1
|
Trotter PJ, Juco K, Le HT, Nelson K, Tamayo LI, Nicaud JM, Park YK. Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica. Yeast 2019; 37:103-115. [PMID: 31119792 DOI: 10.1002/yea.3425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 11/12/2022] Open
Abstract
Glutamate dehydrogenases (GDHs) are fundamental to cellular nitrogen and energy balance. Yet little is known about these enzymes in the oleaginous yeast Yarrowia lipolytica. The YALI0F17820g and YALI0E09603g genes, encoding potential GDH enzymes in this organism, were examined. Heterologous expression in gdh-null Saccharomyces cerevisiae and examination of Y. lipolytica strains carrying gene deletions demonstrate that YALI0F17820g (ylGDH1) encodes a NADP-dependent GDH whereas YALI0E09603g (ylGDH2) encodes a NAD-dependent GDH enzyme. The activity encoded by these two genes accounts for all measurable GDH activity in Y. lipolytica. Levels of the two enzyme activities are comparable during logarithmic growth on rich medium, but the NADP-ylGDH1p enzyme activity is most highly expressed in stationary and nitrogen starved cells by threefold to 12-fold. Replacement of ammonia with glutamate causes a decrease in NADP-ylGdh1p activity, whereas NAD-ylGdh2p activity is increased. When glutamate is both carbon and nitrogen sources, the activity of NAD-ylGDH2p becomes dominant up to 18-fold compared with that of NADP-ylGDH1p. Gene deletion followed by growth on different carbon and nitrogen sources shows that NADP-ylGdh1p is required for efficient nitrogen assimilation whereas NAD-ylGdh2p plays a role in nitrogen and carbon utilization from glutamate. Overexpression experiments demonstrate that ylGDH1 and ylGDH2 are not interchangeable. These studies provide a vital basis for future consideration of how these enzymes function to facilitate energy and nitrogen homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- Pamela J Trotter
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Karen Juco
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Ha T Le
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Kjersten Nelson
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Lizeth I Tamayo
- Guehler Biochemistry Research Laboratory, Department of Chemistry, Augustana College, Rock Island, Illinois
| | - Jean-Marc Nicaud
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young-Kyoung Park
- Biologie intégrative du Métabolisme Lipidique, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
2
|
Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:170. [PMID: 30384856 PMCID: PMC6211499 DOI: 10.1186/s12934-018-1018-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.
Collapse
Affiliation(s)
- P. Mara
- Department of Chemistry, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Present Address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - G. S. Fragiadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| | - F. Gkountromichos
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Faculty of Biology, Biocenter, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - D. Alexandraki
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| |
Collapse
|
3
|
Maor U, Sadhasivam S, Zakin V, Prusky D, Sionov E. The effect of ambient pH modulation on ochratoxin A accumulation by Aspergillus carbonarius. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus carbonarius, the main cause of severe post-harvest decay of vine fruit, is considered the major source of ochratoxin A (OTA) contamination of grapes and derived products. The factors inducing OTA accumulation by A. carbonarius and its contribution to pathogenicity remain unclear. Present findings indicate that the production of organic acids, such as D-gluconic acid (GLA) and citric acid, by A. carbonarius in the growth medium or in the decayed fruit tissue was directly related to ambient pH reduction. Under these conditions, induced transcript expression of genes involved in OTA biosynthesis occurred concurrently with mycotoxin accumulation. The high accumulation of OTA during acidification process raised the question of its importance in host-pathogen interactions during the fungal colonisation. Treatment of colonised grapes with sodium bicarbonate reduced accumulation of organic acid and OTA with a concomitant reduction in decay development, suggesting that tissue acidification is a significant factor in A. carbonarius pathogenicity. The present findings suggest that ambient pH is a regulatory signal for induction of mycotoxin production by A. carbonarius under the dynamic nutritional growth conditions occurring in culture. Yet the molecular mechanisms of OTA biosynthesis induction during colonisation of the acidic host environment are still unclear and should be further investigated.
Collapse
Affiliation(s)
- U. Maor
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S. Sadhasivam
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - V. Zakin
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - D. Prusky
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - E. Sionov
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
4
|
Bi F, Barad S, Ment D, Luria N, Dubey A, Casado V, Glam N, Mínguez JD, Espeso EA, Fluhr R, Prusky D. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2016; 17:1178-95. [PMID: 26666972 PMCID: PMC6638356 DOI: 10.1111/mpp.12355] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 05/22/2023]
Abstract
Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens-Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum-secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high-carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host-dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization.
Collapse
Affiliation(s)
- Fangcheng Bi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, and Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Dana Ment
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Neta Luria
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Amit Dubey
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Virginia Casado
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Nofar Glam
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Jose Diaz Mínguez
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (C.I.B.), Madrid, 28040, Spain
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
5
|
Barad S, Espeso EA, Sherman A, Prusky D. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum. MOLECULAR PLANT PATHOLOGY 2016; 17:727-40. [PMID: 26420024 PMCID: PMC6638319 DOI: 10.1111/mpp.12327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin.
Collapse
Affiliation(s)
- Shiri Barad
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (C.I.B.), Madrid, Spain
| | - Amir Sherman
- Genomics Unit, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
6
|
|
7
|
Castellote J, Fraud S, Irlinger F, Swennen D, Fer F, Bonnarme P, Monnet C. Investigation of Geotrichum candidum gene expression during the ripening of Reblochon-type cheese by reverse transcription-quantitative PCR. Int J Food Microbiol 2014; 194:54-61. [PMID: 25461609 DOI: 10.1016/j.ijfoodmicro.2014.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to the development of the typical color, flavor and texture of the final product. In situ measurements of gene expression are increasingly being used to improve our understanding of the microbial flora activity in cheeses. The objective of the present study was to investigate the physiology and metabolic activity of Geotrichum candidum during the ripening of Reblochon-type cheeses by quantifying mRNA transcripts at various ripening times. The expression of 80 genes involved in various functions could be quantified with a correct level of biological repeatability using a set of three stable reference genes. As ripening progresses, a decrease in expression was observed for genes involved in cell wall organization, translation, vesicular mediated transport, and in cytoskeleton constituents and ribosomal protein genes. There was also a decrease in the expression of mitochondrial F1F0 ATP synthase and plasma membrane H(+) ATPase genes. Some genes involved in the catabolism of lactate, acetate and ethanol were expressed to a greater extent at the beginning of ripening. During the second part of ripening, there was an increased expression of genes involved in the transport and catabolism of amino acids, which could be attributed to a change in the energy source. There was also an increase in the expression of genes involved in autophagy and of genes possibly involved in lifespan determination. Quantification of mRNA transcripts may also be used to produce bioindicators relevant for cheesemaking, for example when considering genes encoding enzymes involved in the catabolism of amino acids.
Collapse
Affiliation(s)
- Jessie Castellote
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | | | - Françoise Irlinger
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR1319 Micalis, 78850 Thiverval-Grignon, France; AgroParisTech, UMR1319 Micalis, 78850 Thiverval-Grignon, France
| | - Frédéric Fer
- INRA, UMR1319 Micalis, 78850 Thiverval-Grignon, France; INRA, UMR518 Mathématiques et Informatique Appliquées, 75005 Paris, France
| | - Pascal Bonnarme
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Christophe Monnet
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France; AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France.
| |
Collapse
|
8
|
Sieg AG, Trotter PJ. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase. Microbiol Res 2014; 169:709-16. [PMID: 24629525 DOI: 10.1016/j.micres.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 11/16/2022]
Abstract
In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.
Collapse
Affiliation(s)
- Alex G Sieg
- Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38th Street, Rock Island, IL 61201, United States
| | - Pamela J Trotter
- Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38th Street, Rock Island, IL 61201, United States.
| |
Collapse
|
9
|
Tang Y, Sieg A, Trotter PJ. ¹³C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae. Microbiol Res 2011; 166:521-30. [PMID: 21242068 PMCID: PMC3135716 DOI: 10.1016/j.micres.2010.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/14/2010] [Accepted: 10/24/2010] [Indexed: 11/29/2022]
Abstract
Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ∼4 h. NADP-dependent GDH activity (Gdh1p+Gdh3p) in wild type, gdh2Δ, and gdh3Δ was decreased ∼80% and NAD-dependent activity (Gdh2p) in wild type and gdh3Δ was increased ∼20-fold in YNAceRaf as compared to glucose. Cells carrying the gdh1Δ allele did not divide in YNAceRaf, yet both the NADP-dependent (Gdh3p) and NAD-dependent (Gdh2p) GDH activity was ∼3-fold higher than in glucose. Metabolism of [1,2-(13)C]-acetate and analysis of carbon NMR spectra were used to examine glutamate metabolism. Incorporation of (13)C into glutamate was nearly undetectable in gdh1Δ cells, reflecting a GDH activity at <15% of wild type. Analysis of (13)C-enrichment of glutamate carbons indicates a decreased rate of glutamate biosynthesis from acetate in gdh2Δ and gdh3Δ strains as compared to wild type. Further, the relative complexity of (13)C-isotopomers at early time points was noticeably greater in gdh3Δ as compared to wild type and gdh2Δ cells. These in vivo data show that Gdh1p is the primary GDH enzyme and Gdh2p and Gdh3p play evident roles during aerobic glutamate metabolism.
Collapse
Affiliation(s)
- Yijin Tang
- Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38Street, Rock Island, IL 61201
| | - Alex Sieg
- Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38Street, Rock Island, IL 61201
| | - Pamela J. Trotter
- Guehler Biochemistry Laboratory, Department of Chemistry, Augustana College, 639-38Street, Rock Island, IL 61201
| |
Collapse
|
10
|
Peter GJ, Düring L, Ahmed A. Carbon Catabolite Repression Regulates Amino Acid Permeases in Saccharomyces cerevisiae via the TOR Signaling Pathway. J Biol Chem 2006; 281:5546-52. [PMID: 16407266 DOI: 10.1074/jbc.m513842200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified carbon catabolite repression (CCR) as a regulator of amino acid permeases in Saccharomyces cerevisiae, elucidated the permeases regulated by CCR, and identified the mechanisms involved in amino acid permease regulation by CCR. Transport of l-arginine and l-leucine was increased by approximately 10-25-fold in yeast grown in carbon sources alternate to glucose, indicating regulation by CCR. In wild type yeast the uptake (pmol/10(6) cells/h), in glucose versus galactose medium, of l-[(14)C]arginine was (0.24 +/- 0.04 versus 6.11 +/- 0.42) and l-[(14)C]leucine was (0.30 +/- 0.02 versus 3.60 +/- 0.50). The increase in amino acid uptake was maintained when galactose was replaced with glycerol. Deletion of gap1Delta and agp1Delta from the wild type strain did not alter CCR induced increase in l-leucine uptake; however, deletion of further amino acid permeases reduced the increase in l-leucine uptake in the following manner: 36% (gnp1Delta), 62% (bap2Delta), 83% (Delta(bap2-tat1)). Direct immunofluorescence showed large increases in the expression of Gnp1 and Bap2 proteins when grown in galactose compared with glucose medium. By extending the functional genomic approach to include major nutritional transducers of CCR in yeast, we concluded that SNF/MIG, GCN, or PSK pathways were not involved in the regulation of amino acid permeases by CCR. Strikingly, the deletion of TOR1, which regulates cellular response to changes in nitrogen availability, from the wild type strain abolished the CCR-induced amino acid uptake. Our results provide novel insights into the regulation of yeast amino acid permeases and signaling mechanisms involved in this regulation.
Collapse
Affiliation(s)
- George J Peter
- Institute of Urology and Nephrology, University College London, 67 Riding House Street, London W1W 7EY, United Kingdom
| | | | | |
Collapse
|
11
|
Avendaño A, Riego L, DeLuna A, Aranda C, Romero G, Ishida C, Vázquez-Acevedo M, Rodarte B, Recillas-Targa F, Valenzuela L, Zonszein S, González A. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Mol Microbiol 2005; 57:291-305. [PMID: 15948967 DOI: 10.1111/j.1365-2958.2005.04689.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is accepted that Saccharomyces cerevisiae genome arose from complete duplication of eight ancestral chromosomes; functionally normal ploidy was recovered because of the massive loss of 90% of duplicated genes. There is evidence that indicates that part of this selective conservation of gene pairs is compelling to yeast facultative metabolism. As an example, the duplicated NADP-glutamate dehydrogenase pathway has been maintained because of the differential expression of the paralogous GDH1 and GDH3 genes, and the biochemical specialization of the enzymes they encode. The present work has been aimed to the understanding of the regulatory mechanisms that modulate GDH3 transcriptional activation. Our results show that GDH3 expression is repressed in glucose-grown cultures, as opposed to what has been observed for GDH1, and induced under respiratory conditions, or under stationary phase. Although GDH3 pertains to the nitrogen metabolic network, and its expression is Gln3p-regulated, complete derepression is ultimately determined by the carbon source through the action of the SAGA and SWI/SNF chromatin remodelling complexes. GDH3 carbon-mediated regulation is over-imposed to that exerted by the nitrogen source, highlighting the fact that operation of facultative metabolism requires strict control of enzymes, like Gdh3p, involved in biosynthetic pathways that use tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- Amaranta Avendaño
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kapoor M, Curle CA, Kalia S, Achari Y. Minimal promoter for the NAD+-specific glutamate dehydrogenase gene of Neurospora crassa. Biochem Cell Biol 2002; 80:177-88. [PMID: 11989713 DOI: 10.1139/o01-229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of the NAD+-specific glutamate dehydrogenase (NAD-GDH) gene of Neurospora crassa is subject to catabolite repression. To identify the minimal sequence necessary for promoter function, the 5'-flanking region of the NAD-GDH gene was screened for potential protein-binding sites. Fragments of DNA, containing sequences upstream from the ATG initiation codon, were employed as probes of Southwestern blots of total cellular protein from cells grown in media promoting repression and induction of NAD-GDH. Two polypeptides interacted differentially with a promoter probe; one was present in greater abundance in repressed cells and a higher relative level of the second was witnessed in induced cells. Electrophoretic mobility shift assays with labeled promoter fragments exhibited preferential interaction with proteins in the induced cultures. The upstream sequence containing the putative protein-binding sites was fused with the coding sequence of the green fluorescent protein (GFP). The resulting plasmid was introduced into the microconidia of an albino mutant of N. crassa by electroporation. Stable integration of the plasmid and_expression of GFP in the hyphae and conidia of the transformants were demonstrated by Southern and Western blot analysis and fluorescence microscopy.
Collapse
Affiliation(s)
- M Kapoor
- Department of Biological Sciences, University of Calgary, AB, Canada.
| | | | | | | |
Collapse
|
13
|
Riego L, Avendaño A, DeLuna A, Rodríguez E, González A. GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun 2002; 293:79-85. [PMID: 12054566 DOI: 10.1016/s0006-291x(02)00174-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenase isoenzymes encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. In this work we analyzed GDH1 transcriptional regulation, in order to deepen the studies in regard to its physiological role. Our results indicate that: (i) GDH1 expression is strictly controlled in ethanol-grown cultures, constituting a fine-tuning mechanism that modulates the abundance of Gdh1p monomers under this condition, (ii) GDH1 expression is controlled by transcriptional activators that have been considered as exclusive of either nitrogen (Gln3p and Gcn4p) or carbon metabolism (HAP complex), and (iii) chromatin remodeling complexes play a role in GDH1 expression; ADA2 and ADA3 up-regulated GDH1 expression on ethanol, while that on glucose was ADA3-dependent. SPT3 and SNF2 activated GDH1 expression on either carbon source whereas GCN5 played no role in any condition tested. The above described combinatorial control results in a refined mechanism that coordinates carbon and nitrogen utilization.
Collapse
Affiliation(s)
- Lina Riego
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, México
| | | | | | | | | |
Collapse
|
14
|
DeLuna A, Avendano A, Riego L, Gonzalez A. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 2001; 276:43775-83. [PMID: 11562373 DOI: 10.1074/jbc.m107986200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenases (NADP-GDHs) encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. The GDH2-encoded NAD(+)-dependent glutamate dehydrogenase degrades glutamate producing ammonium and alpha-ketoglutarate. Until very recently, it was considered that only one biosynthetic NADP-GDH was present in S. cerevisiae. This fact hindered understanding the physiological role of each isoenzyme and the mechanisms involved in alpha-ketoglutarate channeling for glutamate biosynthesis. In this study, we purified and characterized the GDH1- and GDH3-encoded NADP-GDHs; they showed different allosteric properties and rates of alpha-ketoglutarate utilization. Analysis of the relative levels of these proteins revealed that the expression of GDH1 and GDH3 is differentially regulated and depends on the nature of the carbon source. Moreover, the physiological study of mutants lacking or overexpressing GDH1 or GDH3 suggested that these genes play nonredundant physiological roles. Our results indicate that the coordinated regulation of GDH1-, GDH3-, and GDH2-encoded enzymes results in glutamate biosynthesis and balanced utilization of alpha-ketoglutarate under fermentative and respiratory conditions. The possible relevance of the duplicated NADP-GDH pathway in the adaptation to facultative metabolism is discussed.
Collapse
Affiliation(s)
- A DeLuna
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México D.F. 04510, México
| | | | | | | |
Collapse
|
15
|
Aon JC, Cortassa S. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Metab Eng 2001; 3:250-64. [PMID: 11461147 DOI: 10.1006/mben.2001.0181] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated whether central nitrogen metabolism may influence the triggering of ethanol fermentation in Saccharomyces cerevisiae strain CEN.PK122 grown in the presence of different N-sources (ammonia, glutamate, or glutamine) under conditions in which the carbon to nitrogen (C : N) ratio was varied. An exhaustive quantitative evaluation of yeast physiology and metabolic behavior through metabolic flux analysis (MFA) was undertaken. It is shown that ethanol fermentation is triggered at dilution rates, D (growth rate), significantly lower (D=0.070 and 0.074 h(-1) for glutamate and glutamine, respectively, and D=0.109 h(-1) for ammonia) under N- than C-limitation (approximately 0.18 h(-1) for all N-sources). A characteristic specific rate of glucose influx, q(Glc), for each N-source at Dc, i.e., just before the onset of respirofermentative metabolism, was determined (approximately 2.0, 1.5, and 2.5, for ammonia, glutamate, and glutamine, respectively). This q(Glc) was independent of the nutritional limitation though dependent on the nature of the N-source. The onset of fermentation occurs when this "threshold q(Glc)" is overcome. The saturation of respiratory activity appears not to be associated with the onset of fermentation since q(O(2)) continued to increase after Dc. It was remarkable that under respirofermentative conditions in C-limited chemostat cultures, the glucose consumed was almost completely fermented with biomass being synthesized from glutamate through gluconeogenesis. The results obtained show that the enzyme activities involved in central nitrogen metabolism do not appear to participate in the control of the overflow in carbon catabolism, which is driven toward ethanol production. The role of nitrogen metabolism in the onset of ethanol fermentation would rather be realized through its involvement in setting the anabolic fluxes directed to nitrogenous macromolecules. It seems that nitrogen-related anabolic fluxes would determine when the threshold glucose consumption rate is achieved after which ethanol fermentation is triggered.
Collapse
Affiliation(s)
- J C Aon
- Instituto Tecnológico de Chascomús (INTECH/CONICET), Instituto de Investigaciones Biotecnológicas (IIB/UNSAM), Casilla de Correo 164, 7130-Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
16
|
Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2000; 2:69-77. [PMID: 10935936 DOI: 10.1006/mben.1999.0140] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol is still one of the most important products originating from the biotechnological industry with respect to both value and amount. In addition to ethanol, a number of byproducts are formed during an anaerobic fermentation of Saccharomyces cerevisiae. One of the most important of these compounds, glycerol, is produced by yeast to reoxidize NADH, formed in synthesis of biomass and secondary fermentation products, to NAD+. The purpose of this study was to evaluate whether a reduced formation of surplus NADH and an increased consumption of ATP in biosynthesis would result in a decreased glycerol yield and an increased ethanol yield in anaerobic cultivations of S. cerevisiae. A yeast strain was constructed in which GLN1, encoding glutamine synthetase, and GLT1, encoding glutamate synthase, were overexpressed, and GDH1, encoding the NADPH-dependent glutamate dehydrogenase, was deleted. Hereby the normal NADPH-consuming synthesis of glutamate from ammonium and 2-oxoglutarate was substituted by a new pathway in which ATP and NADH were consumed. The resulting strain TN19 (gdh1-A1 PGK1p-GLT1 PGK1p-GLN1) had a 10% higher ethanol yield and a 38% lower glycerol yield compared to the wild type in anaerobic batch fermentations. The maximum specific growth rate of strain TN19 was slightly lower than the wild-type value, but earlier results suggest that this can be circumvented by increasing the specific activities of Gln1p and Glt1p even more. Thus, the results verify the proposed concept of increasing the ethanol yield in S. cerevisiae by metabolic engineering of pathways involved in biomass synthesis.
Collapse
Affiliation(s)
- T L Nissen
- Department of Yeast Genetics, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
17
|
ter Schure EG, van Riel NA, Verrips CT. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 2000; 24:67-83. [PMID: 10640599 DOI: 10.1111/j.1574-6976.2000.tb00533.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae is able to use a wide variety of nitrogen sources for growth. Not all nitrogen sources support growth equally well. In order to select the best out of a large diversity of available nitrogen sources, the yeast has developed molecular mechanisms. These mechanisms consist of a sensing mechanism and a regulatory mechanism which includes induction of needed systems, and repression of systems that are not beneficial. The first step in use of most nitrogen sources is its uptake via more or less specific permeases. Hence the first level of regulation is encountered at this level. The next step is the degradation of the nitrogen source to useful building blocks via the nitrogen metabolic pathways. These pathways can be divided into routes that lead to the degradation of the nitrogen source to ammonia and glutamate, and routes that lead to the synthesis of nitrogen containing compounds in which glutamate and glutamine are used as nitrogen donor. Glutamine is synthesized out of ammonia and glutamate. The expression of the specific degradation routes is also regulated depending on the availability of a particular nitrogen source. Ammonia plays a central role as intermediate between degradative and biosynthetic pathways. It not only functions as a metabolite in metabolic reactions but is also involved in regulation of metabolic pathways at several levels. This review describes the central role of ammonia in nitrogen metabolism. This role is illustrated at the level of enzyme activity, translation and transcription.
Collapse
Affiliation(s)
- E G ter Schure
- Unilever Research, Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands.
| | | | | |
Collapse
|
18
|
Dang VD, Bohn C, Bolotin-Fukuhara M, Daignan-Fornier B. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 1996; 178:1842-9. [PMID: 8606156 PMCID: PMC177877 DOI: 10.1128/jb.178.7.1842-1849.1996] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Saccharomyces cerevisiae, carbon and nitrogen metabolisms are connected via the incorporation of ammonia into glutamate; this reaction is catalyzed by the NADP-dependent glutamate dehydrogenase (NADP-GDH) encoded by the GDH1 gene. In this report, we show that the GDH1 gene requires the CCAAT box-binding activator (HAP complex) for optimal expression. This conclusion is based on several lines of evidence: (1) overexpression of GDH1 can correct the growth defect of hap2 and hap3 mutants on ammonium sulfate as a nitrogen source, (ii) Northern (RNA) blot analysis shows that the steady-state level of GDH1 mRNA is strongly lowered in a hap2 mutant, (iii) expression of a GDH1-lacZ fusion is drastically reduced in hap mutants, (iv) NADP-GDH activity is several times lower in the hap mutants compared with that in the isogenic wild-type strain, and finally, (v) site-directed mutagenesis of two consensual HAP binding sites in the GDH1 promoter strongly reduces expression of GDH1 and makes it HAP independent. Expression of GDH1 is also regulated by the carbon source, i.e., expression is higher on lactate than on ethanol, glycerol, or galactose, with the lowest expression being found on glucose. Finally, we show that a hap2 mutation does not affect expression of other genes involved in nitrogen metabolism (GDH2, GLN1, and GLN3 encoding, respectively, the NAD-GDH, glutamine synthetase, and a general activator of several nitrogen catabolic genes). The HAP complex is known to regulate expression of several genes involved in carbon metabolism; its role in the control of GDH1 gene expression, therefore, provides evidence for a cross-pathway regulation between carbon and nitrogen metabolisms.
Collapse
Affiliation(s)
- V D Dang
- Laboratoire de Génétique Moléculaire, Université de Paris-Sud, Orsay cedex, France
| | | | | | | |
Collapse
|
19
|
Ter Schure EG, Silljé HHW, Raeven LJRM, Boonstra J, Verkleij AJ, Verrips CT. Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1101-1108. [PMID: 7773405 DOI: 10.1099/13500872-141-5-1101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Variations in the transcription of nitrogen-regulated genes and in the activities of nitrogen-regulated enzymes of the yeast Saccharomyces cerevisiae were studied by changing the carbon and nitrogen fluxes. S. cerevisiae was grown in continuous culture at various dilution rates (D) under nitrogen limitation with NH4Cl as sole nitrogen source. With an increase in D from 0.05 to 0.29 h-1, both the glucose and the ammonia flux increased sixfold. The activities of the two ammonia-incorporating enzymes, NADPH-dependent glutamate dehydrogenase (NADPH-GDH) and glutamine synthetase (GS), encoded by GDH1 and GLN1, respectively, increased with increasing D, while the activity of the glutamate-degrading enzyme, NAD-dependent glutamate dehydrogenase (NAD-GDH), decreased. Surprisingly, no changes were observed in the transcription of GDH1 and GLN1; however increased D was accompanied by an increase in GAP1 transcription. At the metabolite level, the increase in the glucose and nitrogen flux did not result in changes in the intracellular 2-oxoglutarate, glutamate or glutamine concentrations. It is shown that growth on ammonia alone is not sufficient to cause repression of GAP1 and GLN1 transcription and that the regulation of GAP1 transcription and both NADPH-GDH and GS activity is not an on/off switch, but is gradually modulated in correlation with the ammonia concentration.
Collapse
Affiliation(s)
- Eelko G Ter Schure
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Herman H W Silljé
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Leon J R M Raeven
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes Boonstra
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arie J Verkleij
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - C Theo Verrips
- 2Unilever Research Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
|
21
|
Boles E, Lehnert W, Zimmermann FK. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:469-77. [PMID: 7901008 DOI: 10.1111/j.1432-1033.1993.tb18266.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.
Collapse
Affiliation(s)
- E Boles
- Institut für Mikrobiologie, Technische Hochschule Darmstadt, Germany
| | | | | |
Collapse
|
22
|
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas del C.S.I.C., Facultad de Medicina UAM, Spain
| |
Collapse
|