1
|
Abstract
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.
Collapse
Affiliation(s)
- Ivana Nikić‐Spiegel
- Werner Reichardt Centre for Integrative NeuroscienceUniversity of TübingenOtfried-Müller-Strasse 2572076TübingenGermany
| |
Collapse
|
2
|
Roy G, Reier J, Garcia A, Martin T, Rice M, Wang J, Prophet M, Christie R, Dall’Acqua W, Ahuja S, Bowen MA, Marelli M. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. MAbs 2020; 12:1684749. [PMID: 31775561 PMCID: PMC6927762 DOI: 10.1080/19420862.2019.1684749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
The ability to genetically encode non-natural amino acids (nnAAs) into proteins offers an expanded tool set for protein engineering. nnAAs containing unique functional moieties have enabled the study of post-translational modifications, protein interactions, and protein folding. In addition, nnAAs have been developed that enable a variety of biorthogonal conjugation chemistries that allow precise and efficient protein conjugations. These are being studied to create the next generation of antibody-drug conjugates with improved efficacy, potency, and stability for the treatment of cancer. However, the efficiency of nnAA incorporation, and the productive yields of cell-based expression systems, have limited the utility and widespread use of this technology. We developed a process to isolate stable cell lines expressing a pyrrolysyl-tRNA synthetase/tRNApyl pair capable of efficient nnAA incorporation. Two different platform cell lines generated by these methods were used to produce IgG-expressing cell lines with normalized antibody titers of 3 g/L using continuous perfusion. We show that the antibodies produced by these platform cells contain the nnAA functionality that enables facile conjugations. Characterization of these highly active and robust platform hosts identified key parameters that affect nnAA incorporation efficiency. These highly efficient host platforms may help overcome the expression challenges that have impeded the developability of this technology for manufacturing proteins with nnAAs and represents an important step in expanding its utility.
Collapse
Affiliation(s)
- Gargi Roy
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jason Reier
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Andrew Garcia
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - Tom Martin
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - Megan Rice
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jihong Wang
- Analytical Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Meagan Prophet
- Analytical Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Ronald Christie
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - William Dall’Acqua
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - Marcello Marelli
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
3
|
Blanchet S, Cornu D, Argentini M, Namy O. New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 2014; 42:10061-72. [PMID: 25056309 PMCID: PMC4150775 DOI: 10.1093/nar/gku663] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stop codon readthrough may be promoted by the nucleotide environment or drugs. In such cases, ribosomes incorporate a natural suppressor tRNA at the stop codon, leading to the continuation of translation in the same reading frame until the next stop codon and resulting in the expression of a protein with a new potential function. However, the identity of the natural suppressor tRNAs involved in stop codon readthrough remains unclear, precluding identification of the amino acids incorporated at the stop position. We established an in vivo reporter system for identifying the amino acids incorporated at the stop codon, by mass spectrometry in the yeast Saccharomyces cerevisiae. We found that glutamine, tyrosine and lysine were inserted at UAA and UAG codons, whereas tryptophan, cysteine and arginine were inserted at UGA codon. The 5′ nucleotide context of the stop codon had no impact on the identity or proportion of amino acids incorporated by readthrough. We also found that two different glutamine tRNAGln were used to insert glutamine at UAA and UAG codons. This work constitutes the first systematic analysis of the amino acids incorporated at stop codons, providing important new insights into the decoding rules used by the ribosome to read the genetic code.
Collapse
Affiliation(s)
- Sandra Blanchet
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621, 91400 Orsay, France
| | - David Cornu
- CNRS, Centre de Recherche de Gif, FRC3115, Imagif, 91198 Gif-sur-Yvette Cedex, France
| | - Manuela Argentini
- CNRS, Centre de Recherche de Gif, FRC3115, Imagif, 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Namy
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621, 91400 Orsay, France CNRS, 91400 Orsay, France
| |
Collapse
|
4
|
Ripmaster TL, Shiba K, Schimmel P. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc Natl Acad Sci U S A 1995; 92:4932-6. [PMID: 7761427 PMCID: PMC41821 DOI: 10.1073/pnas.92.11.4932] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Because of variations in tRNA sequences in evolution, tRNA synthetases either do not acylate their cognate tRNAs from other organisms or execute misacylations which can be deleterious in vivo. We report here the cloning and primary sequence of a 958-aa Saccharomyces cerevisiae alanyl-tRNA synthetase. The enzyme is a close homologue of the human and Escherichia coli enzymes, particularly in the region of the primary structure needed for aminoacylation of RNA duplex substrates based on alanine tRNA acceptor stems with a G3.U70 base pair. An ala1 disrupted allele demonstrated that the gene is essential and that, therefore, ALA1 encodes an enzyme required for cytoplasmic protein synthesis. Growth of cells harboring the ala1 disrupted allele was restored by a cDNA clone encoding human alanyl-tRNA synthetase, which is a serum antigen for many polymyositis-afflicted individuals. The human enzyme in extracts from rescued yeast was detected with autoimmune antibodies from a polymyositis patient. We conclude that, in spite of substantial differences between human and yeast tRNA sequences in evolution, strong conservation of the G3.U70 system of recognition is sufficient to yield accurate aminoacylation in vivo across wide species distances.
Collapse
Affiliation(s)
- T L Ripmaster
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
5
|
Schimmel P. An operational RNA code for amino acids and variations in critical nucleotide sequences in evolution. J Mol Evol 1995; 40:531-6. [PMID: 7783226 DOI: 10.1007/bf00166621] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operational RNA code relates specific amino acids to sequences/structures in RNA hairpin helices which reconstruct the seven-base-pair acceptor stems of transfer RNAs. These RNA oligonucleotides are aminoacylated by aminoacyl tRNA synthetases. The specificity and efficiency of aminoacylation are generally determined by three or four nucleotides which are near the site of amino acid attachment. These specificity-determining nucleotides include the so-called "discriminator base" and one or two base pairs within the first four base pairs of the helix. With three examples considered here, nucleotide sequence variations between the eubacterial E. coli tRNA acceptor stems and their human cytoplasmic and mitochondrial counterparts are shown to include changes of some of the nucleotides known to be essential for aminoacylation by the cognate E. coli enzymes. If the general locations of the specificity-determining nucleotides are the same in E. coli and human RNAs, these RNA sequence variations imply a similar covariation in sequences/structures of the E. coli and human tRNA synthetases. These covariations would reflect the integral relationship between the operational RNA code and the design and evolution of tRNA synthetases.
Collapse
Affiliation(s)
- P Schimmel
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| |
Collapse
|
6
|
Meinnel T, Mechulam Y, Fayat G, Blanquet S. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Nucleic Acids Res 1992; 20:4741-6. [PMID: 1408786 PMCID: PMC334226 DOI: 10.1093/nar/20.18.4741] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).
Collapse
Affiliation(s)
- T Meinnel
- Laboratoire de Biochimie, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
7
|
Lee CP, RajBhandary UL. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Proc Natl Acad Sci U S A 1991; 88:11378-82. [PMID: 1763051 PMCID: PMC53138 DOI: 10.1073/pnas.88.24.11378] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We recently described mutants of Escherichia coli initiator tRNA that suppress amber termination codons (UAG) in E. coli. These mutants have changes in the anticodon sequence (CAU----CUA) that allow them to read the amber codon and changes in the acceptor stem that allow them to bind to the ribosomal aminoacyl (A) site. We show here that a subset of these mutants suppress amber codons in Saccharomyces cerevisiae and that they are aminoacylated with tyrosine by yeast extracts. Analysis of a number of mutants as substrates for yeast tyrosyl-tRNA synthetase has led to identification of the C1.G72 base pair and the discriminator base A73, conserved in all eukaryotic cytoplasmic and archaebacterial tyrosine tRNAs, as being important for recognition. Our results suggest that the C1.G72 base pair and the discriminator base, in addition to the anticodon nucleotides previously identified [Bare, L.A. & Uhlenbeck, O.C. (1986) Biochemistry 25, 5825-5830] as important in yeast tyrosyl-tRNA synthetase recognition, may comprise the critical identity determinants in yeast tyrosine tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Base Sequence
- Cloning, Molecular
- Codon/genetics
- Escherichia coli/genetics
- Genes, Bacterial
- Kinetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA Polymerase III/genetics
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Met
- RNA, Transfer, Tyr/genetics
- Saccharomyces cerevisiae/genetics
- Suppression, Genetic
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- C P Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
8
|
Himeno H, Hasegawa T, Asahara H, Tamura K, Shimizu M. Identity determinants of E. coli tryptophan tRNA. Nucleic Acids Res 1991; 19:6379-82. [PMID: 1721699 PMCID: PMC329181 DOI: 10.1093/nar/19.23.6379] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The first base pair of the acceptor stem A1-U72 and the discriminator base G73, as well as the anticodon nucleotides, characterize the tryptophan tRNA in E. coli. To determine the contribution of these nucleotides to the tryptophan acceptor activity, various transcripts of E. coli tryptophan tRNA mutants were constructed. Substitutions of the discriminator base G73, which is conserved within prokaryotic tryptophan tRNAs, impaired aminoacylation with tryptophan. Substitutions of other purine-pyrimidine pairs for A1-U72 revealed that only U72 weakly contributed to recognition by tryptophanyl-tRNA synthetase. The E. coli aspartic acid tRNA transcript introducing the tryptophan anticodon CCA showed almost the same tryptophan charging activity as the tryptophan tRNA transcript possessing a G1-C72 base pair. Only a low activity was detected in the mutant tryptophan tRNA transcript possessing a set of G1-C72 and A73, which is observed in eukaryotic tryptophan tRNAs. These results indicate that the anticodon and G73 are major identity determinants of tryptophan tRNA in E. coli, whereas the A1-U72 base pair is only a weak recognition element.
Collapse
Affiliation(s)
- H Himeno
- Institute of Space and Astronautical Science, Kanagawa, Japan
| | | | | | | | | |
Collapse
|