PMID: 18798873 DOI: 10.1111/j.1365-313x.2008.03685.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitrate, the major nitrogen source for most plants, is not only a nutrient but also a signaling molecule. For almost two decades, it has been known that nitrate can rapidly induce transcriptional expression of several nitrate-related genes, a process that is referred to as the primary nitrate response. However, little is known about how plants actually sense nitrate and how the signal is transmitted in this pathway. In this study, a calcineurin B-like (CBL) -interacting protein kinase (CIPK) gene, CIPK8, was found to be involved in early nitrate signaling. CIPK8 expression was rapidly induced by nitrate. Analysis of two independent knockout mutants and a complemented line showed that CIPK8 positively regulates the nitrate-induced expression of primary nitrate response genes, including nitrate transporter genes and genes required for assimilation. Kinetic analysis of nitrate induction levels of these genes in wild-type plants indicated that there are two response phases: a high-affinity phase with a K(m) of approximately 30 mum and a low-affinity phase with a K(m) of approximately 0.9 mm. As cipk8 mutants were defective mainly in the low-affinity response, the high-affinity and low-affinity nitrate signaling systems are proposed to be genetically distinct, with CIPK8 involved in the low-affinity system. In addition, CIPK8 was found to be involved in long-term nitrate-modulated primary root growth and nitrate-modulated expression of a vacuolar malate transporter. Taken together, our results indicate that CBL-CIPK networks are responsible not only for stress responses and potassium shortage, but also for nitrate sensing.
Collapse
Affiliation(s)
- Heng-Cheng Hu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | |
Collapse
|
14
|
Caddick MX, Jones MG, van Tonder JM, Le Cordier H, Narendja F, Strauss J, Morozov IY. Opposing signals differentially regulate transcript stability inAspergillus nidulans. Mol Microbiol 2006; 62:509-19. [PMID: 17020584 DOI: 10.1111/j.1365-2958.2006.05383.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A good model for gene regulation, requiring the organism to monitor a complex and changing environment and respond in a precise and rapid way, is nitrogen metabolism in Aspergillus nidulans. This involves co-ordinated expression of hundreds of genes, many dependent on the transcription factor AreA, which monitors the nitrogen state of the cell. AreA activity is in part modulated by differential degradation of its transcript in response to intracellular glutamine. Here we report that glutamine triggers synchronized degradation of a large subset of transcripts involved in nitrogen metabolism. Among these are all four genes involved in the assimilation of nitrate. Significantly, we show that two of these transcripts, niaD and niiA, are stabilized by intracellular nitrate, directly reinforcing transcriptional regulation. Glutamine-signalled degradation and the nitrate-dependent stabilization of the niaD transcript are effected at the level of deadenylation and are dependent on its 3' UTR. When glutamine and nitrate are both present, nitrate stabilization is predominant, ensuring that nitrate and the toxic intermediate nitrite are removed from the cell. Regulated transcript stability is therefore an integral part of the adaptive response. This represents the first example of distinct physiological signals competing to differentially regulate transcripts at the level of deadenylation.
Collapse
Affiliation(s)
- Mark X Caddick
- The University of Liverpool, School of Biological Sciences, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Rossi B, Manasse S, Serrani F, Berardi E. Hansenula polymorpha NMR2 and NMR4, two new loci involved in nitrogen metabolite repression. FEMS Yeast Res 2005; 5:1009-17. [PMID: 16214423 DOI: 10.1016/j.femsyr.2005.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/02/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022] Open
Abstract
In the yeast Hansenula polymorpha (Pichia angusta) nitrate assimilation is tightly regulated and subject to a dual control: nitrogen metabolite repression (NMR), triggered by reduced nitrogen compounds, and induction, elicited by nitrate itself. In a previous paper [Serrani, F., Rossi, B. and Berardi, E (2001) Nitrogen metabolite repression in Hansenula polymorpha: the nmrl-l mutation. Curr. Genet. 40, 243-250], we identified five loci (NMR1-NMR5) involved in NMR, and characterised one of them (NMR1), which likely identifies a regulatory factor. Here, we describe two more mutants, namely nmr2-1 and nmr4-1. The first one possibly identifies a regulatory factor involved in nitrogen metabolite repression by various nitrogen sources alternative to ammonium. The second one, apparently involved in ammonium assimilation, probably has sensor functions.
Collapse
Affiliation(s)
- Beatrice Rossi
- Laboratorio di Genetica Microbica, DiSA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
16
|
Krappmann S, Braus GH. Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 2005; 43 Suppl 1:S31-40. [PMID: 16110790 DOI: 10.1080/13693780400024271] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Aspergilli represent unique pathogens. Based on their saprophytic life style they are able to colonize a variety of ecological niches, among them the immunocompromised individual. Distinct fungal attributes that play a role in pathogenicity of aspergilli have been described, and primary metabolism indisputably has to be taken into account for contributing to the virulence potential of this fungal genus. Here we present an overview of studies that focus on this aspect of nutritional versatility. In the predominant pathogenic representative Aspergillus fumigatus regulation of nitrogen utilization and sensing of nitrogen sources have been scrutinized with respect to pathogenicity. The impact of distinct metabolic pathways on virulence capacities could be evaluated by inspection of auxotrophic mutant strains. Among them, para-aminobenzoic acid-requiring mutants revealed that this biosynthetic route is strictly required for pathogenicity. For amino acid anabolism only lysine biosynthesis has been investigated in this regard. Fungal amino acid biosynthesis is generally subject to strict regulation mediated by the Cross-Pathway Control system, a conserved regulatory circuit evolved to counteract conditions of nutritional stress. A clear influence of the system on pathogenicity could be observed by targeting its transcriptional activator CpcA. However, additional metabolic characteristics as well as regulatory instruments that compensate environmental challenges need to be addressed in future research with the aim to assess the significance of fungal primary metabolism for pathogenicity of aspergillus species.
Collapse
Affiliation(s)
- S Krappmann
- Institute of Microbiology & Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany.
| | | |
Collapse
|
17
|
Pereira JF, de Queiroz MV, Lopes FJF, Rocha RB, Daboussi MJ, de Araújo EF. Characterization, regulation, and phylogenetic analyses of thePenicillium griseoroseumnitrate reductase gene and its use as selection marker for homologous transformation. Can J Microbiol 2004; 50:891-900. [PMID: 15644906 DOI: 10.1139/w04-081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Penicillium griseoroseum has been studied because of its efficient pectinases production. In this work, the Penicillium griseoroseum nitrate reductase gene was characterized, transcriptionaly analyzed in different nitrogen sources, and used to create a phylogenetic tree and to develop a homologous transformation system. The regulatory region contained consensus signals involved in nitrogen metabolism and the structural region was possibly interrupted by 6 introns coding for a deduced protein with 864 amino acids. RT–PCR analysis revealed high amounts of niaD transcript in the presence of nitrate. Transcription was repressed by ammonium, urea, and glutamine showing an efficient turnover of the niaD mRNA. Phylogenetics analysis showed distinct groups clearly separated in accordance with the classical taxonomy. A mutant with a 122-bp deletion was used in homologous transformation experiments and showed a transformation frequency of 14 transformants/µg DNA. All analyzed transformants showed that both single- and double-crossover recombination occurred at the niaD locus. The establishment of this homologous transformation system is an essential step for the improvement of pectinase production in Penicillium griseoroseum.Key words: nitrate reductase, nitrogen metabolism, Penicillium griseoroseum, phylogenetic analysis, homologous transformation.
Collapse
Affiliation(s)
- Jorge Fernando Pereira
- Departamento de Microbiologia/BIOAGRO, Universidade Federal de Viçosa, 36.570-000 Viçosa-MG, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Narendja F, Goller SP, Wolschek M, Strauss J. Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcriptional activator of Aspergillus nidulans. Mol Microbiol 2002; 44:573-83. [PMID: 11972792 DOI: 10.1046/j.1365-2958.2002.02911.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Aspergillus nidulans, the genes coding for nitrate reductase (niaD) and nitrite reductase (niiA), are transcribed divergently from a common promoter region of 1200 basepairs. We have previously characterized the relevant cis-acting elements for the two synergistically acting transcriptional activators NirA and AreA. We have further shown that AreA is constitutively bound to a central cluster of four GATA sites, and is involved in opening the chromatin structure over the promoter region thus making additional cis-acting binding sites accessible. Here we show that the asymmetric mode of NirA-DNA interaction determined in vitro is also found in vivo. Binding of the NirA transactivator is not constitutive as in other binuclear C6-Zn2+-cluster proteins but depends on nitrate induction and, additionally, on the presence of a wild-type areA allele. Dissecting the role of AreA further, we found that it is required for intracellular nitrate accumulation and therefore could indirectly exert its effect on NirA via inducer exclusion. We have tested this possibility in a strain accumulating nitrate in the absence of areA. We found that in such a strain the intracellular presence of inducer is not sufficient to promote either chromatin rearrangement or NirA binding, implying that both processes are directly dependent on AreA.
Collapse
Affiliation(s)
- Frank Narendja
- Zentrum für Angewandte Genetik, University of Agricultural Sciences Vienna, Austria
| | | | | | | |
Collapse
|
19
|
Felenbok B, Flipphi M, Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:149-204. [PMID: 11550794 DOI: 10.1016/s0079-6603(01)69047-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article reviews our knowledge of the ethanol utilization pathway (alc system) in the hyphal fungus Aspergillus nidulans. We discuss the progress made over the past decade in elucidating the two regulatory circuits controlling ethanol catabolism at the level of transcription, specific induction, and carbon catabolite repression, and show how their interplay modulates the utilization of nutrient carbon sources. The mechanisms featuring in this regulation are presented and their modes of action are discussed: First, AlcR, the transcriptional activator, which demonstrates quite remarkable structural features and an original mode of action; second, the physiological inducer acetaldehyde, whose intracellular accumulation induces the alc genes and thereby a catabolic flux while avoiding intoxification; third, CreA, the transcriptional repressor mediating carbon catabolite repression in A. nidulans, which acts in different ways on the various alc genes; Fourth, the promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA) and the regulatory alcR gene, which exhibit exceptional strength compared to other genes of the respective classes. alc gene expression depends on the number and localization of regulatory cis-acting elements and on the particular interaction between the two regulator proteins, AlcR and CreA, binding to them. All these characteristics make the ethanol regulon a suitable system for induced expression of heterologous protein in filamentous fungi.
Collapse
Affiliation(s)
- B Felenbok
- Institut de Génétique et Microbiologie, Université Paris-Sud, Centre Universitaire d'Orsay, France.
| | | | | |
Collapse
|
20
|
Deschamps F, Langin T, Maurer P, Gerlinger C, Felenbok B, Daboussi MJ. Specific expression of the Fusarium transposon Fot1 and effects on target gene transcription. Mol Microbiol 1999; 31:1373-83. [PMID: 10200958 DOI: 10.1046/j.1365-2958.1999.01278.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Fot1 transposon is active in some strains of the plant pathogenic fungus Fusarium oxysporum. In a high-copy-number strain that contains autonomous elements, we have detected a transcript of 1.7 kb hybridizing to Fot1 in very low amounts. Mapping the 3' and 5' termini of this transcript confirms that it corresponds to a Fot1-specific transcript. In this strain, five independent mutants of the transgene (niaD) encoding nitrate reductase have arisen by insertion of Fot1 into the third intron. The analysis of the effect of Fot1 insertion in these mutants shows that, depending on the orientation of Fot1 relative to niaD, different truncated chimeric niaD-Fot1 transcripts are produced. Mapping the 5' and 3' ends of these transcripts reveals (i) premature polyadenylation at sites present in the 5' and 3' untranslated regions of Fot1, and (ii) initiation of some transcripts in the 3' part of the niaD gene at sites located immediately downstream of the Fot1 insertion. Thus, a novel promoter, associated with the end of Fot1, directs transcriptional activity outwards from the element into the coding sequence of the niaD gene. These effects demonstrate that Fot1 insertion provides an additional general mechanism controlling fungal gene expression.
Collapse
Affiliation(s)
- F Deschamps
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
21
|
Glatigny A, Hof P, Romão MJ, Huber R, Scazzocchio C. Altered specificity mutations define residues essential for substrate positioning in xanthine dehydrogenase. J Mol Biol 1998; 278:431-8. [PMID: 9571062 DOI: 10.1006/jmbi.1998.1707] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the sequence changes of a number of mutations of the Aspergillus nidulans xanthine dehydrogenase (XDH). We have located the amino acids affected by these changes in the three-dimensional (3D) structure of aldehyde oxido-reductase (MOP) from Desulfovibrio gigas, related to eukaryotic XDHs. Of these, two are loss of function mutations, mapping, respectively, in the molybdenum-pterin co-factor (MoCo) domain and in the domain involved in substrate recognition. Changes in two amino acids result in resistance to the irreversible inhibitor allopurinol. In Arg911 two different changes, conserved among all XDHs and MOP but not in other aldehyde oxidases (AO), change the position of hydroxylation of the analogue 2-hydroxypurine from C-8 to C-6. A number of changes affect residues adjacent to the molybdenum or its ligands. Arg911 is positioned in the substrate pocket in a way that it can account for the positioning of purine substrates in relation to the MoCo reactive center, together with a glutamate residue, universally conserved among the XDHs (Glu833).
Collapse
Affiliation(s)
- A Glatigny
- Institut de Génétique et Microbiologie, URA 1354, Université Paris-Sud, 91405, France
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Affiliation(s)
- N M Crawford
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
24
|
Affiliation(s)
- N M Crawford
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
25
|
Glatigny A, Scazzocchio C. Cloning and molecular characterization of hxA, the gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. J Biol Chem 1995; 270:3534-50. [PMID: 7876088 DOI: 10.1074/jbc.270.8.3534] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have cloned and sequenced the hxA gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. The gene codes for a polypeptide of 1363 amino acids. The sequencing of a nonsense mutation, hxA5, proves formally that the clones isolated correspond to the hxA gene. The gene sequence is interrupted by three introns. Similarity searches reveal two iron-sulfur centers and a NAD/FAD-binding domain and have enabled a consensus sequence to be determined for the molybdenum cofactor-binding domain. The A. nidulans sequence is a useful outclass for the other known sequences, which are all from metazoans. In particular, it gives added significance to the missense mutations sequenced in Drosophila melanogaster and leads to the conclusion that while one of the recently sequenced human genes codes for a xanthine dehydrogenase, the other one must code for a different molybdenum-containing hydroxylase, possibly an aldehyde oxidase. The transcription of the hxA gene is induced by the uric acid analogue 2-thiouric acid and repressed by ammonium. Induction necessitates the product of the uaY regulatory gene.
Collapse
Affiliation(s)
- A Glatigny
- Institut de Génétique et Microbiologie, Unité Associtée au CNRS 1354, Université Paris-Sud, Centre d'Orsay, France
| | | |
Collapse
|
26
|
Identification of regulatory elements in the cutinase promoter from Fusarium solani f. sp. pisi (Nectria haematococca). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37094-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Affiliation(s)
- S Maloy
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
28
|
Yuan GF, Marzluf GA. Molecular characterization of mutations of nit-4, the pathway-specific regulatory gene which controls nitrate assimilation in Neurospora crassa. Mol Microbiol 1992; 6:67-73. [PMID: 1531376 DOI: 10.1111/j.1365-2958.1992.tb00838.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nit-4 genes of three conventional Neurospora crassa mutations and of the closely related species, Neurospora intermedia, have been isolated by amplifying the genomic DNA with the polymerase chain reaction. Nucleotide sequencing has revealed that the three nit-4 mutants, alleles 15, 1214, and 2994, are the result of a missense mutation, a nonsense mutation and a frameshift mutation, respectively. The nucleotide sequence of the NIT4 protein coding region of a nit-4 mutant (allele 2994) and of N. intermedia have been determined and compared with that of wild-type N. crassa. The molecular characteristics confirm that the mutated gene of 2994 originated from N. intermedia and was introgressed into N. crassa. The polyglutamine domains of the N. crassa wild type, the 2994 mutant, or N. intermedia cannot replace an upstream glutamine-rich domain which is essential for nit-4 function.
Collapse
Affiliation(s)
- G F Yuan
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
29
|
Dorbe MF, Caboche M, Daniel-Vedele F. The tomato nia gene complements a Nicotiana plumbaginifolia nitrate reductase-deficient mutant and is properly regulated. PLANT MOLECULAR BIOLOGY 1992; 18:363-75. [PMID: 1731994 DOI: 10.1007/bf00034963] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A nitrate reductase (NR) deficient mutant of Nicotiana plumbaginifolia totally impaired in the production of functional nia transcript and protein was restored for NR activity by transformation with a cloned tomato nia gene. The transgenic plants expressed from undetectable to 17% of the control NR activity in their leaves. Restoration of growth rates comparable to the wild type was obtained for transgenic plants expressing as little as 10% of the wild-type activity showing that nitrate reduction is not a growth-limiting factor in the wild-type plant. The analysis of the transgene expression showed that the tomato nia gene transcription was regulated by light, nitrate and a circadian rhythm as in tomato plants. These results suggest that all the cis-acting sequences involved in these regulations are contained in the 3 kb upstream region of the tomato nia gene and are still functional in transgenic N. plumbaginifolia plants. The amount of NR transcript synthesized from the tomato nia gene was reduced when a functional N. plumbaginifolia nia locus was introduced by sexual crosses. These data support the hypothesis that nitrate reduction is regulated by nitrate-derived metabolites as demonstrated in fungi.
Collapse
Affiliation(s)
- M F Dorbe
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | |
Collapse
|
30
|
Daboussi MJ, Langin T, Deschamps F, Brygoo Y, Scazzocchio C, Burger G. Heterologous expression of the Aspergillus nidulans regulatory gene nirA in Fusarium oxysporum. Gene 1991; 109:155-60. [PMID: 1756977 DOI: 10.1016/0378-1119(91)90602-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have isolated strains of Fusarium oxysporum carrying mutations conferring a phenotype characteristic of a loss of function in the regulatory gene of nitrate assimilation (nirA in Aspergillus nidulans, nit-4 in Neurospora crassa). One of these nir- mutants was successfully transformed with a plasmid containing the nirA gene of A. nidulans. The nitrate reductase of the transformants is still inducible, although the maximum activity is lower than in the wild type. Single and multiple integration events were found, as well as a strict correlation between the presence of the nirA gene and the Nir+ phenotype of the F. oxysporum transformants. We also investigated how the A. nidulans structural gene (niaD) is regulated in F. oxysporum. Enzyme assays and Northern experiments show that the niaD gene is subject to nitrate induction and that it responds to nitrogen metabolite repression in a F. oxysporum genetic background. This indicates that both the mechanisms of specific induction, mediated by a gene product isofunctional to nirA, and nitrogen metabolite repression, presumably mediated by a gene product isofunctional to the homologous gene of A. nidulans, are operative in F. oxysporum.
Collapse
Affiliation(s)
- M J Daboussi
- Institut de Génétique et Microbiologie, Unité Associée au CNRS 1354, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|