1
|
Nonoptimal Codon Usage Is Critical for Protein Structure and Function of the Master General Amino Acid Control Regulator CPC-1. mBio 2020; 11:mBio.02605-20. [PMID: 33051373 PMCID: PMC7554675 DOI: 10.1128/mbio.02605-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Under amino acid starvation conditions, eukaryotic organisms activate a general amino acid control response. In Neurospora crassa, Cross Pathway Control Protein 1 (CPC-1), the ortholog of the Saccharomyces cerevisiae bZIP transcription factor GCN4, functions as the master regulator of the general amino acid control response. Codon usage biases are a universal feature of eukaryotic genomes and are critical for regulation of gene expression. Although codon usage has also been implicated in the regulation of protein structure and function, genetic evidence supporting this conclusion is very limited. Here, we show that Neurospora cpc-1 has a nonoptimal NNU-rich codon usage profile that contrasts with the strong NNC codon preference in the genome. Although substitution of the cpc-1 NNU codons with synonymous NNC codons elevated CPC-1 expression in Neurospora, it altered the CPC-1 degradation rate and abolished its amino acid starvation-induced protein stabilization. The codon-manipulated CPC-1 protein also exhibited different sensitivity to limited protease digestion. Furthermore, CPC-1 functions in rescuing the cell growth of the cpc-1 deletion mutant and activation of the expression of its target genes were impaired by the synonymous codon changes. Together, these results reveal the critical role of codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein folding.IMPORTANCE The general amino acid control response is critical for adaptation of organisms to amino acid starvation conditions. The preference to use certain synonymous codons is a universal feature of all genomes. Synonymous codon changes were previously thought to be silent mutations. In this study, we showed that the Neurospora cpc-1 gene has an unusual codon usage profile compared to other genes in the genome. We found that codon optimization of the cpc-1 gene without changing its amino acid sequence resulted in elevated CPC-1 expression, an altered protein degradation rate, and impaired protein functions due to changes in protein structure. Together, these results reveal the critical role of synonymous codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein structure.
Collapse
|
2
|
Lyu X, Yang Q, Li L, Dang Y, Zhou Z, Chen S, Liu Y. Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genet 2020; 16:e1008836. [PMID: 32479508 PMCID: PMC7289440 DOI: 10.1371/journal.pgen.1008836] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/11/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Codon usage bias is a universal feature of all genomes and plays an important role in regulating protein expression levels. Modification of adenosine to inosine at the tRNA anticodon wobble position (I34) by adenosine deaminases (ADATs) is observed in all eukaryotes and has been proposed to explain the correlation between codon usage and tRNA pool. However, how the tRNA pool is affected by I34 modification to influence codon usage-dependent gene expression is unclear. Using Neurospora crassa as a model system, by combining molecular, biochemical and bioinformatics analyses, we show that silencing of adat2 expression severely impaired the I34 modification levels for the ADAT-related tRNAs, resulting in major ADAT-related tRNA profile changes and reprogramming of translation elongation kinetics on ADAT-related codons. adat2 silencing also caused genome-wide codon usage-biased ribosome pausing on mRNAs and proteome landscape changes, leading to selective translational repression or induction of different mRNAs. The induced expression of CPC-1, the Neurospora ortholog of yeast GCN4p, mediates the transcriptional response after adat2 silencing and amino acid starvation. Together, our results demonstrate that the tRNA I34 modification by ADAT plays a major role in driving codon usage-biased translation to shape proteome landscape. Modification of transfer RNA (tRNA) can have profound impacts on gene expression by shaping cellular tRNA pool. How codon usage bias and tRNA profiles synergistically regulate gene expression is unclear. By combining molecular, biochemical and bioinformatics analyses, we showed that the correlation between genome codon usage and tRNA I34 (inosine 34) modification modulates translation elongation kinetics and proteome landscape. Inhibition of tRNA I34 modification causes codon usage-dependent ribosome pausing on mRNAs during translation and changes cellular protein contents in a codon usage biased manner. Together, our results demonstrate that the tRNA I34 modification plays a major role in driving codon usage-dependent translation to determine proteome landscape in a eukaryotic organism.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Lin Li
- National Institute of Biological Sciences, Changping District, Beijing, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - She Chen
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Pan Y, Gao L, Zhang X, Qin Y, Liu G, Qu Y. The Role of Cross-Pathway Control Regulator CpcA in the Growth and Extracellular Enzyme Production of Penicillium oxalicum. Curr Microbiol 2019; 77:49-54. [PMID: 31701162 DOI: 10.1007/s00284-019-01803-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
CpcA is a conserved transcriptional activator for the cross-pathway control of amino acid biosynthetic genes in filamentous fungi. Previous studies of this regulator mainly revealed its function under amino acid starvation condition, where amino acid biosynthetic inhibitors were added in the culture. In this study, the biological function of CpcA in Penicillium oxalicum was investigated under different cultivation conditions. Disruption of cpcA led to decreased cell growth either in the presence or absence of histidine biosynthetic inhibitor, and the phenotype could be rescued by the addition of exogenous amino acid sources. In addition, CpcA was required for the rapid production of cellulase when cells were cultured on cellulose. Transcript abundance measurement showed that a set of amino acid biosynthetic genes as well as two major cellulase genes were significantly down-regulated in cpcA deletion mutant relative to wild type. Taken together, the results revealed the biological role of CpcA in supporting normal growth and extracellular enzyme production of P. oxalicum under amino acid non-starvation condition.
Collapse
Affiliation(s)
- Yunjun Pan
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Liwei Gao
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Xiujun Zhang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| |
Collapse
|
4
|
Gournas C, Athanasopoulos A, Sophianopoulou V. On the Evolution of Specificity in Members of the Yeast Amino Acid Transporter Family as Parts of Specific Metabolic Pathways. Int J Mol Sci 2018; 19:E1398. [PMID: 29738448 PMCID: PMC5983819 DOI: 10.3390/ijms19051398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT) family. These consist of (a) residues conserved across YATs that interact with the invariable part of amino acid substrates and (b) variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.
Collapse
Affiliation(s)
- Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| |
Collapse
|
5
|
Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. mBio 2017; 8:mBio.00844-17. [PMID: 28655822 PMCID: PMC5487733 DOI: 10.1128/mbio.00844-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs) in its >700-nucleotide (nt) 5′ leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5′ region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5′ conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs) in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro. In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression. There is a deepening and widening appreciation of the diverse roles of translation in controlling gene expression. A central fungal transcription factor, the best-studied example of which is Saccharomyces cerevisiae GCN4, is crucial for the response to amino acid limitation. Two upstream open reading frames (uORFs) in the GCN4 mRNA are critical for controlling GCN4 synthesis. We observed that two uORFs in the corresponding Neurospora crassa cpc-1 mRNA appear functionally analogous to the GCN4 uORFs. We also discovered that, surprisingly, unlike GCN4, the CPC1 coding sequence extends far upstream from the presumed AUG start codon with no other in-frame AUG codons. Similar extensions were seen in homologs from many filamentous fungi. We observed that multiple non-AUG near-cognate codons (NCCs) in this extended reading frame, some conserved, initiated translation to produce longer forms of CPC1, underscoring the significance of noncanonical initiation in controlling gene expression.
Collapse
|
6
|
Abstract
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.
Collapse
|
7
|
Tian C, Li J, Glass NL. Exploring the bZIP transcription factor regulatory network in Neurospora crassa. MICROBIOLOGY (READING, ENGLAND) 2011; 157:747-759. [PMID: 21081763 PMCID: PMC3081083 DOI: 10.1099/mic.0.045468-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/08/2010] [Accepted: 11/14/2010] [Indexed: 11/18/2022]
Abstract
Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.
Collapse
Affiliation(s)
- Chaoguang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jingyi Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| |
Collapse
|
8
|
Tian C, Kasuga T, Sachs MS, Glass NL. Transcriptional profiling of cross pathway control in Neurospora crassa and comparative analysis of the Gcn4 and CPC1 regulons. EUKARYOTIC CELL 2007; 6:1018-29. [PMID: 17449655 PMCID: PMC1951524 DOI: 10.1128/ec.00078-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 04/16/2007] [Indexed: 11/20/2022]
Abstract
Identifying and characterizing transcriptional regulatory networks is important for guiding experimental tests on gene function. The characterization of regulatory networks allows comparisons among both closely and distantly related species, providing insight into network evolution, which is predicted to correlate with the adaptation of different species to particular environmental niches. One of the most intensely studied regulatory factors in the yeast Saccharomyces cerevisiae is the bZIP transcription factor Gcn4p. Gcn4p is essential for a global transcriptional response when S. cerevisiae experiences amino acid starvation. In the filamentous ascomycete Neurospora crassa, the ortholog of GCN4 is called the cross pathway control-1 (cpc-1) gene; it is required for the ability of N. crassa to induce a number of amino acid biosynthetic genes in response to amino acid starvation. Here, we deciphered the CPC1 regulon by profiling transcription in wild-type and cpc-1 mutant strains with full-genome N. crassa 70-mer oligonucleotide microarrays. We observed that at least 443 genes were direct or indirect CPC1 targets; these included 67 amino acid biosynthetic genes, 16 tRNA synthetase genes, and 13 vitamin-related genes. Comparison among the N. crassa CPC1 transcriptional profiling data set and the Gcn4/CaGcn4 data sets from S. cerevisiae and Candida albicans revealed a conserved regulon of 32 genes, 10 of which are predicted to be directly regulated by Gcn4p/CPC1. The 32-gene conserved regulon comprises mostly amino acid biosynthetic genes. The comparison of regulatory networks in species with clear orthology among genes sheds light on how gene interaction networks evolve.
Collapse
Affiliation(s)
- Chaoguang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720-3102, Oregon Health and Science University, Beaverton, Oregon 97006-8921
| | - Takao Kasuga
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720-3102, Oregon Health and Science University, Beaverton, Oregon 97006-8921
| | - Matthew S. Sachs
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720-3102, Oregon Health and Science University, Beaverton, Oregon 97006-8921
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720-3102, Oregon Health and Science University, Beaverton, Oregon 97006-8921
| |
Collapse
|
9
|
Bailey-Shrode L, Ebbole DJ. The fluffy gene of Neurospora crassa is necessary and sufficient to induce conidiophore development. Genetics 2005; 166:1741-9. [PMID: 15126394 PMCID: PMC1470807 DOI: 10.1534/genetics.166.4.1741] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fl (fluffy) gene of Neurospora crassa encodes a binuclear zinc cluster protein that regulates the production of asexual spores called macroconidia. Two other genes, acon-2 and acon-3, play major roles in controlling development. fl is induced specifically in differentiating tissue during conidiation and acon-2 plays a role in this induction. We examined the function of fl by manipulating its level of expression in wild-type and developmental mutant strains. Increasing expression of fl from a heterologous promoter in a wild-type genetic background is sufficient to induce conidiophore development. Elevated expression of fl leads to induction of development of the acon-2 mutant in nitrogen-starved cultures, but does not bypass the conidiation defect of the acon-3 mutant. These findings indicate that fl acts downstream of acon-2 and upstream of acon-3 in regulating gene expression during development. The eas, con-6, and con-10 genes are induced at different times during development. Morphological changes induced by artificially elevated fl expression in the absence of environmental cues were correlated with increased expression of eas, but not con-6 or con-10. Thus, although inappropriate expression of fl in vegetative hyphae is sufficient to induce conidial morphogenesis, complete reconstitution of development leading to the formation of mature conidia may require environmental signals to regulate fl activity and/or appropriate induction of fl expression in the developing conidiophore.
Collapse
Affiliation(s)
- Lori Bailey-Shrode
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | |
Collapse
|
10
|
Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol 2004; 2:e398. [PMID: 15534694 PMCID: PMC526180 DOI: 10.1371/journal.pbio.0020398] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 09/09/2004] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known about the mechanisms through which gene expression regulation evolves. To investigate this, we systematically explored the conservation of regulatory networks in fungi by examining the cis-regulatory elements that govern the expression of coregulated genes. We first identified groups of coregulated Saccharomyces cerevisiae genes enriched for genes with known upstream or downstream cis-regulatory sequences. Reasoning that many of these gene groups are coregulated in related species as well, we performed similar analyses on orthologs of coregulated S. cerevisiae genes in 13 other ascomycete species. We find that many species-specific gene groups are enriched for the same flanking regulatory sequences as those found in the orthologous gene groups from S. cerevisiae, indicating that those regulatory systems have been conserved in multiple ascomycete species. In addition to these clear cases of regulatory conservation, we find examples of cis-element evolution that suggest multiple modes of regulatory diversification, including alterations in transcription factor-binding specificity, incorporation of new gene targets into an existing regulatory system, and cooption of regulatory systems to control a different set of genes. We investigated one example in greater detail by measuring the in vitro activity of the S. cerevisiae transcription factor Rpn4p and its orthologs from Candida albicans and Neurospora crassa. Our results suggest that the DNA binding specificity of these proteins has coevolved with the sequences found upstream of the Rpn4p target genes and suggest that Rpn4p has a different function in N. crassa. A systematic examination of the gene regulatory elements in ascomycete fungi reveals striking conservation along with some examples of the ways in which regulatory systems can evolve
Collapse
|
11
|
Irniger S, Braus GH. Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr Genet 2003; 44:8-18. [PMID: 14508604 DOI: 10.1007/s00294-003-0422-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 06/17/2003] [Accepted: 06/18/2003] [Indexed: 11/30/2022]
Abstract
The Gcn4 protein, a member of the AP-1 family of transcription factors, is involved in the expression of more than 500 genes in the budding yeast Saccharomyces cerevisiae. A key role of Gcn4p is the increased expression of many amino acid biosynthesis genes in response to amino acid starvation. The accumulation of this transcription activator is mainly induced by efficient translation of the GCN4 ORF and by stabilisation of the Gcn4 protein. Under normal growth conditions, Gcn4p is a highly unstable protein, thereby resembling many eukaryotic transcription factors, including mammalian Jun and Myc proteins. Gcn4p is degraded by ubiquitin-dependent proteolysis mediated by the Skp1/cullin/F-box (SCF) ubiquitin ligase, which recognises specifically phosphorylated substrates. Two cyclin-dependent protein kinases, Pho85p and Srb10p, have crucial functions in regulating Gcn4p phosphorylation and degradation. The past few years have revealed many novel insights into these regulatory processes. Here, we summarise current knowledge about the factors and mechanisms regulating Gcn4p stability.
Collapse
Affiliation(s)
- Stefan Irniger
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | |
Collapse
|
12
|
Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, Brown AJ. Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 2002; 21:5448-56. [PMID: 12374745 PMCID: PMC129063 DOI: 10.1093/emboj/cdf507] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2001] [Revised: 07/31/2002] [Accepted: 08/05/2002] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It regulates its morphology in response to various environmental signals, but many of these signals are poorly defined. We show that amino acid starvation induces filamentous growth in C.albicans. Also, starvation for a single amino acid (histidine) induces CaHIS4, CaHIS7, CaARO4, CaLYS1 and CaLYS2 gene expression in a manner reminiscent of the GCN response in Saccharomyces cerevisiae. These morphogenetic and GCN-like responses are both dependent upon CaGcn4, which is a functional homologue of S.cerevisiae Gcn4. Like ScGcn4, CaGcn4 activates the transcription of amino acid biosynthetic genes via the GCRE element, and CaGcn4 confers resistance to the histidine analogue, 3-aminotriazole. CaGcn4 interacts with the Ras-cAMP pathway to promote filamentous growth, but the GCN-like response is not dependent upon morphogenetic signalling. CaGcn4 acts as a global regulator in C.albicans, co-ordinating both metabolic and morphogenetic responses to amino acid starvation.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
Present address: The Babraham Institute, Babraham, Cambridge CB2 4AT, UK Present address: CRC Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK Corresponding author e-mail:
| | - Carolyn Wiltshire
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
Present address: The Babraham Institute, Babraham, Cambridge CB2 4AT, UK Present address: CRC Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK Corresponding author e-mail:
| | | | | | | | - Alistair J.P. Brown
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
Present address: The Babraham Institute, Babraham, Cambridge CB2 4AT, UK Present address: CRC Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK Corresponding author e-mail:
| |
Collapse
|
13
|
Luo Z, Freitag M, Sachs MS. Translational regulation in response to changes in amino acid availability in Neurospora crassa. Mol Cell Biol 1995; 15:5235-45. [PMID: 7565672 PMCID: PMC230771 DOI: 10.1128/mcb.15.10.5235] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We examined the regulation of Neurospora crassa arg-2 and cpc-1 in response to amino acid availability.arg-2 encodes the small subunit of arginine-specific carbamoyl phosphate synthetase; it is subject to unique negative regulation by Arg and is positively regulated in response to limitation for many different amino acids through a mechanism known as cross-pathway control. cpc-1 specifies a transcriptional activator important for crosspathway control. Expression of these genes was compared with that of the cytochrome oxidase subunit V gene, cox-5. Analyses of mRNA levels, polypeptide pulse-labeling results, and the distribution of mRNA in polysomes indicated that Arg-specific negative regulation of arg-2 affected the levels of both arg-2 mRNA and arg-2 mRNA translation. Negative translational effects on arg-2 and positive translational effects on cpc-1 were apparent soon after cells were provided with exogenous Arg. In cells limited for His, increased expression of arg-2 and cpc-1, and decreased expression of cox-5, also had translational and transcriptional components. The arg-2 and cpc-1 transcripts contain upstream open reading frames (uORFs), as do their Saccharomyces cerevisiae homologs CPA1 and GCN4. We examined the regulation of arg-2-lacZ reporter genes containing or lacking the uORF start codon; the capacity for arg-2 uORF translation appeared critical for controlling gene expression.
Collapse
Affiliation(s)
- Z Luo
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | | | |
Collapse
|
14
|
Guyer D, Patton D, Ward E. Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc Natl Acad Sci U S A 1995; 92:4997-5000. [PMID: 7761437 PMCID: PMC41834 DOI: 10.1073/pnas.92.11.4997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Arabidopsis thaliana, blocking histidine biosynthesis with a specific inhibitor of imidazoleglycerol-phosphate dehydratase caused increased expression of eight genes involved in the biosynthesis of aromatic amino acids, histidine, lysine, and purines. A decrease in expression of glutamine synthetase was also observed. Addition of histidine eliminated the gene-regulating effects of the inhibitor, demonstrating that the changes in gene expression resulted from histidine-pathway blockage. These results show that plants are capable of cross-pathway metabolic regulation.
Collapse
Affiliation(s)
- D Guyer
- Ciba Agricultural Biotechnology, Research Triangle Park, NC 27709-2257, USA
| | | | | |
Collapse
|
15
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|
16
|
Production of the CYS3 regulator, a bZIP DNA-binding protein, is sufficient to induce sulfur gene expression in Neurospora crassa. Mol Cell Biol 1992. [PMID: 1532230 DOI: 10.1128/mcb.12.4.1568] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cys-3+ gene of Neurospora crassa encodes a bZIP (basic region-leucine zipper) regulatory protein that is essential for sulfur structural gene expression (e.g., ars-1+). Nuclear transcription assays confirmed that cys-3+ was under sulfur-regulated transcriptional control and that cys-3+ transcription was constitutive in sulfur controller (scon)-negative regulator mutants. Given these results, I have tested whether expression of cys-3+ under high-sulfur (repressing) conditions was sufficient to induce sulfur gene expression. The N. crassa beta-tubulin (tub) promoter was fused to the cys-3+ coding segment and used to transform a cys-3 deletion mutant. Function of the tub::cys-3 fusion in homokaryotic transformants grown under high-sulfur conditions was confirmed by Northern (RNA) and Western immunoblot analysis. The tub::cys-3 transformants showed arylsulfatase gene expression under normally repressing high-sulfur conditions. A tub::cys-3ts fusion encoding a temperature-sensitive CYS3 protein was used to confirm that the induced structural gene expression was due to CYS3 protein function. Constitutive CYS3 production did not induce scon-2+ expression under repressing conditions. In addition, a cys-3 promoter fusion to lacZ showed that CYS3 production was sufficient to induce its own expression and provides in vivo evidence for autoregulation. Finally, an apparent inhibitory effect observed with a strain carrying a point mutation at the cys-3 locus was examined by in vitro heterodimerization studies. These results support an interpretation of CYS3 as a transcriptional activator whose regulation is a crucial control point in the signal response pathway triggered by sulfur limitation.
Collapse
|
17
|
Characterization of the formate (for) locus, which encodes the cytosolic serine hydroxymethyltransferase of Neurospora crassa. Mol Cell Biol 1992. [PMID: 1532227 DOI: 10.1128/mcb.12.4.1412] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) occupies a central position in one-carbon (C1) metabolism, catalyzing the reaction of serine and tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Methylenetetrahydrofolate serves as a donor of C1 units for the synthesis of numerous compounds, including purines, thymidylate, lipids, and methionine. We provide evidence that the formate (for) locus of Neurospora crassa encodes cytosolic SHMT. The for+ gene was localized to a 2.8-kb BglII fragment by complementation (restoration to formate-independent growth) of a strain carrying a recessive for allele, which confers a growth requirement for formate. The for+ gene encodes a polypeptide of 479 amino acids which shows significant similarity to amino acid sequences of SHMT from bacterial and mammalian sources (47 and 60% amino acid identity, respectively). The for+ mRNA has several different start and stop sites. The abundance of for+ mRNA increased in response to amino acid imbalance induced by glycine supplementation, suggesting regulation by the N. crassa cross-pathway control system, which is analogous to general amino acid control in Saccharomyces cerevisiae. This was confirmed by documenting that for+ expression increased in response to histidine limitation (induced by 3-amino-1,2,4-triazole) and that this response was dependent on the presence of a functional cross-pathway control-1 (cpc-1) gene, which encodes CPC1, a positively acting transcription factor. There are at least five potential CPC1 binding sites upstream of the for+ transcriptional start, as well as one that exactly matches the consensus CPC1 binding site in the first intron of the for+ gene.
Collapse
|
18
|
Paietta JV. Production of the CYS3 regulator, a bZIP DNA-binding protein, is sufficient to induce sulfur gene expression in Neurospora crassa. Mol Cell Biol 1992; 12:1568-77. [PMID: 1532230 PMCID: PMC369599 DOI: 10.1128/mcb.12.4.1568-1577.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cys-3+ gene of Neurospora crassa encodes a bZIP (basic region-leucine zipper) regulatory protein that is essential for sulfur structural gene expression (e.g., ars-1+). Nuclear transcription assays confirmed that cys-3+ was under sulfur-regulated transcriptional control and that cys-3+ transcription was constitutive in sulfur controller (scon)-negative regulator mutants. Given these results, I have tested whether expression of cys-3+ under high-sulfur (repressing) conditions was sufficient to induce sulfur gene expression. The N. crassa beta-tubulin (tub) promoter was fused to the cys-3+ coding segment and used to transform a cys-3 deletion mutant. Function of the tub::cys-3 fusion in homokaryotic transformants grown under high-sulfur conditions was confirmed by Northern (RNA) and Western immunoblot analysis. The tub::cys-3 transformants showed arylsulfatase gene expression under normally repressing high-sulfur conditions. A tub::cys-3ts fusion encoding a temperature-sensitive CYS3 protein was used to confirm that the induced structural gene expression was due to CYS3 protein function. Constitutive CYS3 production did not induce scon-2+ expression under repressing conditions. In addition, a cys-3 promoter fusion to lacZ showed that CYS3 production was sufficient to induce its own expression and provides in vivo evidence for autoregulation. Finally, an apparent inhibitory effect observed with a strain carrying a point mutation at the cys-3 locus was examined by in vitro heterodimerization studies. These results support an interpretation of CYS3 as a transcriptional activator whose regulation is a crucial control point in the signal response pathway triggered by sulfur limitation.
Collapse
Affiliation(s)
- J V Paietta
- Department of Biochemistry, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
19
|
McClung CR, Davis CR, Page KM, Denome SA. Characterization of the formate (for) locus, which encodes the cytosolic serine hydroxymethyltransferase of Neurospora crassa. Mol Cell Biol 1992; 12:1412-21. [PMID: 1532227 PMCID: PMC369582 DOI: 10.1128/mcb.12.4.1412-1421.1992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) occupies a central position in one-carbon (C1) metabolism, catalyzing the reaction of serine and tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Methylenetetrahydrofolate serves as a donor of C1 units for the synthesis of numerous compounds, including purines, thymidylate, lipids, and methionine. We provide evidence that the formate (for) locus of Neurospora crassa encodes cytosolic SHMT. The for+ gene was localized to a 2.8-kb BglII fragment by complementation (restoration to formate-independent growth) of a strain carrying a recessive for allele, which confers a growth requirement for formate. The for+ gene encodes a polypeptide of 479 amino acids which shows significant similarity to amino acid sequences of SHMT from bacterial and mammalian sources (47 and 60% amino acid identity, respectively). The for+ mRNA has several different start and stop sites. The abundance of for+ mRNA increased in response to amino acid imbalance induced by glycine supplementation, suggesting regulation by the N. crassa cross-pathway control system, which is analogous to general amino acid control in Saccharomyces cerevisiae. This was confirmed by documenting that for+ expression increased in response to histidine limitation (induced by 3-amino-1,2,4-triazole) and that this response was dependent on the presence of a functional cross-pathway control-1 (cpc-1) gene, which encodes CPC1, a positively acting transcription factor. There are at least five potential CPC1 binding sites upstream of the for+ transcriptional start, as well as one that exactly matches the consensus CPC1 binding site in the first intron of the for+ gene.
Collapse
Affiliation(s)
- C R McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | | | | | | |
Collapse
|
20
|
Characterization of Neurospora CPC1, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 1991. [PMID: 1824960 DOI: 10.1128/mcb.11.2.935] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.
Collapse
|
21
|
Paluh JL, Yanofsky C. Characterization of Neurospora CPC1, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 1991; 11:935-44. [PMID: 1824960 PMCID: PMC359753 DOI: 10.1128/mcb.11.2.935-944.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.
Collapse
Affiliation(s)
- J L Paluh
- Department of Biological Sciences, Stanford University, California 94305
| | | |
Collapse
|