1
|
Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br J Nutr 2017; 117:21-29. [PMID: 28093090 DOI: 10.1017/s0007114516004591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.
Collapse
|
2
|
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 2016; 7:12397. [PMID: 27484840 PMCID: PMC4976255 DOI: 10.1038/ncomms12397] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.
Collapse
|
3
|
Sabillo A, Ramirez J, Domingo CR. Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin Cell Dev Biol 2016; 51:80-91. [PMID: 26853935 DOI: 10.1016/j.semcdb.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Xenopus laevis offers unprecedented access to the intricacies of muscle development. The large, robust embryos make it ideal for manipulations at both the tissue and molecular level. In particular, this model system can be used to fate map early muscle progenitors, visualize cell behaviors associated with somitogenesis, and examine the role of signaling pathways that underlie induction, specification, and differentiation of muscle. Several characteristics that are unique to X. laevis include myogenic waves with distinct gene expression profiles and the late formation of dermomyotome and sclerotome. Furthermore, myogenesis in the metamorphosing frog is biphasic, facilitating regeneration studies. In this review, we describe the morphogenetic movements that shape the somites and discuss signaling and transcriptional regulation during muscle development and regeneration. With recent advances in gene editing tools, X. laevis remains a premier model organism for dissecting the complex mechanisms underlying the specification, cell behaviors, and formation of the musculature system.
Collapse
Affiliation(s)
- Armbien Sabillo
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Julio Ramirez
- Department of Biology, San Francisco State University, CA 94132, USA
| | - Carmen R Domingo
- Department of Biology, San Francisco State University, CA 94132, USA.
| |
Collapse
|
4
|
Takegahara Y, Yamanouchi K, Nakamura K, Nakano SI, Nishihara M. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner. Exp Cell Res 2014; 324:105-14. [DOI: 10.1016/j.yexcr.2014.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
|
5
|
Effects of 28 days of resistance exercise while consuming commercially available pre- and post-workout supplements, NO-Shotgun® and NO-Synthesize® on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers in males. Nutr Metab (Lond) 2011; 8:78. [PMID: 22050827 PMCID: PMC3226541 DOI: 10.1186/1743-7075-8-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
Purpose The effects of 28 days of heavy resistance training while ingesting the pre- and post-workout supplements, NO-Shotgun® and NO-Synthesize® were determined on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers. Methods Nineteen non-resistance-trained males participated in a resistance training program 4 times/week for 28 days while either ingesting 27 g/day of carbohydrate (CARB) or NO-Shotgun® 30 min pre-exercise and 27 g/day of carbohydrate or NO- Synthesize® 30 min post-exercise (NOSS). Data were analyzed with separate 2 × 2 ANOVA (p < 0.05). Results Total body mass was increased in both groups (p = 0.001), but not different between groups. Fat mass was unchanged with CARB, but NOSS decreased fat mass (p = 0.026). Both groups increased fat-free mass (p = 0.001); however, the increases were greater with NOSS (p = 0.023). NOSS underwent greater increases in upper-body (p = 0.023) and lower-body (p = 0.035) strength than CARB. Myofibrillar protein significantly increased in both groups (p = 0.041), with NOSS being greater than CARB (p = 0.049). All of the MHC isoforms were significantly increased in both groups; however, NOSS was greater than CARB for MHC 1 (p = 0.013) and MHC 2A (p = 0.046). All of the myogenic regulatory factors were significantly increased in both groups; however, NOSS was greater than CARB for Myo-D (p = 0.038) and MRF-4 (p = 0.001). For the whole blood and serum clinical chemistry markers, all variables remained within normal clinical ranges. Conclusions Heavy resistance training for 28 days, with NO-Shotgun® and NO-Synthesize® ingested before and after exercise, respectively, significantly improved body composition and increased muscle mass and performance without abnormally impacting any of the clinical chemistry markers.
Collapse
|
6
|
Zhang Y, Schwartz J, Wang C. Comparative analysis of paired- and homeodomain-specific roles in PAX3-FKHR oncogenesis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2008; 2:370-383. [PMID: 19158934 PMCID: PMC2615594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/21/2008] [Indexed: 05/27/2023]
Abstract
The alveolar rhabdomyosarcoma-associated t(2;13) chromosomal translocation produces an oncogenic fusion transcription factor PAX3-FKHR that combines the N-terminal DNA binding domains (paired domain and homeodomain) of PAX3 with the C-terminal activation domain of FKHR. In the context of PAX3-FKHR, the two DNA binding domains can work either cooperatively or autonomously in regulating gene transcription. The latter is a gain-of-function unique to the fusion protein. The biological activities driven by the individual DNA binding domain remains poorly defined. In this study, we express PAX3-FKHR mutants that contain only a single functional DNA binding domain into C2C12 myoblasts, and measured the in vitro and in vivo behaviors of these cells. We show that only the homeodomain-specific PAX3-FKHR mutant recapitulates the in vitro transformation properties of the wild type fusion protein. However, despite the differential responses in vitro, both the paired domain- and the homeodomain-specific PAX3-FKHR mutants promote tumor development from myoblasts in vivo. Our results suggest an important role for the gain of the paired domain- and the homeodomain-transcription activities in the PAX3-FKHR malignant transformation process.
Collapse
Affiliation(s)
- Youbin Zhang
- Center for Molecular Biology of Oral Diseases, University of Illinois at ChicagoChicago, Illinois
| | - Joel Schwartz
- Department of Oral Medicine and Diagnosis and Department of Pathology, University of Illinois at ChicagoChicago, Illinois
| | - Chiayeng Wang
- Center for Molecular Biology of Oral Diseases, University of Illinois at ChicagoChicago, Illinois
| |
Collapse
|
7
|
Kim JA, Laney C, Curry J, Unguez GA. Expression of myogenic regulatory factors in the muscle-derived electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2008; 211:2172-84. [PMID: 18552307 DOI: 10.1242/jeb.016592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In most groups of electric fish, the current-producing cells of electric organs (EOs) derive from striated muscle fibers but retain some phenotypic characteristics of their precursor muscle cells. Given the role of the MyoD family of myogenic regulatory factors (MRFs) in the transcriptional activation of the muscle program in vertebrates, we examined their expression in the electrocytes of the gymnotiform Sternopygus macrurus. We estimated the number of MRF genes in the S. macrurus genome and our Southern blot analyses revealed a single MyoD, myogenin, myf5 and MRF4 gene. Quantitative RT-PCR showed that muscle and EO transcribe all MRF genes. With the exception of MyoD, the endogenous levels of myogenin, myf5 and MRF4 transcripts in electrocytes were greater than those detected in muscle fibers. These data indicate that MRF expression levels are not sufficient to predict the level to which the muscle program is manifested. Qualitative expression analysis of MRF co-regulators MEF2C, Id1 and Id2 also revealed these genes not to be unique to either muscle or EO, and detected similar expression patterns in the two tissues. Therefore, the partial muscle program of the EO is not associated with a partial expression of MRFs or with apparent distinct levels of some MRF co-factors. In addition, electrical inactivation by spinal cord transection (ST) resulted in the up-regulation of some muscle proteins in electrocytes without an accompanying increase in MRF transcript levels or notable changes in the co-factors MEF2C, Id1 and Id2. These findings suggest that the neural regulation of the skeletal muscle program via MRFs in S. macrurus might differ from that of their mammalian counterparts. Together, these data further our understanding of the molecular processes involved in the plasticity of the vertebrate skeletal muscle program that brings about the muscle-like phenotype of the non-contractile electrogenic cells in S. macrurus.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
8
|
Charbonnier F, Della Gaspara B, Armand AS, Lécolle S, Launay T, Gallien CL, Chanoine C. Specific activation of the acetylcholine receptor subunit genes by MyoD family proteins. J Biol Chem 2003; 278:33169-74. [PMID: 12807909 DOI: 10.1074/jbc.m304744200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whether the myogenic regulatory factors (MRFs) of the MyoD family can discriminate among the muscle gene targets for the proper and reproducible formation of skeletal muscle is a recurrent question. We have previously shown that, in Xenopus laevis, myogenin specifically transactivated muscle structural genes in vivo. In the present study, we used the Xenopus model to examine the role of XMyoD, XMyf5, and XMRF4 for the transactivation of the (nicotinic acetylcholine receptor) nAChR genes in vivo. During early Xenopus development, the expression patterns of nAChR subunit genes proved to be correlated with the expression patterns of the MRFs. We show that XMyf5 specifically induced the expression of the delta-subunit gene in cap animal assays and in endoderm cells of Xenopus embryos but was unable to activate the expression of the gamma-subunit gene. In embryos, overexpression of a dominant-negative XMyf5 variant led to the repression of delta-but not gamma-subunit gene expression. Conversely, XMyoD and XMRF4 activated gamma-subunit gene expression but were unable to activate delta-subunit gene expression. Finally, all MRFs induced expression of the alpha-subunit gene. These findings strengthen the concept that one MRF can specifically control a subset of muscle genes that cannot be activated by the other MRFs.
Collapse
Affiliation(s)
- Frédéric Charbonnier
- UMR 7060 CNRS, Equipe Biologie du développement et de la Différenciation Neuromusculaire, Centre Universitaire des Saints-Pères, Université René Descartes, F-75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Sirri V, Leibovitch MP, Leibovitch SA. Muscle regulatory factor MRF4 activates differentiation in rhabdomyosarcoma RD cells through a positive-acting C-terminal protein domain. Oncogene 2003; 22:5658-66. [PMID: 12944914 DOI: 10.1038/sj.onc.1206690] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) has deregulated proliferation and is blocked in the differentiation program despite Myf-5, MyoD and myogenin expression. Here we show that ectopic expression of MRF4, which is not subject to an autoregulatory pathway but regulated by the other MRFs protein family, induces growth arrest and terminal differentiation in RD cells. Deletion mapping identified a positive-acting C-terminal domain in MRF4 as the mediator of transcriptional activity, revealing a conserved motif with helix III in MyoD previously found to initiate expression of endogenous skeletal muscle genes. By using chimeric MyoD/MRF4 proteins, we observe that the C-terminal motif of MRF4 rescues MyoD activity in RD cells. Moreover, comparative induction of muscle-specific genes following activation of MyoD, through the expression of a constitutively activated MKK6 either in the absence or presence of MRF4, shows that MyoD and MRF4 can differently regulate muscle genes expression. Together, these results demonstrate that the MRF4 C-terminus functions as specification as well as activation domain in tumor cells. They provide a basis to identify gene products necessary for b-HLH-mediated differentiation versus tumor progression.
Collapse
Affiliation(s)
- Valentina Sirri
- Laboratoire de Génétique oncologique, CNRS UMR 8125, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | | | | |
Collapse
|
10
|
Pownall ME, Gustafsson MK, Emerson CP. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 2003; 18:747-83. [PMID: 12142270 DOI: 10.1146/annurev.cellbio.18.012502.105758] [Citation(s) in RCA: 428] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Embryological and genetic studies of mouse, bird, zebrafish, and frog embryos are providing new insights into the regulatory functions of the myogenic regulatory factors, MyoD, Myf5, Myogenin, and MRF4, and the transcriptional and signaling mechanisms that control their expression during the specification and differentiation of muscle progenitors. Myf5 and MyoD genes have genetically redundant, but developmentally distinct regulatory functions in the specification and the differentiation of somite and head muscle progenitor lineages. Myogenin and MRF4 have later functions in muscle differentiation, and Pax and Hox genes coordinate the migration and specification of somite progenitors at sites of hypaxial and limb muscle formation in the embryo body. Transcription enhancers that control Myf5 and MyoD activation in muscle progenitors and maintain their expression during muscle differentiation have been identified by transgenic analysis. In epaxial, hypaxial, limb, and head muscle progenitors, Myf5 is controlled by lineage-specific transcription enhancers, providing evidence that multiple mechanisms control progenitor specification at different sites of myogenesis in the embryo. Developmental signaling ligands and their signal transduction effectors function both interactively and independently to control Myf5 and MyoD activation in muscle progenitor lineages, likely through direct regulation of their transcription enhancers. Future investigations of the signaling and transcriptional mechanisms that control Myf5 and MyoD in the muscle progenitor lineages of different vertebrate embryos can be expected to provide a detailed understanding of the developmental and evolutionary mechanisms for anatomical muscles formation in vertebrates. This knowledge will be a foundation for development of stem cell therapies to repair diseased and damaged muscles.
Collapse
|
11
|
Affiliation(s)
- Petra Neuhaus
- Martin-Luther-Universität Halle-Wittenberg, Medizinische Fakultät, Institut für physiologische Chemie, Hollystr. 1, 06097 Halle/Saale, Germany
| | | |
Collapse
|
12
|
Rogerson PJ, Jamali M, Skerjanc IS. The C-terminus of myogenin, but not MyoD, targets upregulation of MEF2C expression. FEBS Lett 2002; 524:134-8. [PMID: 12135755 DOI: 10.1016/s0014-5793(02)03024-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The myogenic regulatory family of basic helix-loop-helix transcription factors, including MyoD and myogenin, functions cooperatively with the myocyte-specific enhancer binding factor 2 (MEF2) family during skeletal myogenesis. Previously, using aggregated P19 cells, we have shown that myogenin upregulates MEF2C expression while MyoD does not [Ridgeway et al., J. Biol. Chem. 275 (2000) 41-46]. In order to identify the domain of myogenin responsible for activating MEF2C expression, a series of chimeras of MyoD and myogenin were generated. Only chimeras containing the C-terminal region of myogenin were able to activate MEF2C in aggregated P19 cells, suggesting that the C-terminus of myogenin is responsible for the regulation of specific target genes.
Collapse
Affiliation(s)
- Parker J Rogerson
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
13
|
Chapter 1 The myogenic regulatory factors. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1569-1799(02)11001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Abstract
Skeletal muscles in vertebrates develop from somites as the result of patterning and cell type specification events. Here, we review the current knowledge of genes and signals implicated in these processes. We discuss in particular the role of the myogenic determination genes as deduced from targeted gene disruptions in mice and how their expression may be controlled. We also refer to other transcription factors which collaborate with the myogenic regulators in positive or negative ways to control myogenesis. Moreover, we review experiments that demonstrate the influence of tissues surrounding the somites on the process of muscle formation and provide model views on the underlying mechanisms. Finally, we present recent evidence on genes that play a role in regeneration of muscle in adult organisms.
Collapse
Affiliation(s)
- H H Arnold
- Department of Cell and Molecular Biology, Technical University of Braunschweig, Germany
| | | |
Collapse
|
15
|
Ridgeway AG, Wilton S, Skerjanc IS. Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells. J Biol Chem 2000; 275:41-6. [PMID: 10617583 DOI: 10.1074/jbc.275.1.41] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two families of transcription factors, myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2), function synergistically to regulate myogenesis. In addition to activating structural muscle-specific genes, MRFs and MEF2 activate each other's expression. The MRF, myogenin, can activate MEF2 DNA binding activity when transfected into fibroblasts and, in turn, the myogenin promoter contains essential MEF2 DNA binding elements. To determine which MEF2 is involved in this regulation, P19 cells stably expressing MyoD and myogenin were compared for their ability to activate the expression of MEF2 family members. There was very little cross-activation of MyoD expression by myogenin and vice versa. Myogenin expression, and not MyoD, was found to up-regulate MEF2C expression. MEF2A, -B, and -D expression levels were not up-regulated by overexpression of either MyoD or myogenin. To examine whether MEF2C can differentially regulate MyoD or myogenin expression, P19 cell lines overexpressing MEF2C were analyzed. MEF2C induced myogenesis in P19 cells and up-regulated the expression of myogenin with 25-fold greater efficiency than that of MyoD. Therefore, myogenin and MEF2C participate in a regulatory loop in differentiating stem cells. This positive regulation does not extend to MyoD or the other MEF2 family members. Consequently, MEF2C appears to play a specific role in early events of myogenesis.
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
16
|
Winter B, Kautzner I, Issinger OG, Arnold HH. Two putative protein kinase CK2 phosphorylation sites are important for Myf-5 activity. Biol Chem 1997; 378:1445-56. [PMID: 9461343 DOI: 10.1515/bchm.1997.378.12.1445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myf-5, a member of a family of muscle-specific transcription factors, is important for myogenic cell determination and differentiation. Here, we report that Myf-5 protein constitutes a substrate for phosphorylation in vitro by protein kinase CK2. We identified two potential phosphorylation sites at serine49 and serine133, both of which seem to be necessary for Myf-5 activity. Mutants which can no longer be phosphorylated fail to transactivate E-box-dependent reporter genes and act as trans-dominant repressors of wild-type Myf-5. Normal activity can be restored by replacing the serine residues with glutamate suggesting that a negative charge at these sites is obligatory for Myf-5 activity. Although serine133 is part of helix 2 which mediates dimerization, we find no evidence for impaired DNA-binding or heterodimerization of the Ser-Ala133 mutant. Some serine49 mutations exhibit reduced nuclear localization and/or protein stability. Our data suggest that CK2-mediated phosphorylation of Myf-5 is required for Myf-5 activity.
Collapse
Affiliation(s)
- B Winter
- Department of Cell and Molecular Biology, University of Braunschweig, Germany
| | | | | | | |
Collapse
|
17
|
Lemercier C, To RQ, Swanson BJ, Lyons GE, Konieczny SF. Mist1: a novel basic helix-loop-helix transcription factor exhibits a developmentally regulated expression pattern. Dev Biol 1997; 182:101-13. [PMID: 9073453 DOI: 10.1006/dbio.1996.8454] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins often belong to a family of transcription factors that bind to the DNA target sequence -CANNTG- (E-box) that is present in the promoter or enhancer regions of numerous developmentally regulated genes. In this study, we report the isolation and initial characterization of a novel bHLH factor, termed Mist1, that was identified by virtue of its ability to interact with E-box regulatory elements in a yeast "one-hybrid" screening procedure. Northern analysis revealed that Mist1 transcripts are expressed in several adult tissues, including stomach, liver, lung, and spleen but no expression is detected in the heart, brain, kidney, or testis. During mouse embryogenesis, Mist1 mRNA is first observed at E10.5 in the primitive gut and in the developing lung bud. Expression persists through E16.5 and remains restricted primarily to the epithelial lining. Mist1 also is detected in skeletal muscle tissues beginning at E12.5, persisting throughout all embryonic stages examined although in older embryos and in the adult expression becomes severely reduced. At later developmental times, Mist1 transcripts also are found in the pancreas, submandibular gland, and adult spleen. As predicted, the Mist1 protein is nuclear and binds efficiently to E-box sites as a homodimer. Mist1 also is capable of binding to E-box elements when complexed as a heterodimer with the widely expressed E-proteins, E12 and E47. Surprisingly, although Mist1 binds to E-boxes in vivo, the Mist1 protein lacks a functional transcription activation domain. These observations suggest that Mist1 may function as a unique regulator of gene expression in several different embryonic and postnatal cell lineages.
Collapse
Affiliation(s)
- C Lemercier
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
18
|
Moss JB, Olson EN, Schwartz RJ. The myogenic regulatory factor MRF4 represses the cardiac alpha-actin promoter through a negative-acting N-terminal protein domain. J Biol Chem 1996; 271:31688-94. [PMID: 8940190 DOI: 10.1074/jbc.271.49.31688] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cardiac alpha-actin is activated early during the development of embryonic skeletal muscle and cardiac myocytes. The gene product remains highly expressed in adult striated cardiac muscle yet is dramatically reduced in skeletal muscle. Activation and repression of cardiac alpha-actin gene activity in developing skeletal muscle correlates with changes in the relative content of the four myogenic regulatory factors. Cardiac alpha-actin promoter activity, assessed in primary chick myogenic cultures, was activated by endogenous myogenic regulatory factors but was inhibited in the presence of co-expressed MRF4. By exchanging N- and C-terminal domains of MRF4 and MyoD, the N terminus of MRF4 was identified as the mediator of repressive activity, revealing a novel negative regulatory role for MRF4. The relative ratios of myogenic regulatory factors may have fundamental roles in selecting specific muscle genes for activation and/or repression.
Collapse
Affiliation(s)
- J B Moss
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
19
|
Ziober BL, Kramer RH. Identification and characterization of the cell type-specific and developmentally regulated alpha7 integrin gene promoter. J Biol Chem 1996; 271:22915-22. [PMID: 8798472 DOI: 10.1074/jbc.271.37.22915] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Expression of alpha7 is mainly confined to skeletal and cardiac muscle in which it appears to be the major laminin-binding integrin. When myoblasts differentiate to myotubes, alpha7 mRNA and protein expression is up-regulated. To explore the mechanisms involved in the tissue-specific and developmentally regulated expression of alpha7, we isolated and characterized a genomic clone containing approximately 2.8 kilobase pairs (kb) of the 5'-flanking region of the murine alpha7 gene. The 5'-flanking region lacks both TATA and CCAAT boxes but contains five putative Sp1 binding sites located in a CpG island. Two transcription start sites, located near an initiator-like sequence, are 176 and 170 base pairs upstream of the translation start site. There are numerous binding sites for developmental and cell type-specific transcription factors, including AP-1, AP-2, GATA, and several AT-rich sites. There are also eight consensus E-boxes that bind the basic helix-loop-helix family of muscle-specific transcription factors. The approximately 2.8-kb 5'-flanking region was an active promoter in C2C12 skeletal myoblasts and exhibited increased expression upon conversion to myotubes but was inactive in HtLM2 cells, a mouse breast carcinoma epithelial cell line that does not express alpha7. Deletion analysis identified both positive and negative regulatory elements within the approximately 2.8-kb fragment. In 10T1/2 fibroblasts the approximately 2.8-kb alpha7 promoter was trans-activated by the myogenic basic helix-loop-helix proteins myogenin and MyoD but not by MRF4 and myf5. These results suggest that muscle-specific transcription factors play a role in regulating the cell-type expression of the alpha7 gene during development.
Collapse
Affiliation(s)
- B L Ziober
- Department of Stomatology, University of California, San Francisco, California 94143-0512, USA
| | | |
Collapse
|
20
|
Mak KL, Longcor LC, Johnson SE, Lemercier C, To RQ, Konieczny SF. Examination of mammalian basic helix-loop-helix transcription factors using a yeast one-hybrid system. DNA Cell Biol 1996; 15:1-8. [PMID: 8561893 DOI: 10.1089/dna.1996.15.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors play diverse roles in controlling many developmental events. Although a great deal is understood about how bHLH factors activate gene transcription via E-box DNA consensus sequences, studies of bHLH factor function in higher eukaryotes often have been hindered by the presence of multiple family members. As a first step in developing a simplified in vivo system to examine bHLH factor activities, we examined whether the bHLH muscle regulatory factors MRF4 and MyoD function appropriately in yeast. We show that Gal4-MRF4 fusion proteins, or native MRF4 proteins, activate expression of an E-box HIS3 reporter gene whereas MyoD proteins remain inactive. Deletion of the MRF4 transcription activation domain (TAD) or point mutations that abolish MRF4 DNA interactions inhibit HIS3 expression. Substitution of the MRF4 TAD with the Gal4 TAD also produces a functional protein, demonstrating that these transcription activation domains are functionally equivalent in yeast. Replacement of the MRF4 TAD with the related MyoD TAD, however, generates an inactive protein, suggesting that some specificity exists between bHLH family members. Using this experimental system, we also demonstrate that mammalian cDNA libraries can be screened successfully for cDNAs encoding novel bHLH proteins that interact with E-box targets. Thus, this in vivo yeast system provides a novel approach to facilitate functional studies of bHLH factor regulation.
Collapse
Affiliation(s)
- K L Mak
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | | | |
Collapse
|
21
|
Takeda S, North DL, Diagana T, Miyagoe Y, Lakich MM, Whalen RG. Myogenic regulatory factors can activate TATA-containing promoter elements via an E-box independent mechanism. J Biol Chem 1995; 270:15664-70. [PMID: 7797566 DOI: 10.1074/jbc.270.26.15664] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have studied the effect of several myogenic regulatory factors on the activity of the promoter for a mouse gene encoding a skeletal myosin heavy chain (MyHC) expressed in adult (type IIB) muscle fibers. Co-transfection of myogenic factors is necessary for activity of the IIB promoter in mouse C2 myotubes in culture but not in quail myotubes in culture. Although this promoter contains one E-box within the first 192 base pairs upstream of the transcriptional start site, mutations in this motif demonstrate that it is not required for the transactivation effect of the myogenic factors. Analysis of other mutants suggests that the MEF2 and MHox DNA-binding factor binds to an evolutionarily conserved AT-rich motif. In addition, the IIB promoter appears to require the conserved TATA motif (CTATAAAAG) in order to be activated by the AT-rich sequences. The IIB promoter constructs produce RNA transcripts which begin at the natural site of transcriptional initiation in quail myotubes and in mouse C2 myotubes after co-transfection with myogenic factors; a second, minor, start site is also used in the co-transfected C2 myotubes. Results obtained after transfection of the mouse IIB promoter constructs in quail myotube cultures suggest that the overexpression of myogenic factors in C2 cultures does not result in an environment in which the control of IIB MyHC promoter activity is aberrant. Therefore, either the myogenic factors themselves, or other proteins induced by them, seem to interact directly with the basal transcription seem to interact directly with the basal transcription machinery to allow muscle-specific gene expression.
Collapse
Affiliation(s)
- S Takeda
- Department of Molecular Biology, Pasteur Institute, Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Benezra R. An intermolecular disulfide bond stabilizes E2A homodimers and is required for DNA binding at physiological temperatures. Cell 1994; 79:1057-67. [PMID: 8001133 DOI: 10.1016/0092-8674(94)90036-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is demonstrated in this report that purified E2A helix-loop-helix (HLH) proteins spontaneously form homodimers that are linked by an intermolecular disulfide bond. These homodimers bind DNA at physiological temperatures but fail to associate with either Id or MyoD. When the disulfide bond is reduced by an activity present in muscle cell lysates or disrupted by site-directed mutagenesis, the monomeric form of the protein is strongly favored at 37 degrees C. These E2A monomers cannot bind DNA but heterodimerize efficiently with Id and MyoD. It is also shown that an intermolecular disulfide bond cross-links E2A homodimers in B cells but not in muscle cells in which only heterodimers have been detected. These results suggest a novel mechanism for regulating the dimerization status and DNA binding properties of E2A HLH transcription factors.
Collapse
Affiliation(s)
- R Benezra
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| |
Collapse
|
23
|
Moss J, McQuinn T, Schwartz R. The avian cardiac alpha-actin promoter is regulated through a pair of complex elements composed of E boxes and serum response elements that bind both positive- and negative-acting factors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99937-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Mitsui K, Shirakata M, Paterson B. Phosphorylation inhibits the DNA-binding activity of MyoD homodimers but not MyoD-E12 heterodimers. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80541-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 1993; 118:1137-47. [PMID: 8269844 DOI: 10.1242/dev.118.4.1137] [Citation(s) in RCA: 282] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Each of the myogenic helix-loop-helix transcription factors (MyoD, Myogenin, Myf-5, and MRF4) is capable of activating muscle-specific gene expression, yet distinct functions have not been ascribed to the individual proteins. We report here that MyoD and Myogenin mRNAs selectively accumulate in hindlimb muscles of the adult rat that differ in contractile properties: MyoD is prevalent in fast twitch and Myogenin in slow twitch muscles. The distribution of MyoD and Myogenin transcripts also differ within a single muscle and correlate with the proportions of fast glycolytic and slow oxidative muscle fibres, respectively. Furthermore, the expression of a transgene consisting of a muscle-specific cis-regulatory region from the myoD gene controlling lacZ was primarily associated with the fast glycolytic fibres. Alteration of the fast/slow fibre type distribution by thyroid hormone treatment or by cross-reinnervation resulted in a corresponding alteration in the MyoD/Myogenin mRNA expression pattern. These findings show that the expression of specific myogenic helix-loop-helix regulators is under the control of innervation and humoral factors and may mediate differential control of contractile protein gene expression in adult muscle.
Collapse
Affiliation(s)
- S M Hughes
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock
| | | | | | | | | | | |
Collapse
|