1
|
Brennan-Laun SE, Ezelle HJ, Li XL, Hassel BA. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J Interferon Cytokine Res 2015; 34:275-88. [PMID: 24697205 DOI: 10.1089/jir.2013.0147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- 1 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | | | | | | |
Collapse
|
2
|
Brennan-Laun SE, Li XL, Ezelle HJ, Venkataraman T, Blackshear PJ, Wilson GM, Hassel BA. RNase L attenuates mitogen-stimulated gene expression via transcriptional and post-transcriptional mechanisms to limit the proliferative response. J Biol Chem 2014; 289:33629-43. [PMID: 25301952 DOI: 10.1074/jbc.m114.589556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and
| | - Xiao-Ling Li
- the Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Heather J Ezelle
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | | | - Perry J Blackshear
- the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Gerald M Wilson
- From the Marlene and Stewart Greenebaum Cancer Center, Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Bret A Hassel
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| |
Collapse
|
3
|
Gervasi M, Bianchi-Smiraglia A, Cummings M, Zheng Q, Wang D, Liu S, Bakin AV. JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-β. ACTA ACUST UNITED AC 2012; 196:589-603. [PMID: 22391036 PMCID: PMC3307698 DOI: 10.1083/jcb.201109045] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
JunB helps set in motion the transcriptional program necessary for the epithelial–mesenchymal transition and tissue fibrosis in response to TGF-β. The process of epithelial–mesenchymal transition (EMT) in response to transforming growth factor–β (TGF-β) contributes to tissue fibrosis, wound healing, and cancer via a mechanism that is not fully understood. This study identifies a critical role of JunB in the EMT and profibrotic responses to TGF-β. Depletion of JunB by small interfering ribonucleic acid abrogates TGF-β–induced disruption of cell–cell junctions, formation of actin fibers, focal adhesions, and expression of fibrotic proteins. JunB contributes to Smad-mediated repression of inhibitor of differentiation 2 through interaction with transcription repressor activating transcription factor 3. Importantly, JunB mediates the TGF-β induction of profibrotic response factors, fibronectin, fibulin-2, tropomyosin (Tpm1), and integrin-β3, which play critical roles in matrix deposition, cell–matrix adhesion, and actin stress fibers. In summary, JunB provides important input in setting the transcriptional program of the EMT and profibrotic responses to TGF-β. Thus, JunB represents an important target in diseases associated with EMT, including cancer and fibrosis.
Collapse
Affiliation(s)
- Megan Gervasi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Aida M, Chen Y, Nakajima K, Yamaguchi Y, Wada T, Handa H. Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol Cell Biol 2006; 26:6094-104. [PMID: 16880520 PMCID: PMC1592793 DOI: 10.1128/mcb.02366-05] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) negatively regulate transcription elongation by RNA polymerase II (RNAPII) in vitro. However, the physiological roles of this negative regulation are not well understood. Here, by using a number of approaches to identify protein-DNA interactions in vivo, we show that DSIF- and NELF-mediated transcriptional pausing has a dual function in regulating immediate-early expression of the human junB gene. Before induction by interleukin-6, RNAPII, DSIF, and NELF accumulate in the promoter-proximal region of junB, mainly at around position +50 from the transcription initiation site. After induction, the association of these proteins with the promoter-proximal region continues whereas RNAPII and DSIF are also found in the downstream regions. Depletion of a subunit of NELF by RNA interference enhances the junB mRNA level both before and after induction, indicating that DSIF- and NELF-mediated pausing contributes to the negative regulation of junB expression, not only by inducing RNAPII pausing before induction but also by attenuating transcription after induction. These regulatory mechanisms appear to be conserved in other immediate-early genes as well.
Collapse
Affiliation(s)
- Masatoshi Aida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Muramatsu H, Welsh FA, Karikó K. Cerebral preconditioning using cortical application of hypertonic salt solutions: upregulation of mRNAs encoding inhibitors of inflammation. Brain Res 2006; 1097:31-8. [PMID: 16725117 PMCID: PMC3619415 DOI: 10.1016/j.brainres.2006.04.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 04/14/2006] [Accepted: 04/18/2006] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that local application of hypertonic KCl or NaCl to the cerebral cortex induces tolerance to a subsequent episode of ischemia. The objective of the present study was to determine whether application of these salts increases the levels of mRNAs encoding inhibitors of inflammation. Hypertonic KCl or NaCl was applied for 2 h to the frontal cortex of Sprague-Dawley rats. After recovery periods up to 24 h, levels of selected mRNAs were measured in samples from frontal and parietal cortex using Northern blots. Application of hypertonic KCl caused a rapid and widespread increase in the levels of mRNA coding for tumor necrosis factor (TNF), tristetraprolin (TTP), suppressor of cytokine signaling-3 (SOCS3), and brain-derived neurotrophic factor (BDNF), and a 24-h delayed induction of ciliary neurotrophic factor (CNTF) mRNA. Application of hypertonic NaCl caused alterations in mRNA levels that were restricted to the frontal cortex. In this region, application of NaCl rapidly increased levels of mRNA encoding TNF, TTP, and SOCS3, but not BDNF, and caused a delayed induction of CNTF mRNA. These results raise the possibility that upregulation of inhibitors of inflammation after preconditioning may contribute to the induction of tolerance to ischemia.
Collapse
Affiliation(s)
- Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 371 Stemmler Hall, Box 44, 36th and Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
6
|
Kojima H, Sasaki T, Ishitani T, Iemura SI, Zhao H, Kaneko S, Kunimoto H, Natsume T, Matsumoto K, Nakajima K. STAT3 regulates Nemo-like kinase by mediating its interaction with IL-6-stimulated TGFbeta-activated kinase 1 for STAT3 Ser-727 phosphorylation. Proc Natl Acad Sci U S A 2005; 102:4524-9. [PMID: 15764709 PMCID: PMC555521 DOI: 10.1073/pnas.0500679102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is activated by the IL-6 family of cytokines and growth factors. STAT3 requires phosphorylation on Ser-727, in addition to tyrosine phosphorylation on Tyr-705, to be transcriptionally active. In IL-6 signaling, the two major pathways that derive from the YXXQ and the YSTV motifs of gp130 cause Ser-727 phosphorylation. Here, we show that TGF-beta-activated kinase 1 (TAK1) interacts with STAT3, that the TAK1-Nemo-like kinase (NLK) pathway is efficiently activated by IL-6 through the YXXQ motif, and that this is the YXXQ-mediated H7-sensitive pathway that leads to STAT3 Ser-727 phosphorylation. Because NLK was recently shown to interact with STAT3, we explored the role of STAT3 in activating this pathway. Depletion of STAT3 diminished the IL-6-induced NLK activation by >80% without inhibiting IL-6-induced TAK1 activation or its nuclear entry. We found that STAT3 functioned as a scaffold for TAK1 and NLK in vivo through a region in its carboxyl terminus. Furthermore, the expression of the STAT3(534-770) region in the nuclei of STAT3-knockdown cells enhanced the IL-6-induced NLK activation in a dose-dependent manner but not the TGFbeta-induced NLK activation. TGFbeta did not cause STAT3 Ser-727 phosphorylation, even when the carboxyl region of STAT3 was expressed in the nuclei. Together, these results indicate that STAT3 enhances the efficiency of its own Ser-727 phosphorylation by acting as a scaffold for the TAK1-NLK kinases, specifically in the YXXQ motif-derived pathway.
Collapse
Affiliation(s)
- Hirotada Kojima
- Department of Immunology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jenab S, Morris PL. Interleukin-6 regulation of kappa opioid receptor gene expression in primary sertoli cells. Endocrine 2000; 13:11-5. [PMID: 11051042 DOI: 10.1385/endo:13:1:11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Revised: 01/14/2000] [Accepted: 01/25/2000] [Indexed: 11/11/2022]
Abstract
Three classes of opioid receptors--mu, delta, and kappa--mediate physiological and pharmacological functions of the endogenous opioid peptides and exogenous opioid compounds in the central nervous system (CNS), as well as in peripheral tissues including the immune system. Using reverse transcriptase polymerase chain reaction (RT-PCR) analysis, we show that freshly isolated and highly purified somatic (Sertoli and Leydig) and specific germ (spermatogonia, pachytene spermatocytes, round, and elongating spermatids) cells of the rat testis differentially express the mRNAs for these opioid receptor genes. Furthermore, to identify a functional mechanism for cytokine regulation of testicular opioid receptor gene expression, we employed primary Sertoli cells as a model system. In a semiquantitative PCR analysis using the S16 ribosomal RNA gene as an internal control, we show that interleukin-6 reduces kappa opioid receptor mRNA levels from 6 to 24 h of treatment in primary Sertoli cells. This regulation requires new RNA and protein synthesis and is partially mediated by the protein kinase A pathway. These findings are consistent with a role for the cytokine and opioid signaling pathways in Sertoli cellular function and the interaction that exists between the opioid and the immune systems in the CNS.
Collapse
Affiliation(s)
- S Jenab
- Population Council, New York, NY 10021, USA
| | | |
Collapse
|
8
|
Flak TA, Heiss LN, Engle JT, Goldman WE. Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect Immun 2000; 68:1235-42. [PMID: 10678932 PMCID: PMC97273 DOI: 10.1128/iai.68.3.1235-1242.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the synergistic interactions of a naturally occurring peptidoglycan fragment (muramyl peptide) and bacterial endotoxin in the induction of inflammatory processes within respiratory epithelial cells, at the levels of both signal transduction events and ultimate cellular metabolic effects. The source of the muramyl peptide is Bordetella pertussis, the causative agent of the respiratory disease pertussis. During log-phase growth, B. pertussis releases the muramyl peptide tracheal cytotoxin (TCT), which has the structure N - acetylglucosaminyl - 1,6 - anhydro - N - acetylmuramyl - (L) - alanyl - gamma - (D) - glutamyl - meso - diaminopimelyl - (D) - alanine, equivalent to a monomeric subunit of gram-negative bacterial peptidoglycan. When applied to hamster trachea epithelial (HTE) cells, TCT and endotoxin were found to be highly synergistic in the induction of interleukin-1alpha (IL-1alpha), type II (inducible) nitric oxide synthase (iNOS), nitric oxide production, and inhibition of DNA synthesis. Neither molecule alone significantly triggered these responses. The serine/threonine protein kinase inhibitor H7 blocked induction of both IL-1alpha and iNOS. More selective inhibitors of protein kinase C, cyclic AMP-dependent protein kinase, and cyclic GMP-dependent protein kinase were not capable of blocking the effects of TCT and endotoxin, suggesting that the H7-inhibited component in this pathway is not among the commonly described kinase targets of H7. Treatment of HTE cells with exogenous IL-1 reproduced the induction of iNOS and DNA synthesis inhibition caused by TCT and endotoxin. H7 was not capable of interfering with effects caused by exogenous IL-1, implying that the H7-sensitive step in the pathway is upstream of IL-1 protein production. Similar assays with the phorbol ester phorbol myristate acetate indicate that it could effectively synergize with endotoxin but not with TCT, suggesting that TCT and endotoxin induce different signal transduction events that combine synergistically. The synergy observed with TCT and endotoxin in epithelial cells is significantly different from their interaction with other cell types, revealing a unique inflammatory response by epithelial cells to these natural bacterial products.
Collapse
Affiliation(s)
- T A Flak
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
9
|
Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K, Hibi M, Hirano T. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999; 189:63-73. [PMID: 9874564 PMCID: PMC1887683 DOI: 10.1084/jem.189.1.63] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The signal transducers and activators of transcription (STAT) family members have been implicated in regulating the growth, differentiation, and death of normal and transformed cells in response to either extracellular stimuli, including cytokines and growth factors, or intracellular tyrosine kinases. c-myc expression is coordinately regulated by multiple signals in these diverse cellular responses. We show that STAT3 mostly mediates the rapid activation of the c-myc gene upon stimulation of the interleukin (IL)-6 receptor or gp130, a signal transducing subunit of the receptor complexes for the IL-6 cytokine family. STAT3 does so most likely by binding to cis-regulatory region(s) of the c-myc gene. We show that STAT3 binds to a region overlapping with the E2F site in the c-myc promoter and this site is critical for the c-myc gene promoter- driven transcriptional activation by IL-6 or gp130 signals. This is the first identification of the linkage between a member of the STAT family and the c-myc gene activation, and also explains how the IL-6 family of cytokines is capable of inducing the expression of the c-myc gene.
Collapse
Affiliation(s)
- N Kiuchi
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chung J, Uchida E, Grammer TC, Blenis J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 1997; 17:6508-16. [PMID: 9343414 PMCID: PMC232504 DOI: 10.1128/mcb.17.11.6508] [Citation(s) in RCA: 498] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have indicated that serine phosphorylation regulates the activities of STAT1 and STAT3. However, the kinase(s) responsible and the role of serine phosphorylation in STAT function remain unresolved. In the present studies, we examined the growth factor-dependent serine phosphorylation of STAT1 and STAT3. We provide in vitro and in vivo evidence that the ERK family of mitogen-activated protein (MAP) kinases, but not JNK or p38, specifically phosphorylate STAT3 at serine 727 in response to growth factors. Evidence for additional mitogen-regulated serine phosphorylation is also provided. STAT1 is a relatively poor substrate for all MAP kinases tested both in vitro and in vivo. STAT3 serine phosphorylation, not its tyrosine phosphorylation, results in retarded mobility of the STAT3 protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Importantly, serine 727 phosphorylation negatively modulates STAT3 tyrosine phosphorylation, which is required for dimer formation, nuclear translocation, and the DNA binding activity of this transcriptional regulator. Interestingly, the cytokine interleukin-6 also stimulates STAT3 serine phosphorylation, but in contrast to growth factors, this occurs by an ERK-independent process.
Collapse
Affiliation(s)
- J Chung
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
11
|
Boulton TG, Zhong Z, Wen Z, Darnell JE, Stahl N, Yancopoulos GD. STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc Natl Acad Sci U S A 1995; 92:6915-9. [PMID: 7624343 PMCID: PMC41441 DOI: 10.1073/pnas.92.15.6915] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ciliary neurotrophic factor, oncostatin M, leukemia-inhibitory factor, and interleukin 6 are related cytokines that initiate signaling by homodimerizing the signal-transducing receptor component gp130 or by heterodimerizing gp130 with a gp130-related receptor component. Receptor dimerization in turn activates receptor-associated kinases of the Jak/Tyk family, resulting in the rapid tyrosine phosphorylation of several intracellular proteins, including those of two members of the signal transducers and activators of transcription (STAT) family--STAT1 and STAT3. Here we show that all cytokines that utilize gp130 sequentially induce two distinct forms of STAT3 in all responding cells examined, with the two forms apparently differing because of a time-dependent secondary serine/threonine phosphorylation involving an H7-sensitive kinase. While both STAT3 forms bind DNA and translocate to the nucleus, the striking time-dependent progression from one form to the other implies other important functional differences between the two forms. Granulocyte colony-stimulating factor, which utilizes a receptor highly related to gp130, also induces these two forms of STAT3. In contrast to a number of other cytokines and growth factors, all cytokines using gp130 and related signal transducers consistently and preferentially induce the two forms of STAT3 as compared with STAT1; this characteristic STAT activation pattern is seen regardless of which Jak/Tyk kinases are used in a particular response, consistent with the notion that the receptor components themselves are the primary determinants of which STATs are activated.
Collapse
Affiliation(s)
- T G Boulton
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | | | | |
Collapse
|
12
|
Watanabe I, Horiuchi T, Fujita S. Role of protein kinase C activation in synthesis of complement components C2 and factor B in interferon-gamma-stimulated human fibroblasts, glioblastoma cell line A172 and monocytes. Biochem J 1995; 305 ( Pt 2):425-31. [PMID: 7832755 PMCID: PMC1136379 DOI: 10.1042/bj3050425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis of C2 and factor B, the key components of complement system, is performed by various kinds of cells and is also up-regulated by interferon-gamma (IFN-gamma). By using human fibroblasts, human glioblastoma cell line A172 and monocytes, we investigated the signal-transduction mechanism for IFN-gamma-induced synthesis of C2 and factor B. The C2 and factor B synthesis induced by IFN-gamma in all three cell types was inhibited by a protein kinase C (PKC) inhibitor, 1-(5-isoquinolinyl-sulphonyl)-2-methylpiperazine (H-7). The depletion of PKC in these cell types after treatment with phorbol 12-myristate 13-acetate (PMA) resulted in inhibition of IFN-gamma-induced C2 production. In addition, IFN-gamma treatment elicited a decrease in cytoplasmic PKC in A172 cells, indicating that PKC is activated by IFN-gamma. These results suggest that PKC is crucial for IFN-gamma-induced C2 and factor B synthesis. Northern-blot analysis showed that the effects at H-7 were at least partly mediated by modulation of C2 and factor B mRNA abundance in A172 cells. Since treatment of fibroblasts and A172 cells with IFN-gamma had no effect on intracellular Ca2+ concentration, and since neither EGTA nor nifedipine inhibited C2 or factor B synthesis induced by IFN-gamma, we concluded that intracellular Ca2+ mobilization was not involved in the effect of IFN-gamma. In addition, genistein, herbimycin A and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulphonamide (W-7) had no inhibitory effect on IFN-gamma-mediated action in any of the three cell types, which suggests that IFN-gamma acts independently of tyrosine kinases and calmodulin-dependent protein kinases.
Collapse
Affiliation(s)
- I Watanabe
- First Department of Internal Medicine, School of Medicine, Ehime University, Japan
| | | | | |
Collapse
|
13
|
The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol Cell Biol 1994. [PMID: 8164674 DOI: 10.1128/mcb.14.5.3186] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interleukin-6 (IL-6), leukemia inhibitory factor, oncostatin M, IL-11, and ciliary neurotropic factor are a family of cytokines and neuronal differentiation factors which bind to composite plasma membrane receptors sharing the signal transducing subunit gp130. We have shown recently that IL-6 and leukemia inhibitory factor rapidly activate a latent cytoplasmic transcription factor, acute-phase response factor (APRF), by tyrosine phosphorylation, which then binds to IL-6 response elements of various IL-6 target genes. Here we demonstrate that APRF is activated by all cytokines acting through gp130 and is detected in a wide variety of cell types, indicating a central role of this transcription factor in gp130-mediated signaling. APRF activation is also observed in vitro upon addition of IL-6 to cell homogenates. Protein tyrosine kinase inhibitors block both the tyrosine phosphorylation and DNA binding of APRF. The factor was purified to homogeneity from rat liver and shown to consist of a single 87-kDa polypeptide, while two forms (89 and 87 kDa) are isolated from human hepatoma cells. As reported earlier, the binding sequence specificity of APRF is shared by gamma interferon (IFN-gamma) activation factor, which is formed by the Stat91 protein. Partial amino acid sequence obtained from purified rat APRF demonstrated that it is likely to be related to Stat91. In fact, an antiserum raised against the amino-terminal portion of Stat91 cross-reacted with APRF, suggesting the relatedness of APRF and Stat91. Altogether, these data indicate that APRF belongs to a growing family of Stat-related proteins and that IFN-gamma and IL-6 use similar signaling pathways to activate IFN-gamma activation factor and APRF, respectively.
Collapse
|
14
|
Wegenka UM, Lütticken C, Buschmann J, Yuan J, Lottspeich F, Müller-Esterl W, Schindler C, Roeb E, Heinrich PC, Horn F. The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol Cell Biol 1994; 14:3186-96. [PMID: 8164674 PMCID: PMC358686 DOI: 10.1128/mcb.14.5.3186-3196.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Interleukin-6 (IL-6), leukemia inhibitory factor, oncostatin M, IL-11, and ciliary neurotropic factor are a family of cytokines and neuronal differentiation factors which bind to composite plasma membrane receptors sharing the signal transducing subunit gp130. We have shown recently that IL-6 and leukemia inhibitory factor rapidly activate a latent cytoplasmic transcription factor, acute-phase response factor (APRF), by tyrosine phosphorylation, which then binds to IL-6 response elements of various IL-6 target genes. Here we demonstrate that APRF is activated by all cytokines acting through gp130 and is detected in a wide variety of cell types, indicating a central role of this transcription factor in gp130-mediated signaling. APRF activation is also observed in vitro upon addition of IL-6 to cell homogenates. Protein tyrosine kinase inhibitors block both the tyrosine phosphorylation and DNA binding of APRF. The factor was purified to homogeneity from rat liver and shown to consist of a single 87-kDa polypeptide, while two forms (89 and 87 kDa) are isolated from human hepatoma cells. As reported earlier, the binding sequence specificity of APRF is shared by gamma interferon (IFN-gamma) activation factor, which is formed by the Stat91 protein. Partial amino acid sequence obtained from purified rat APRF demonstrated that it is likely to be related to Stat91. In fact, an antiserum raised against the amino-terminal portion of Stat91 cross-reacted with APRF, suggesting the relatedness of APRF and Stat91. Altogether, these data indicate that APRF belongs to a growing family of Stat-related proteins and that IFN-gamma and IL-6 use similar signaling pathways to activate IFN-gamma activation factor and APRF, respectively.
Collapse
Affiliation(s)
- U M Wegenka
- Institute of Biochemistry, RWTH Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements. Mol Cell Biol 1994. [PMID: 7509445 DOI: 10.1128/mcb.14.3.1657] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interleukin-6 (IL-6) and gamma interferon (IFN-gamma) induce a partially overlapping set of genes, including the genes for interferon regulatory factor 1 (IRF-1), intercellular adhesion molecule 1 (ICAM-1), and the acute-phase protein alpha 2-macroglobulin. We report here that the rat alpha 2-macroglobulin promoter is activated by IFN-gamma in human hepatoma (HepG2) cells and that the IFN-gamma response element maps to the same site previously defined as the acute-phase response element (APRE), which binds the IL-6-activated transcription factor APRF (acute-phase response factor). As was reported for fibroblasts, the IFN-gamma-regulated transcription factor GAF is phosphorylated at tyrosine after IFN-gamma treatment of HepG2 cells. IFN-gamma posttranslationally activates a protein which specifically binds to the alpha 2-macroglobulin APRE. This protein is shown to be identical or closely related to GAF. Although APRF and GAF are shown to represent different proteins, their binding sequence specificities are very similar. APRF and GAF bind equally well to the APRE sequences of various acute-phase protein genes as well as to the IFN-gamma response elements of the IRF-1, ICAM-1, and other IFN-gamma-inducible genes. Transient transfection analysis revealed that the IFN-gamma response elements of the IRF-1 and ICAM-1 promoters are able to confer responsiveness to both IFN-gamma and IL-6 onto a heterologous promoter. Therefore, APRF and GAF are likely to be involved in the transcriptional induction of these immediate-early genes by IL-6 and IFN-gamma, respectively. Taken together, these results demonstrate that two functionally distinct hormones, IL-6 and IFN-gamma, act through common regulatory elements to which different transcription factors sharing almost the same sequence specificity bind.
Collapse
|
16
|
Yuan J, Wegenka UM, Lütticken C, Buschmann J, Decker T, Schindler C, Heinrich PC, Horn F. The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements. Mol Cell Biol 1994; 14:1657-68. [PMID: 7509445 PMCID: PMC358524 DOI: 10.1128/mcb.14.3.1657-1668.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interleukin-6 (IL-6) and gamma interferon (IFN-gamma) induce a partially overlapping set of genes, including the genes for interferon regulatory factor 1 (IRF-1), intercellular adhesion molecule 1 (ICAM-1), and the acute-phase protein alpha 2-macroglobulin. We report here that the rat alpha 2-macroglobulin promoter is activated by IFN-gamma in human hepatoma (HepG2) cells and that the IFN-gamma response element maps to the same site previously defined as the acute-phase response element (APRE), which binds the IL-6-activated transcription factor APRF (acute-phase response factor). As was reported for fibroblasts, the IFN-gamma-regulated transcription factor GAF is phosphorylated at tyrosine after IFN-gamma treatment of HepG2 cells. IFN-gamma posttranslationally activates a protein which specifically binds to the alpha 2-macroglobulin APRE. This protein is shown to be identical or closely related to GAF. Although APRF and GAF are shown to represent different proteins, their binding sequence specificities are very similar. APRF and GAF bind equally well to the APRE sequences of various acute-phase protein genes as well as to the IFN-gamma response elements of the IRF-1, ICAM-1, and other IFN-gamma-inducible genes. Transient transfection analysis revealed that the IFN-gamma response elements of the IRF-1 and ICAM-1 promoters are able to confer responsiveness to both IFN-gamma and IL-6 onto a heterologous promoter. Therefore, APRF and GAF are likely to be involved in the transcriptional induction of these immediate-early genes by IL-6 and IFN-gamma, respectively. Taken together, these results demonstrate that two functionally distinct hormones, IL-6 and IFN-gamma, act through common regulatory elements to which different transcription factors sharing almost the same sequence specificity bind.
Collapse
Affiliation(s)
- J Yuan
- Institute for Biochemistry, RWTH Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region. Mol Cell Biol 1994. [PMID: 8264594 DOI: 10.1128/mcb.14.1.268] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-IL6 and AP-1 family transcription factors are coordinately induced by interleukin-6 (IL-6) in a cell-type-specific manner, suggesting that they mediate IL-6 signals in the nucleus. We show that the basic leucine zipper (bZIP) region of NF-IL6 mediates a direct association with the bZIP regions of Fos and Jun in vitro. This interaction does not depend on the presence of their cognate recognition DNA elements or the posttranslational modification of either partner. NF-IL6 homodimers can bind to both NF-IL6 and AP-1 sites, whereas Fos and Jun cannot bind to most NF-IL6 sites. Cross-family association with Fos or with Jun alters the DNA binding specificity of NF-IL6 and reduced its binding to NF-IL6 sites. NF-IL6 isoforms that differ in the site of translation initiation have distinct transcriptional activities. Activation of a reporter gene linked to the NF-IL6 site by NF-IL6 is repressed by Fos and by Jun in transient transfection assays. Thus, association with AP-1 results in repression of transcription activation by NF-IL6. The repression is NF-IL6 site dependent and may have a role in determining the promoter and cell type specificity in IL-6 signaling.
Collapse
|
18
|
Ziesche R, Roth M, Papakonstantinou E, Nauck M, Hörl WH, Kashgarian M, Block LH. A granulocyte inhibitory protein overexpressed in chronic renal disease regulates expression of interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A 1994; 91:301-5. [PMID: 8278382 PMCID: PMC42935 DOI: 10.1073/pnas.91.1.301] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Growing evidence suggests that cytokine expression is influenced by locally produced mediators, thus modifying the pluripotential effects of cytokines toward a tissue-specific inflammatory reaction. The granulocyte inhibitory protein (GIP), a 23-kDa protein found to be significantly overexpressed in patients with chronic renal failure, increases autocrine transcription and expression of interleukin (IL) 6 and IL-8 in human mesangial cells. Moreover, GIP alone induced the transcription of c-jun mRNA; however, in combination with IL-6, it stimulated de novo synthesis of DNA and the transcription of both c-jun and c-fos genes. The data suggest that the overall effect of GIP results in the modulation of the glomerular response to injury and contributes to the progression of glomerulosclerosis.
Collapse
Affiliation(s)
- R Ziesche
- Department of Medicine, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Hsu W, Kerppola TK, Chen PL, Curran T, Chen-Kiang S. Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region. Mol Cell Biol 1994; 14:268-76. [PMID: 8264594 PMCID: PMC358376 DOI: 10.1128/mcb.14.1.268-276.1994] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NF-IL6 and AP-1 family transcription factors are coordinately induced by interleukin-6 (IL-6) in a cell-type-specific manner, suggesting that they mediate IL-6 signals in the nucleus. We show that the basic leucine zipper (bZIP) region of NF-IL6 mediates a direct association with the bZIP regions of Fos and Jun in vitro. This interaction does not depend on the presence of their cognate recognition DNA elements or the posttranslational modification of either partner. NF-IL6 homodimers can bind to both NF-IL6 and AP-1 sites, whereas Fos and Jun cannot bind to most NF-IL6 sites. Cross-family association with Fos or with Jun alters the DNA binding specificity of NF-IL6 and reduced its binding to NF-IL6 sites. NF-IL6 isoforms that differ in the site of translation initiation have distinct transcriptional activities. Activation of a reporter gene linked to the NF-IL6 site by NF-IL6 is repressed by Fos and by Jun in transient transfection assays. Thus, association with AP-1 results in repression of transcription activation by NF-IL6. The repression is NF-IL6 site dependent and may have a role in determining the promoter and cell type specificity in IL-6 signaling.
Collapse
Affiliation(s)
- W Hsu
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029
| | | | | | | | | |
Collapse
|
20
|
Interleukin-5 (IL-5) and IL-6 define two molecularly distinct pathways of B-cell differentiation. Mol Cell Biol 1993. [PMID: 8321200 DOI: 10.1128/mcb.13.7.3929] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-5 (IL-5) and IL-6 have both been reported to act as B-cell differentiation factors by stimulating activated B cells to secrete antibody. However, it has not been possible to directly compare the effects of these two lymphokines because of the lack of a suitable B-cell line capable of responding to both. We have identified a clonal, inducible B-cell lymphoma, CH12, that has this property. Both IL-5 and IL-6 can independently stimulate increases in steady-state levels of immunoglobulin and J-chain mRNA and proteins, and they both induce the differentiation of CH12 into high-rate antibody-secreting cells. Nevertheless, there are significant differences in the activities of these two lymphokines. First, while IL-6 acts only as a differentiation factor, IL-5 also augments the proliferation of CH12 cells. Second, the differentiation stimulated by IL-5 but not by IL-6 is partially inhibited by IL-4. Inhibition of IL-5-induced differentiation was not at the level of IL-5 receptor expression, since IL-4 did not inhibit IL-5-induced proliferation. Third, IL-5 but not IL-6 stimulated increased mouse mammary tumor proviral gene expression in CH12 cells. These results demonstrate that while both IL-5 and IL-6 may act as differentiation factors for B cells, they induce differentiation by using at least partially distinct molecular pathways. Our results also establish that B cells characteristic of a single stage of development can independently respond to IL-4, IL-5, and IL-6.
Collapse
|
21
|
Randall TD, Lund FE, Brewer JW, Aldridge C, Wall R, Corley RB. Interleukin-5 (IL-5) and IL-6 define two molecularly distinct pathways of B-cell differentiation. Mol Cell Biol 1993; 13:3929-36. [PMID: 8321200 PMCID: PMC359931 DOI: 10.1128/mcb.13.7.3929-3936.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Interleukin-5 (IL-5) and IL-6 have both been reported to act as B-cell differentiation factors by stimulating activated B cells to secrete antibody. However, it has not been possible to directly compare the effects of these two lymphokines because of the lack of a suitable B-cell line capable of responding to both. We have identified a clonal, inducible B-cell lymphoma, CH12, that has this property. Both IL-5 and IL-6 can independently stimulate increases in steady-state levels of immunoglobulin and J-chain mRNA and proteins, and they both induce the differentiation of CH12 into high-rate antibody-secreting cells. Nevertheless, there are significant differences in the activities of these two lymphokines. First, while IL-6 acts only as a differentiation factor, IL-5 also augments the proliferation of CH12 cells. Second, the differentiation stimulated by IL-5 but not by IL-6 is partially inhibited by IL-4. Inhibition of IL-5-induced differentiation was not at the level of IL-5 receptor expression, since IL-4 did not inhibit IL-5-induced proliferation. Third, IL-5 but not IL-6 stimulated increased mouse mammary tumor proviral gene expression in CH12 cells. These results demonstrate that while both IL-5 and IL-6 may act as differentiation factors for B cells, they induce differentiation by using at least partially distinct molecular pathways. Our results also establish that B cells characteristic of a single stage of development can independently respond to IL-4, IL-5, and IL-6.
Collapse
Affiliation(s)
- T D Randall
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
22
|
Identification of a novel interleukin-6 response element containing an Ets-binding site and a CRE-like site in the junB promoter. Mol Cell Biol 1993. [PMID: 8386318 DOI: 10.1128/mcb.13.5.3027] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-6 (IL-6) activation of the immediate-early gene junB has been shown to require both a tyrosine kinase and an unknown 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7)-sensitive pathway. Here we report the identification and characterization of an IL-6 immediate-early response element in the junB promoter (designated JRE-IL6) in HepG2 cells. The JRE-IL6 element, located at -149 to -124, contains two DNA motifs, an Ets-binding site (EBS) (CAGGAAGC) and a CRE-like site (TGACGCGA). Functional studies using variously mutated JRE-IL6 elements showed that both motifs were necessary and sufficient for IL-6 response of the promoter. The EBS of the JRE-IL6 element (JEBS) appears to bind a protein in the Ets family or a related protein which could also form a major complex with the EBSs of the murine sarcoma virus long terminal repeat or human T-cell leukemia virus type 1 long terminal repeat. The CRE-like site appears to weakly bind multiple CREB-ATF family proteins. Despite the similarity in the structure between the JRE-IL6 element and the polyomavirus enhancer PyPEA3, composed of an EBS and an AP1-binding site and known to be activated by a variety of oncogene signals, JRE-IL6 could not be activated by activated Ha-Ras, Raf-1, or 12-O-tetradecanoylphorbol-13-acetate. We show that IL-6 activates JRE-IL6 through an H7-sensitive pathway that does not involve protein kinase C, cyclic AMP-dependent kinase, Ca(2+)- or calmodulin-dependent kinases, Ras, Raf-1, or NF-IL6 (C/EBP beta). The combination of JEBS and the CRE-like site appears to form the basis for the selective and efficient response of JRE-IL6 to IL-6 signals, but not to signals generated by activated Ha-Ras, Raf-1, or protein kinase C.
Collapse
|
23
|
Nakajima K, Kusafuka T, Takeda T, Fujitani Y, Nakae K, Hirano T. Identification of a novel interleukin-6 response element containing an Ets-binding site and a CRE-like site in the junB promoter. Mol Cell Biol 1993; 13:3027-41. [PMID: 8386318 PMCID: PMC359695 DOI: 10.1128/mcb.13.5.3027-3041.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interleukin-6 (IL-6) activation of the immediate-early gene junB has been shown to require both a tyrosine kinase and an unknown 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7)-sensitive pathway. Here we report the identification and characterization of an IL-6 immediate-early response element in the junB promoter (designated JRE-IL6) in HepG2 cells. The JRE-IL6 element, located at -149 to -124, contains two DNA motifs, an Ets-binding site (EBS) (CAGGAAGC) and a CRE-like site (TGACGCGA). Functional studies using variously mutated JRE-IL6 elements showed that both motifs were necessary and sufficient for IL-6 response of the promoter. The EBS of the JRE-IL6 element (JEBS) appears to bind a protein in the Ets family or a related protein which could also form a major complex with the EBSs of the murine sarcoma virus long terminal repeat or human T-cell leukemia virus type 1 long terminal repeat. The CRE-like site appears to weakly bind multiple CREB-ATF family proteins. Despite the similarity in the structure between the JRE-IL6 element and the polyomavirus enhancer PyPEA3, composed of an EBS and an AP1-binding site and known to be activated by a variety of oncogene signals, JRE-IL6 could not be activated by activated Ha-Ras, Raf-1, or 12-O-tetradecanoylphorbol-13-acetate. We show that IL-6 activates JRE-IL6 through an H7-sensitive pathway that does not involve protein kinase C, cyclic AMP-dependent kinase, Ca(2+)- or calmodulin-dependent kinases, Ras, Raf-1, or NF-IL6 (C/EBP beta). The combination of JEBS and the CRE-like site appears to form the basis for the selective and efficient response of JRE-IL6 to IL-6 signals, but not to signals generated by activated Ha-Ras, Raf-1, or protein kinase C.
Collapse
Affiliation(s)
- K Nakajima
- Division of Molecular Oncology, Osaka University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Convergent regulation of NF-IL6 and Oct-1 synthesis by interleukin-6 and retinoic acid signaling in embryonal carcinoma cells. Mol Cell Biol 1993. [PMID: 8455626 DOI: 10.1128/mcb.13.4.2515] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear signaling by the pleiotropic cytokine interleukin-6 (IL-6) has been investigated in human embryonal carcinoma cells and T cells. We show that Oct-1, a ubiquitously expressed octamer-binding protein known to be regulated posttranslationally, can also be regulated at the levels of mRNA and protein synthesis by IL-6 and by retinoic acid (RA) in human embryonal carcinoma cells. NF-IL6, an IL-6-inducible transcription factor of the C/EBP family, can confer this regulation and is itself regulated by both signals. The abundance and the molar ratios of the three forms of NF-IL6, corresponding to peptides initiated in frame from different AUGs of the same NF-IL6 mRNA species, are regulated by IL-6 and by RA. These results suggest that the two signal transduction pathways overlap in human embryonal carcinoma cells and that Oct-1 may be downstream of NF-IL6 in the shared regulatory cascade. Enhanced Oct-1 synthesis correlates with one of the functions of Oct-1, i.e., stimulation of adenovirus DNA replication. This provides an example of a possible functional consequence of IL-6 and RA signaling that is mediated by NF-IL6 and Oct-1 regulation.
Collapse
|
25
|
Hsu W, Chen-Kiang S. Convergent regulation of NF-IL6 and Oct-1 synthesis by interleukin-6 and retinoic acid signaling in embryonal carcinoma cells. Mol Cell Biol 1993; 13:2515-23. [PMID: 8455626 PMCID: PMC359577 DOI: 10.1128/mcb.13.4.2515-2523.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nuclear signaling by the pleiotropic cytokine interleukin-6 (IL-6) has been investigated in human embryonal carcinoma cells and T cells. We show that Oct-1, a ubiquitously expressed octamer-binding protein known to be regulated posttranslationally, can also be regulated at the levels of mRNA and protein synthesis by IL-6 and by retinoic acid (RA) in human embryonal carcinoma cells. NF-IL6, an IL-6-inducible transcription factor of the C/EBP family, can confer this regulation and is itself regulated by both signals. The abundance and the molar ratios of the three forms of NF-IL6, corresponding to peptides initiated in frame from different AUGs of the same NF-IL6 mRNA species, are regulated by IL-6 and by RA. These results suggest that the two signal transduction pathways overlap in human embryonal carcinoma cells and that Oct-1 may be downstream of NF-IL6 in the shared regulatory cascade. Enhanced Oct-1 synthesis correlates with one of the functions of Oct-1, i.e., stimulation of adenovirus DNA replication. This provides an example of a possible functional consequence of IL-6 and RA signaling that is mediated by NF-IL6 and Oct-1 regulation.
Collapse
Affiliation(s)
- W Hsu
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
26
|
Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 1993. [PMID: 7678052 DOI: 10.1128/mcb.13.1.276] [Citation(s) in RCA: 339] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes.
Collapse
|
27
|
Ramji DP, Vitelli A, Tronche F, Cortese R, Ciliberto G. The two C/EBP isoforms, IL-6DBP/NF-IL6 and C/EBP delta/NF-IL6 beta, are induced by IL-6 to promote acute phase gene transcription via different mechanisms. Nucleic Acids Res 1993; 21:289-94. [PMID: 7680115 PMCID: PMC309105 DOI: 10.1093/nar/21.2.289] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The promoter regions of three IL-6 inducible genes, hemopexin (Hpx), haptoglobin (Hp) and C-reactive protein (CRP) contain cis-acting IL-6 responsive elements (IL-6REs) which are necessary and sufficient to induce IL-6 transcription activation. Transcription factors of the C/EBP family interact with IL-6REs. Among these, IL-6DBP/NF-IL6 plays a key role in IL-6 signal transduction because its trans-activation potential is induced by IL-6 in the human hepatoma cell line Hep3B. We show here that a different C/EBP-related factor, C/EBP delta/NF-IL6 beta, is the major IL-6 induced protein interacting with IL-6REs in the nuclei of Hep3B cells. In contrast to IL-6DBP/NF-IL6, whose activity in Hep3B cells is modulated by IL-6 via a post-translational mechanism, C/EBP delta/NF-IL6 beta is transcriptionally induced by IL-6. Another contrasting feature is that the C/EBP delta cDNA transfected in Hep3B cells activates transcription from an IL-6RE synthetic promoter in a constitutive manner which is not further enhanced by IL-6. Therefore, in Hep3B cells, two distinct members of the C/EBP family are recruited in the IL-6 signal transduction pathway via different mechanisms.
Collapse
Affiliation(s)
- D P Ramji
- Istituto di Ricerche di Biologia Molecolare (IRBM) P. Angeletti, Pomezia, Rome, Italy
| | | | | | | | | |
Collapse
|
28
|
Wegenka UM, Buschmann J, Lütticken C, Heinrich PC, Horn F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 1993; 13:276-88. [PMID: 7678052 PMCID: PMC358907 DOI: 10.1128/mcb.13.1.276-288.1993] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes.
Collapse
Affiliation(s)
- U M Wegenka
- Institute for Biochemistry, RWTH Aachen, Germany
| | | | | | | | | |
Collapse
|
29
|
Nesbitt JE, Fuller GM. Differential regulation of interleukin-6 receptor and gp130 gene expression in rat hepatocytes. Mol Biol Cell 1992; 3:103-12. [PMID: 1550952 PMCID: PMC275506 DOI: 10.1091/mbc.3.1.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interleukin-6 (IL-6) relays an important signal to hepatocytes during the early stages of an acute inflammatory response, causing an alteration in the expression of several major defense proteins. Additional regulation of this signal could occur either by altering the number of IL-6 receptors (IL-6-R) or of the signal transducing protein, gp130. We employed ribonuclease protection assays to measure the expression of IL-6-R and gp130 mRNA in primary rat hepatocytes in response to IL-6, interleukin-1, dexamethasone, and combinations thereof. Dexamethasone increases receptor mRNA levels 2.7-fold above controls but has no detectable effect on that of gp130. Such treatment increased surface expression of IL-6-R from 600 receptors per cell to greater than 6000, without a change in Kd (2.5-4.6 x 10(-10) M). In contrast to the stimulatory effect of the steroid signal, the inflammatory cytokines, individually and together, down-modulated both the mRNA and the cell surface expression of IL-6-R. These findings demonstrate for the first time that a sensitive control system exists between inflammatory mediators and IL-6-R.
Collapse
Affiliation(s)
- J E Nesbitt
- Department of Cell Biology, University of Alabama, Birmingham 35294-0005
| | | |
Collapse
|
30
|
Leukemia inhibitory factor and interleukin-6 trigger the same immediate early response, including tyrosine phosphorylation, upon induction of myeloid leukemia differentiation. Mol Cell Biol 1991. [PMID: 1908551 DOI: 10.1128/mcb.11.9.4371] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), two multifunctional cytokines lacking structural homology and binding to distinct receptors, share interesting functional similarities, which include induction of hematopoietic differentiation in normal and myeloid leukemia cells, induction of neuronal cell differentiation, and stimulation of acute-phase protein synthesis in hepatocytes. Structural information on the LIF receptor is not yet available, whereas recent cloning of the IL-6 receptor has shown it to be bipartite, with a signal-transducing subunit that lacks sequence homology to known protein kinases and produces second messengers of unknown nature. The molecular nature of the mechanisms which LIF and IL-6 use to induce cell differentiation is not known. To address this issue, we took advantage of a clone of M1 myeloblastic leukemia cells capable of being induced for terminal differentiation by both LIF and IL-6 directly activate the same set of immediate early response genes upon induction of M1 myeloid differentiation. At least two mechanisms of gene activation, one transcriptional and the other posttranscriptional, are shown to be involved. It is also shown that the LIF and IL-6 immediate early response, at suboptimal cytokine concentrations, is additive. Using a variety of protein kinase activators and inhibitors, we have shown that the intracellular signalling pathways for both LIF and IL-6 are distinct from those of known second messengers and involve protein phosphorylation, notably tyrosine phosphorylation of a 160-kDa protein, as an essential step(s) in the immediate early activation of MyD gene expression. These observations indicate that the functional similarities of LIF and IL-6 as inducers of cell differentiation prevail at the level of the complex differentiation immediate early response and implicate common mechanisms of signal transduction for LIF- and IL-6-induced differentiation.
Collapse
|
31
|
Lord KA, Abdollahi A, Thomas SM, DeMarco M, Brugge JS, Hoffman-Liebermann B, Liebermann DA. Leukemia inhibitory factor and interleukin-6 trigger the same immediate early response, including tyrosine phosphorylation, upon induction of myeloid leukemia differentiation. Mol Cell Biol 1991; 11:4371-9. [PMID: 1908551 PMCID: PMC361299 DOI: 10.1128/mcb.11.9.4371-4379.1991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), two multifunctional cytokines lacking structural homology and binding to distinct receptors, share interesting functional similarities, which include induction of hematopoietic differentiation in normal and myeloid leukemia cells, induction of neuronal cell differentiation, and stimulation of acute-phase protein synthesis in hepatocytes. Structural information on the LIF receptor is not yet available, whereas recent cloning of the IL-6 receptor has shown it to be bipartite, with a signal-transducing subunit that lacks sequence homology to known protein kinases and produces second messengers of unknown nature. The molecular nature of the mechanisms which LIF and IL-6 use to induce cell differentiation is not known. To address this issue, we took advantage of a clone of M1 myeloblastic leukemia cells capable of being induced for terminal differentiation by both LIF and IL-6 directly activate the same set of immediate early response genes upon induction of M1 myeloid differentiation. At least two mechanisms of gene activation, one transcriptional and the other posttranscriptional, are shown to be involved. It is also shown that the LIF and IL-6 immediate early response, at suboptimal cytokine concentrations, is additive. Using a variety of protein kinase activators and inhibitors, we have shown that the intracellular signalling pathways for both LIF and IL-6 are distinct from those of known second messengers and involve protein phosphorylation, notably tyrosine phosphorylation of a 160-kDa protein, as an essential step(s) in the immediate early activation of MyD gene expression. These observations indicate that the functional similarities of LIF and IL-6 as inducers of cell differentiation prevail at the level of the complex differentiation immediate early response and implicate common mechanisms of signal transduction for LIF- and IL-6-induced differentiation.
Collapse
Affiliation(s)
- K A Lord
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, Philadelphia, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
32
|
Spergel JM, Chen-Kiang S. Interleukin 6 enhances a cellular activity that functionally substitutes for E1A protein in transactivation. Proc Natl Acad Sci U S A 1991; 88:6472-6. [PMID: 1830663 PMCID: PMC52107 DOI: 10.1073/pnas.88.15.6472] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An interleukin 6 (IL-6)-regulated cellular activity in HepG2 cells is found to functionally substitute for the transcriptional transactivator product of the adenovirus transforming gene E1A in transactivating E1A-dependent and E1A-responsive viral early genes. Mutant viruses deficient in E1A expression replicate in HepG2 cells. Induction with IL-6 leads to significant enhancement of synthesis of viral early E1B and E2ae mRNAs by greater than 30-fold and increases viral replication to the wild-type levels. The E1A-substituting activity activates E1A-responsive promoters in transient transfection, and this transcriptional activity is regulated by IL-6 induction. Formation of distinct protein-promoter complexes by binding of proteins in nuclear extracts prepared from HepG2 cells to the E1A-dependent E2ae promoter further supports the possibility that this activity may be a nuclear component in the IL-6 signal transduction pathway.
Collapse
MESH Headings
- Adenovirus Early Proteins
- Adenoviruses, Human/genetics
- Base Sequence
- Cell Line
- Cell Nucleus/physiology
- DNA Replication
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Fetus
- Genes, Viral
- HeLa Cells/physiology
- Humans
- Interleukin-6/pharmacology
- Liver/physiology
- Molecular Sequence Data
- Oligonucleotide Probes
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Promoter Regions, Genetic
- Restriction Mapping
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- J M Spergel
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|