1
|
Jung JA, Yoon YJ. Development of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents. J Microbiol Biotechnol 2020; 30:1-10. [PMID: 31752059 PMCID: PMC9728173 DOI: 10.4014/jmb.1911.11008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure-activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.
Collapse
Affiliation(s)
- Jin A Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-3277-4082 Fax: +82-2-3277-3419 E-mail:
| |
Collapse
|
2
|
Son YE, Fu C, Jung WH, Oh SH, Kwak JH, Cardenas ME, Heitman J, Park HS. Pbp1-Interacting Protein Mkt1 Regulates Virulence and Sexual Reproduction in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:355. [PMID: 31681631 PMCID: PMC6811503 DOI: 10.3389/fcimb.2019.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
The Mkt1–Pbp1 complex promotes mating-type switching by regulating the translation of HO mRNA in Saccharomyces cerevisiae. Here, we performed in vivo immunoprecipitation assays and mass spectrometry analyses in the human fungal pathogen Cryptococcus neoformans to show that Pbp1, a poly(A)-binding protein-binding protein, interacts with Mkt1 containing a PIN like-domain. Association of Pbp1 with Mkt1 was confirmed by co-immunoprecipitation assays. Results of spot dilution growth assays showed that unlike pbp1 deletion mutant strains, mkt1 deletion mutant strains were not resistant to heat stress compared with wild-type. However, similar to the pbp1 deletion mutant strains, the mkt1 deletion mutants exhibited both, defective dikaryotic hyphal production and reduced pheromone gene (MFα1) expression during mating. In addition, deletion of mkt1 caused attenuated virulence in a murine intranasal inhalation model. Taken together, our findings reveal that Mkt1 plays a crucial role in sexual reproduction and virulence in C. neoformans.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Won-Hee Jung
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Sang-Hun Oh
- School of Life Science, Handong Global University, Pohang, South Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, Pohang, South Korea
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Livi GP. Halcyon days of TOR: Reflections on the multiple independent discovery of the yeast and mammalian TOR proteins. Gene 2019; 692:145-155. [DOI: 10.1016/j.gene.2018.12.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022]
|
4
|
Toral M, Romero M, Rodríguez-Nogales A, Jiménez R, Robles-Vera I, Algieri F, Chueca-Porcuna N, Sánchez M, de la Visitación N, Olivares M, García F, Pérez-Vizcaíno F, Gálvez J, Duarte J. Lactobacillus fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Mol Nutr Food Res 2018; 62:e1800033. [PMID: 29851248 DOI: 10.1002/mnfr.201800033] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The aim is to analyze whether the probiotic Lactobacillus fermentum CECT5716 (LC40) can prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. METHODS AND RESULTS Tacrolimus increases systolic blood pressure (SBP) and impairs endothelium-dependent relaxation to acetylcholine and these effects are partially prevented by LC40. Endothelial dysfunction induced by tacrolimus is related to both increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) and uncoupled endothelial nitric oxide synthase (eNOS)-driven superoxide production and Rho-kinase-mediated eNOS inhibition. LC40 treatment prevents all the aortic changes induced by tacrolimus. LC40 restores the imbalance between T-helper 17 (Th17)/regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and the spleen. Tacrolimus-induced gut dysbiosis, that is, it decreases microbial diversity, increases the Firmicutes/Bacteroidetes (F/B) ratio and decreases acetate- and butyrate-producing bacteria, and these effects are prevented by LC40. Fecal microbiota transplantation (FMT) from LC40-treated mice to control mice prevents the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. CONCLUSION LC40 treatment prevents hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects are associated with a reduction in vascular oxidative stress, mainly through NOX2 downregulation and prevention of eNOS uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Natalia Chueca-Porcuna
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica, Departamento de Investigación BIOSEARCH S.A., 18004, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, 28040, Spain.,Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007, Madrid, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| |
Collapse
|
5
|
Jung WH, Son YE, Oh SH, Fu C, Kim HS, Kwak JH, Cardenas ME, Heitman J, Park HS. Had1 Is Required for Cell Wall Integrity and Fungal Virulence in Cryptococcus neoformans. G3 (BETHESDA, MD.) 2018; 8:643-652. [PMID: 29233914 PMCID: PMC5919746 DOI: 10.1534/g3.117.300444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
Calcineurin modulates environmental stress survival and virulence of the human fungal pathogen Cryptococcus neoformans Previously, we identified 44 putative calcineurin substrates, and proposed that the calcineurin pathway is branched to regulate targets including Crz1, Pbp1, and Puf4 in C. neoformans In this study, we characterized Had1, which is one of the putative calcineurin substrates belonging to the ubiquitously conserved haloacid dehalogenase β-phosphoglucomutase protein superfamily. Growth of the had1∆ mutant was found to be compromised at 38° or higher. In addition, the had1∆ mutant exhibited increased sensitivity to cell wall perturbing agents, including Congo Red and Calcofluor White, and to an endoplasmic reticulum stress inducer dithiothreitol. Virulence studies revealed that the had1 mutation results in attenuated virulence compared to the wild-type strain in a murine inhalation infection model. Genetic epistasis analysis revealed that Had1 and the zinc finger transcription factor Crz1 play roles in parallel pathways that orchestrate stress survival and fungal virulence. Overall, our results demonstrate that Had1 is a key regulator of thermotolerance, cell wall integrity, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Won-Hee Jung
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Hun Oh
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hye Shin Kim
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Silver LL. Are natural products still the best source for antibacterial discovery? The bacterial entry factor. Expert Opin Drug Discov 2013; 3:487-500. [PMID: 23484922 DOI: 10.1517/17460441.3.5.487] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND One of the reasons for the low output of new antibacterial agents from recent discovery efforts has been the reliance on synthetic chemicals in screening for inhibitors of new bacterial targets. As the bulk of antibacterials are natural product-derived, is a return to natural products for screening warranted? OBJECTIVE As bacterial entry is required for inhibition of many targets, this review concentrates on the potential for natural products and compounds from synthetic libraries to enter and be retained in the bacterial cytoplasm. METHODS Papers investigating the physicochemical nature of synthetic libraries, natural products and antibacterials were reviewed; the requirements for entry into the bacterial cytoplasm were delineated. RESULTS/CONCLUSION Until rules for cytoplasmic entry are developed and routinely used for design of synthetic libraries, natural products still provide a rich resource for antibacterial discovery.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 3403 Park Place, Springfield, NJ 07081, USA +1 973 218 1466 ;
| |
Collapse
|
7
|
Rakhit R, Edwards SR, Iwamoto M, Wandless TJ. Evaluation of FKBP and DHFR based destabilizing domains in Saccharomyces cerevisiae. Bioorg Med Chem Lett 2011; 21:4965-8. [PMID: 21741238 PMCID: PMC3156383 DOI: 10.1016/j.bmcl.2011.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 12/19/2022]
Abstract
Two orthogonal destabilizing domains have been developed based on mutants of human FKBP12 as well as bacterial DHFR and these engineered domains have been used to control protein concentration in a variety of contexts in vitro and in vivo. FKBP12 based destabilizing domains cannot be rescued in the yeast Saccharomyces cerevisiae; ecDHFR based destabilizing domains are not degraded as efficiently in S. cerevisiae as in mammalian cells or Plasmodium, but provide a starting point for the development of domains with increased signal-to-noise in S. cerevisiae.
Collapse
Affiliation(s)
- Rishi Rakhit
- Department of Chemical and Systems Biology, Stanford University, CA, United States
| | | | | | | |
Collapse
|
8
|
Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ, Abraham RT. Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:53-71. [PMID: 9552353 DOI: 10.1007/978-1-4615-1809-9_5] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immunosuppressant drug, rapamycin (RAP), is a potent inhibitor of IL-2-dependent T-cell proliferation. The antiproliferative effect of RAP is mediated through the formation of an active complex with its cytosolic receptor protein, FKBP12. The molecular target of the FKBP12.RAP complex is a putative lipid kinase termed the mammalian Target Of Rapamycin (mTOR). This review will discuss recent findings suggesting that mTOR is a novel regulator of G1- to S-phase progression in eukaryotic cells.
Collapse
Affiliation(s)
- G J Wiederrecht
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
9
|
Farcasanu IC, Hirata D, Tsuchiya E, Nishiyama F, Miyakawa T. Protein Phosphatase 2B of Saccharomyces Cerevisiae is Required for Tolerance to Manganese, in Blocking the Entry of ions into the Cells. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20865.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Farcasanu IC, Hirata D, Tsuchiya E, Nishiyama F, Miyakawa T. Protein Phosphatase 2B of Saccharomyces Cerevisiae is Required for Tolerance to Manganese, in Blocking the Entry of ions into the Cells. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.712zz.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 1995; 82:121-30. [PMID: 7606777 DOI: 10.1016/0092-8674(95)90058-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rapamycin-sensitive signaling pathway is required to transduce specific mitogenic signals to the cell cycle machinery responsible for G1 progression. Genetic studies in yeast identified two related genes on this pathway, TOR1 and TOR2, thought to encode novel phosphatidylinositol kinases. We now show that an intact kinase domain is required for the G1 cell cycle functions of both proteins, for the ability of a mutation in a neighboring FKBP12-rapamycin-binding domain of the TOR1 protein to inhibit the growth of yeast cells when overexpressed, and for the essential function of the TOR2 protein. The G1 function of both TOR proteins is sensitive to rapamycin, but the essential function of TOR2 is not. Thus, FKBP12-rapamycin does not appear to inhibit the kinase activity of TOR proteins in a general way; instead, it may interfere selectively with TOR protein binding to or phosphorylation of G1 effectors.
Collapse
Affiliation(s)
- X F Zheng
- Howard Hughes Medical Institute Department of Chemistry, Harvard University Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
12
|
Zav'yalov VP, Denesyuk AI, Lundell J, Korpela T. Some new aspects of molecular mechanisms of cyclosporin A effect on immune response. APMIS 1995; 103:401-15. [PMID: 7546642 DOI: 10.1111/j.1699-0463.1995.tb01125.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A few protein targets were found to display a specific high-affinity interaction with the immunosuppressant cyclosporin A (CsA): cytosolic cyclophilins (CyP)A, B, C, D, E containing from 122 to 174 amino acid residues in a polypeptide chain, and secreted forms of CyP; CyP-40, 40-kDa CsA-binding polypeptide complexed with steroid receptor (SR); CyP-related 150-kDa receptor of natural killer (NK) cells; interleukin 8 (IL-8); actin; a family of molecular chaperones hsp70 and P-glycoprotein (P-GP). All CyPs possess peptidyl-prolyl cis-trans isomerase activity (PPIase) and may serve as ATP-independent molecular chaperone proteins. The CsA-CyP complexes are specific inhibitors of Ca(2+)-and calmodulin-dependent protein phosphatase calcineurin (CaN). The inhibition of CaN blocks the activation of genes of IL-2, IL-2R, IL-4, etc. in T cells. In addition, immunosuppressive and/or antiinflammatory activity of CsA can be executed via CyP-40 and hsp 70 complexed with SR, and following the interaction with CyP-related receptor of NK and with IL-8. CsA binding to CyPC, P-GP and actin may throw light on the biochemical events leading to nephrotoxicity and graft vessel disease, two major side effects produced by CsA. The discovery of the interaction of human immunodeficiency virus type 1 (HIV-1) Gag protein with CyP and effective disruption of this interaction by CsA may be important for our understanding of the pathology caused by this immunosuppressive virus and will inspire therapeutic strategies to nip HIV in the bud. Bacterial immunophilins (ImPs) contribute to the virulence of pathogenic microorganisms. Elucidation of molecular mechanisms of microbial ImPs' action in the pathogenesis of bacterial infections may lead to new strategies for designing antibacterial drugs.
Collapse
Affiliation(s)
- V P Zav'yalov
- Institute of Immunology, Lyubuchany, Moscow Region, Russia
| | | | | | | |
Collapse
|
13
|
Galat A, Metcalfe SM. Peptidylproline cis/trans isomerases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 63:67-118. [PMID: 7538221 DOI: 10.1016/0079-6107(94)00009-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A Galat
- Département d'Ingénierie et d'Etudes des Protéines, D.S.V., C.E.A., C.E. Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
14
|
Eng WK, Faucette L, McLaughlin MM, Cafferkey R, Koltin Y, Morris RA, Young PR, Johnson RK, Livi GP. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene X 1994; 151:61-71. [PMID: 7530227 DOI: 10.1016/0378-1119(94)90633-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
FK506 and cyclosporin A (CsA) are potent immunosuppressive agents that display antifungal activity. They act by blocking a Ca(2+)-dependent signal transduction pathway leading to interleukin-2 transcription. Each drug forms a complex with its cognate cytosolic immunophilin receptor (i.e., FKBP12-FK506 and cyclophilin-CsA) which acts to inhibit the Ca2+/calmodulin-dependent protein phosphatase 2B, or calcineurin (CN). We and others have defined the Saccharomyces cerevisiae FKS1 gene by recessive mutations resulting in 100-1000-fold hypersensitivity to FK506 and CsA (as compared to wild type), but which do not affect sensitivity to a variety of other antifungal drugs. The fks1 mutant also exhibits a slow-growth phenotype that can be partially alleviated by exogenously added Ca2+ [Parent et al., J. Gen. Microbiol. 139 (1993) 2973-2984]. We have cloned FKS1 by complementation of the drug-hypersensitive phenotype. It contains a long open reading frame encoding a novel 1876-amino-acid (215 kDa) protein which shows no similarity to CN or to other protein phosphatases. The FKS1 protein is predicted to contain 10 to 12 transmembrane domains with a structure resembling integral membrane transporter proteins. Genomic disruption experiments indicate that FKS1 encodes a nonessential function; fks1::LEU2 cells exhibit the same growth and recessive drug-hypersensitive phenotypes observed in the original fks1 mutants. Furthermore, the fks1::LEU2 allele is synthetically lethal in combination with disruptions of both of the nonessential genes encoding the alternative forms of the catalytic A subunit of CN (CNA1 and CNA2). These data suggest that FKS1 provides a unique cellular function which, when absent, increases FK506 and CsA sensitivity by making the CNs (or a CN-dependent function) essential.
Collapse
Affiliation(s)
- W K Eng
- Department of Biomolecular Disovery, SmithKline Beecham Pharmaceuticals King of Prussia, PA 19406
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Turi T, Webster P, Rose J. Brefeldin A sensitivity and resistance in Schizosaccharomyces pombe. Isolation of multiple genes conferring resistance. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51072-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
|
17
|
|
18
|
High K, Joiner K, Handschumacher R. Isolation, cDNA sequences, and biochemical characterization of the major cyclosporin-binding proteins of Toxoplasma gondii. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37083-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Affiliation(s)
- C Hemenway
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
20
|
Kirsch DR. Development of improved cell-based assays and screens in Saccharomyces through the combination of molecular and classical genetics. Curr Opin Biotechnol 1993; 4:543-52. [PMID: 7764204 DOI: 10.1016/0958-1669(93)90075-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traditionally, the discovery of pharmaceutical and agrochemical products has largely depended on mass screening. Over the years, screen design and screening programs have evolved in terms of the sensitivity with which active material can be identified, the number of samples that can be tested, and the types of molecular targets and cellular functions that can be conveniently assayed. More recently, screens with desirable properties have been developed for a great variety of molecular targets through the exploitation of Saccharomyces molecular biology and genetics. Recent advances have enabled researchers to develop yeast-based screens for agents acting on a number of new therapeutic targets: G-protein linked receptors, cytoplasmic receptors, ion (potassium) channels, novel fungal cell wall enzymes, fungal sterol biosynthesis enzymes, antiviral targets, immunosuppressive targets, cyclic nucleotide phosphodiesterase, oncogenes and the multiple drug resistance (MDR) protein.
Collapse
Affiliation(s)
- D R Kirsch
- American Cynamid, Molecular Genetic Screen Design, Princeton, New Jersey 08543-0400
| |
Collapse
|
21
|
Abstract
Two sequence-unrelated families of proteins possess peptidylproline cis-trans-isomerase activities (PPIase). PPIases are highly sequence conserved and multifunctional proteins which are present in many types of cells with a considerably divergent phylogenetic distribution. On the cellular level, PPIases occur in every compartment, both as free species and anchored to membranes. Diverse posttranslational modifications such as glycosylation, N-terminal modifications and phosphorylation constitute the additional functional features of PPIases. Folding, assembly and trafficking of proteins in the cellular milieu are regulated by PPIases. These enzymes accelerate the rate of in-vitro protein folding and they have the ability to bind proteins and act as chaperones. Some PPIases are coregulatory subunits of molecular complexes including heat-shock proteins, glucocorticoid receptors and ion channels. Secreted forms of PPIases are inflammatory and chemotactic agents for monocytes, eosinophils and basophils. The potent and clinically useful immunosuppressants CsA, FK506 or rapamycin bind with high affinities to PPIases (immunophilins). The binding criterion allows us to sort the PPIases for the following two superfamilies of proteins: the cyclophilins (CsA-binding proteins) and the FKBP (FK506/rapamycin-binding proteins). Although none of PPIases appeared to be essential for the viability of haploid yeast cells some of the immunophilin/immunosuppressant complexes are toxic both for yeast and mammalian cells. At least seven unlinked genes of cyclophilins and four unlinked genes of FKBP exist in human genomic DNA. Selected immunophilins regulate two different signalling pathways in lymphoid cells, namely the secretion of growth factors by stimulated T-cells and interleukin-2-induced T-cell proliferation. Moreover, selected FKBP mediate the cytotoxic effects of rapamycin in non-lymphoid cells. Accounts of the discovery of PPIases (immunophilins) and their functions are given in this review. A larger spectrum of proteins is analysed in relation to various signal-transduction pathways in lymphoid cells which involve immunophilins or their complexes with the immunosuppressants CsA, FK506 or rapamycin.
Collapse
Affiliation(s)
- A Galat
- Département d'Ingénierie et d'Etudes des Protéines, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Abstract
The mechanisms of action of the immunosuppressive drugs cyclosporin A (CsA), FK506 and rapamycin are strikingly conserved from yeast to human T cells. Recent results obtained with yeast corroborate calcineurin as the target of CsA-cyclophilin and FK506-FKBP complexes, and reveal a phosphatidylinositol 3-kinase homologue as the target of the rapamycin-FKBP complex.
Collapse
Affiliation(s)
- J Kunz
- Department of Biochemistry, University of Basel, Switzerland
| | | |
Collapse
|
23
|
Barthelmess IB, Tropschug M. FK506-binding protein of Neurospora crassa (NcFKBP) mediates sensitivity to the immunosuppressant FK506; resistant mutants identify two loci. Curr Genet 1993; 23:54-8. [PMID: 7679056 DOI: 10.1007/bf00336750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Growth of Neurospora crassa wild-type is inhibited by micromolar concentrations of the immunosuppressive macrolide FK506. Spontaneous and induced mutations that confer resistance to FK506 identified two loci, fkr-1 and fkr-2. They map on the right arm of linkage group V on either side of inl with fkr-1 being centromere proximal. Allele fb (fkr-2) lacks immunodetectable N. crassa FK506-binding protein (NcFKBP). This demonstrates that the sensitivity of N. crassa towards FK506 is mediated by NcFKBP. FK506-binding proteins have been shown to be highly conserved, i.e., found in all eukaryotic cells tested, and to exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity in vitro. Possible functions for the loci are discussed. Apart from the resistance to FK506 no other mutant phenotype was detected not even in double mutants that lacked NcFKBP as well as cyclophilin. Cyclophilin mediates the cytotoxic effect of the immunosuppressive drug Cyclosporin A and is also characterized by PPIase activity in vitro. Both FK506-resistant alleles studied exhibit incomplete dominance in forced heterokaryons. A mechanism is proposed to explain this dominance especially in view of the NcFKBP-deficient allele, fb.
Collapse
Affiliation(s)
- I B Barthelmess
- Institut für Angewandte Genetik, Universität Hannover, Federal Republic of Germany
| | | |
Collapse
|
24
|
Foor F, Parent SA, Morin N, Dahl AM, Ramadan N, Chrebet G, Bostian KA, Nielsen JB. Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast. Nature 1992; 360:682-4. [PMID: 1281518 DOI: 10.1038/360682a0] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The structurally unrelated immunosuppressants FK506 and cyclosporin A (CsA) act similarly, inhibiting a Ca(2+)-dependent signal required for interleukin-2 transcription and T-cell activation. Each drug binds to its cytosolic receptor, FKBP-12 and cyclophilin, respectively, and the drug-receptor complexes inhibit the Ca2+/calmodulin-dependent protein phosphatase, calcineurin. In yeast, calcineurin has been implicated in recovery from alpha-mating factor arrest. Here we show that FK506 bound to yeast FKBP-12 appears to form a complex with yeast calcineurin. Moreover, recovery from mating factor arrest is highly sensitive to FK506 or CsA, and this sensitivity requires the presence of FKBP-12 or cyclophilin, respectively. These results define a key physiological target of an FK506- and CsA-sensitive signal pathway in yeast, suggest a high degree of mechanistic conservation with mammalian cells, and indicate that further examination of the yeast system should provide insight into the same process in T cells.
Collapse
Affiliation(s)
- F Foor
- Merck Research Laboratories, Rahway, New Jersey 07065-0900
| | | | | | | | | | | | | | | |
Collapse
|