1
|
Bardales JA, Wieser E, Kawaji H, Murakawa Y, Darzacq X. Selective Activation of Alternative MYC Core Promoters by Wnt-Responsive Enhancers. Genes (Basel) 2018; 9:genes9060270. [PMID: 29882899 PMCID: PMC6027352 DOI: 10.3390/genes9060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
In Metazoans, transcription of most genes is driven by the use of multiple alternative promoters. Although the precise regulation of alternative promoters is important for proper gene expression, the mechanisms that mediates their differential utilization remains unclear. Here, we investigate how the two alternative promoters (P1, P2) that drive MYC expression are regulated. We find that P1 and P2 can be differentially regulated across cell-types and that their selective usage is largely mediated by distal regulatory sequences. Moreover, we show that in colon carcinoma cells, Wnt-responsive enhancers preferentially upregulate transcription from the P1 promoter using reporter assays and in the context of the endogenous Wnt induction. In addition, multiple enhancer deletions using CRISPR/Cas9 corroborate the regulatory specificity of P1. Finally, we show that preferential activation between Wnt-responsive enhancers and the P1 promoter is influenced by the distinct core promoter elements that are present in the MYC promoters. Taken together, our results provide new insight into how enhancers can specifically target alternative promoters and suggest that formation of these selective interactions could allow more precise combinatorial regulation of transcription initiation.
Collapse
Affiliation(s)
- Jorge A Bardales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
| | - Evin Wieser
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan.
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama 230-0045, Japan.
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama 230-0045, Japan.
| | - Yasuhiro Murakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan.
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama 230-0045, Japan.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
- Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Guthridge JM, Lu R, Sun H, Sun C, Wiley GB, Dominguez N, Macwana SR, Lessard CJ, Kim-Howard X, Cobb BL, Kaufman KM, Kelly JA, Langefeld CD, Adler AJ, Harley ITW, Merrill JT, Gilkeson GS, Kamen DL, Niewold TB, Brown EE, Edberg JC, Petri MA, Ramsey-Goldman R, Reveille JD, Vilá LM, Kimberly RP, Freedman BI, Stevens AM, Boackle SA, Criswell LA, Vyse TJ, Behrens TW, Jacob CO, Alarcón-Riquelme ME, Sivils KL, Choi J, Joo YB, Bang SY, Lee HS, Bae SC, Shen N, Qian X, Tsao BP, Scofield RH, Harley JB, Webb CF, Wakeland EK, James JA, Nath SK, Graham RR, Gaffney PM. Two functional lupus-associated BLK promoter variants control cell-type- and developmental-stage-specific transcription. Am J Hum Genet 2014; 94:586-98. [PMID: 24702955 DOI: 10.1016/j.ajhg.2014.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/12/2014] [Indexed: 11/15/2022] Open
Abstract
Efforts to identify lupus-associated causal variants in the FAM167A/BLK locus on 8p21 are hampered by highly associated noncausal variants. In this report, we used a trans-population mapping and sequencing strategy to identify a common variant (rs922483) in the proximal BLK promoter and a tri-allelic variant (rs1382568) in the upstream alternative BLK promoter as putative causal variants for association with systemic lupus erythematosus. The risk allele (T) at rs922483 reduced proximal promoter activity and modulated alternative promoter usage. Allelic differences at rs1382568 resulted in altered promoter activity in B progenitor cell lines. Thus, our results demonstrated that both lupus-associated functional variants contribute to the autoimmune disease association by modulating transcription of BLK in B cells and thus potentially altering immune responses.
Collapse
Affiliation(s)
- Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Rufei Lu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Harry Sun
- Immune and Tissue Growth and Repair and Human Genetics Department, Genentech, South San Francisco, CA 94080, USA
| | - Celi Sun
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Graham B Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Nicolas Dominguez
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Susan R Macwana
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Xana Kim-Howard
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Beth L Cobb
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kenneth M Kaufman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University, Winston-Salem, NC 27106, USA
| | - Adam J Adler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Isaac T W Harley
- Division of Molecular Immunology and Graduate Program in Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Joan T Merrill
- Department of Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary S Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Diane L Kamen
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA
| | - Elizabeth E Brown
- Department of Epidemiology, University of Alabama-Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Jeffery C Edberg
- Division of Clinical Immunology and Rheumatology, University of Alabama-Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Michelle A Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John D Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, TX.77030, USA
| | - Luis M Vilá
- Department of Medicine, Division of Rheumatology, University of Puerto Rico Medical Sciences Campus, San Juan 00921, Puerto Rico
| | - Robert P Kimberly
- Division of Clinical Immunology and Rheumatology, University of Alabama-Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA
| | - Anne M Stevens
- Division of Rheumatology, Department of Pediatrics, University of Washington Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Lindsey A Criswell
- Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tim J Vyse
- Division of Medicine, Imperial College of London, London SW7 2AZ, UK
| | - Timothy W Behrens
- Immune and Tissue Growth and Repair and Human Genetics Department, Genentech, South San Francisco, CA 94080, USA
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Marta E Alarcón-Riquelme
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Centro de Genómica e Investigaciones Oncológicas (GENYO). Pfizer-Universidad de Granada-Junta de Andalucía, Granada 18016, Spain
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jiyoung Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-791, Korea
| | - Young Bin Joo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-791, Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-791, Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-791, Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 133-791, Korea
| | - Nan Shen
- Molecular Rheumatology Laboratory, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxia Qian
- Molecular Rheumatology Laboratory, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Betty P Tsao
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA; United States Department of Veterans Affairs Medical Center, Oklahoma City, OK 73105, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Carol F Webb
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Robert R Graham
- Immune and Tissue Growth and Repair and Human Genetics Department, Genentech, South San Francisco, CA 94080, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Sánchez-Vega B, Gandhi V. Glucocorticoid resistance in a multiple myeloma cell line is regulated by a transcription elongation block in the glucocorticoid receptor gene (NR3C1). Br J Haematol 2008; 144:856-64. [PMID: 19133980 DOI: 10.1111/j.1365-2141.2008.07549.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucocorticoid (GC) effects are mediated by the glucocorticoid receptor (GR). Several studies have demonstrated that a lower number of receptors per cell were associated with poor GC response. The regulation of GR expression is complex; the levels of GR can be autologously regulated by its ligand and also by transcriptional, post-transcriptional and post-translational mechanisms. Using three human myeloma cell lines that parallel the development of GC resistance, this work describes the mechanism involved in the downregulation of GR expression. The decreased expression was neither due to mutations in the gene encoding GR, NR3C1, nor due to methylation of the promoters. A gradual decrease in NR3C1 transcripts was seen during the development of resistance, the level of expression of exon 1 to 2 RNA fragments remained the same in sensitive and resistant cell lines but a chromatin immunoprecipitation assay demonstrated that RNA polymerase II, detectable throughout exon 2 to 3 in the sensitive cells, was undetectable on exon 3 in the resistant variant, suggesting lower or no transcription at this site. These studies demonstrated that downregulation of NR3C1 mRNA in a resistant cell line involves a block to transcriptional elongation within intron B of NR3C1. This block may represent an important element in the regulation of GR expression.
Collapse
Affiliation(s)
- Beatriz Sánchez-Vega
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
4
|
TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 2008; 27:5348-53. [PMID: 18542058 DOI: 10.1038/onc.2008.183] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The high prevalence of TMPRSS2-ERG rearrangements ( approximately 60%) in prostate cancer (CaP) leads to androgenic induction of the ETS-related gene (ERG) expression. However, the biological functions of ERG overexpression in CaP remain to be understood. ERG knockdown in TMPRSS2-ERG expressing CaP cells induced striking morphological changes and inhibited cell growth both in cell culture and SCID mice. Evaluation of the transcriptome and specific gene promoters in ERG siRNA-treated cells and investigation of gene expression signatures of human prostate tumors revealed ERG-mediated activation of C-MYC oncogene and the repression of prostate epithelial differentiation genes (PSA and SLC45A3/Prostein). Taken together, these data combining cell culture and animal models and human prostate tumors reveal that ERG overexpression in prostate tumor cells may contribute to the neoplastic process by activating C-MYC and by abrogating prostate epithelial differentiation as indicated by prostate epithelial specific markers.
Collapse
|
5
|
Yan Y, Park SS, Janz S, Eckhardt LA. In a model of immunoglobulin heavy-chain (IGH)/MYC translocation, the Igh 3' regulatory region induces MYC expression at the immature stage of B cell development. Genes Chromosomes Cancer 2007; 46:950-9. [PMID: 17639584 PMCID: PMC2742353 DOI: 10.1002/gcc.20480] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reciprocal translocations involving the immunoglobulin loci and the cellular oncogene MYC are hallmark mutations of the human postgerminal center B cell neoplasm, Burkitt's lymphoma. They are occasionally found in other B cell lymphomas, as well. Translocations involving the heavy chain locus (IGH) place the MYC gene either in cis with both the intronic enhancer Emu and the IGH 3' regulatory region (3'RR) or in cis with only the 3'RR. The result is deregulated MYC expression. Recent studies have led to some controversy as to when, during B lymphocyte development, IGH/MYC chromosome translocations take place. A related issue, relevant not only to lymphoma development but also to normal controls on IGH gene expression, is the stage, during B lymphocyte development, at which the 3'RR is capable of activating MYC expression. We have developed mice transgenic for a human MYC (hMYC) gene under control of the four core enhancers from the mouse Igh 3'RR. Unlike other transgenic mouse models where premature and inappropriate MYC expression disrupts normal B cell development, the hMYC transgene in these studies carries a mutation that prohibits MYC protein synthesis. As a result, hMYC expression can be analyzed in all of the normal B cell compartments. Our data show that hMYC is expressed almost exclusively in B-lineage cells and is induced to high levels as soon as bone marrow cells reach the immature B cell stage.
Collapse
Affiliation(s)
- Yi Yan
- Department of Biological Sciences, Hunter College and Graduate Center of the City University of New York, New York, NY
| | - Sung Sup Park
- Laboratory of Genetics, National Cancer Institute, NIH, Bethesda, MD
- Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong, Taejon, Republic of Korea
| | - Siegfried Janz
- Laboratory of Genetics, National Cancer Institute, NIH, Bethesda, MD
- Department of Pathology, Carver College of Medicine, Iowa City, IA
| | - Laurel A. Eckhardt
- Department of Biological Sciences, Hunter College and Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
6
|
Gombert WM, Farris SD, Rubio ED, Morey-Rosler KM, Schubach WH, Krumm A. The c-myc insulator element and matrix attachment regions define the c-myc chromosomal domain. Mol Cell Biol 2004; 23:9338-48. [PMID: 14645543 PMCID: PMC309672 DOI: 10.1128/mcb.23.24.9338-9348.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulator elements and matrix attachment regions are essential for the organization of genetic information within the nucleus. By comparing the pattern of histone modifications at the mouse and human c-myc alleles, we identified an evolutionarily conserved boundary at which the c-myc transcription unit is separated from the flanking condensed chromatin enriched in lysine 9-methylated histone H3. This region harbors the c-myc insulator element (MINE), which contains at least two physically separable, functional activities: enhancer-blocking activity and barrier activity. The enhancer-blocking activity is mediated by CTCF. Chromatin immunoprecipitation assays demonstrate that CTCF is constitutively bound at the insulator and at the promoter region independent of the transcriptional status of c-myc. This result supports an architectural role of CTCF rather than a regulatory role in transcription. An additional higher-order nuclear organization of the c-myc locus is provided by matrix attachment regions (MARs) that define a domain larger than 160 kb. The MARs of the c-myc domain do not act to prevent the association of flanking regions with lysine 9-methylated histones, suggesting that they do not function as barrier elements.
Collapse
Affiliation(s)
- Wendy M Gombert
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
7
|
Nii T, Segawa H, Taketani Y, Tani Y, Ohkido M, Kishida S, Ito M, Endou H, Kanai Y, Takeda E. Molecular events involved in up-regulating human Na+-independent neutral amino acid transporter LAT1 during T-cell activation. Biochem J 2001; 358:693-704. [PMID: 11535130 PMCID: PMC1222103 DOI: 10.1042/0264-6021:3580693] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the regulation of system-L amino acid transporter (LAT1) during T-cell activation. In quiescent T-cells, L-leucine transport is mediated mainly by the system-L amino acid transport system and is increased significantly during T-cell activation by PMA and ionomycin. In quiescent T-cells, the LAT1 protein was heterocomplexed with 4F2 heavy chain (4F2hc) in the plasma membrane. During T-cell activation, the amounts of 4F2hc and LAT1 heterocomplex were significantly elevated compared with those in quiescent T-cells. In addition, by Northern-blot analysis, these increments were found to be due to elevated levels of LAT1 and 4F2hc mRNA. Transient expression of constructs comprising various LAT1 gene promoter fragments, which contained all three of the GC boxes, was sufficient for promoting luciferase expression in Jurkat T-cells, but the promoter of the LAT1 gene did not respond to PMA and ionomycin. Similar observations were observed in the human 4F2hc gene promoter. In nuclear run-on assay, the LAT1 and 4F2hc genes were actively transcribed even in quiescent T-cells, but the low levels of both transcripts were shown to be the result of a block to transcription elongation within the exon 1 intron 1 regions. These findings indicated that a removal of the block to mRNA elongation stimulates the induction of system-L amino acid transporter gene transcripts (LAT1 and 4F2hc) in activated T-cells.
Collapse
Affiliation(s)
- T Nii
- Department of Clinical Nutrition, School of Medicine, Tokushima University, Kuramoto-cho 3, Tokushima City 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Suñé C, Garcia-Blanco MA. Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 1999; 19:4719-28. [PMID: 10373521 PMCID: PMC84270 DOI: 10.1128/mcb.19.7.4719] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat protein strongly activates transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) by enhancing the elongation efficiency of RNA polymerase II complexes. Tat-mediated transcriptional activation requires cellular cofactors and specific cis-acting elements within the HIV-1 promoter, among them a functional TATA box. Here, we have investigated the mechanism by which one of these cofactors, termed CA150, regulates HIV-1 transcription in vivo. We present a series of functional assays that demonstrate that the regulation of the HIV-1 LTR by CA150 has the same functional requirements as the activation by Tat. We found that CA150 affects elongation of transcription complexes assembled on the HIV-1 promoter in a TATA-box-dependent manner. We discuss the data in terms of the involvement of CA150 in the regulation of Tat-activated HIV-1 gene expression. In addition, we also provide evidence suggesting a role for CA150 in the regulation of cellular transcriptional processes.
Collapse
Affiliation(s)
- C Suñé
- Departments of Pharmacology and Cancer Biology, Levine Science Research Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
9
|
Pessler F, Pendergrast PS, Hernandez N. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts. Mol Cell Biol 1997; 17:3786-98. [PMID: 9199312 PMCID: PMC232230 DOI: 10.1128/mcb.17.7.3786] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes.
Collapse
Affiliation(s)
- F Pessler
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | |
Collapse
|
10
|
Yankulov KY, Pandes M, McCracken S, Bouchard D, Bentley DL. TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes. Mol Cell Biol 1996; 16:3291-9. [PMID: 8668144 PMCID: PMC231323 DOI: 10.1128/mcb.16.7.3291] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We investigated the role of TFIIH in transcription by RNA polymerase II (pol II) in vivo by microinjection of antibodies against this factor into Xenopus oocytes. Five different antibodies directed against four subunits of TFIIH were tested for effects on transcription of coinjected human immunodeficiency virus type 2 and c-myc templates. Each of these antibodies severely reduced the efficiency of elongation through human immunodeficiency virus type 2 and c-myc terminator elements. In contrast, an anti-TFIIB antibody did not inhibit elongation. Anti-TFIIH antibodies also had a much smaller inhibitory effect on total transcription than did anti-TFIIB or anti-pol II large subunit. Three inhibitors of TFIIH kinase activity, H-7, H-8, and dichlororibofuranosylbenzimidazole (DRB), inhibited elongation similarly to anti-TFIIH antibodies. These results strongly suggest a role for TFIIH in the stimulation of transcriptional elongation in vivo.
Collapse
|
11
|
Albert DA. The effect of cyclic-AMP on the regulation of c-myc expression in T lymphoma cells. J Clin Invest 1995; 95:1490-6. [PMID: 7706453 PMCID: PMC295631 DOI: 10.1172/jci117820] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myc is implicated in the control of growth in a variety of cell types. I investigated c-myc gene expression in several lymphoid cell lines to determine the response to cyclic AMP. Cyclic AMP causes a precipitous decline in c-myc message concentration that precedes G1 cell cycle arrest in wild type S49 cells but not in KIN- cells that lack cAMP dependent PKA activity. In wild-type S49 cells washout of cyclic AMP restores c-myc message levels within 2 h but does not relieve the G1 arrest until 10 h later. Transcription runoff studies demonstrate inhibition of both transcriptional initiation and prolongation of initiated transcripts. However, the degree of inhibition is insufficient to explain the absence of detectable myc message suggesting that the predominant effect of cyclic AMP is to destabilize the c-myc message. In contrast to wild-type cells, the "Deathless" mutant S49 cell line is viable when arrested in G1 by exposure to cyclic AMP and has preserved c-myc expression. Thus, in S49 cells down regulation of c-myc expression appears to be associated with loss of viability rather than G1 cell cycle arrest. Interestingly, CEM human T lymphoma cells do not arrest in G1 phase when exposed to cyclic AMP in spite of losing detectable c-myc gene expression. This suggests that in some T lymphoma cells c-myc gene expression may not be necessary for cell cycle progression and proliferation.
Collapse
Affiliation(s)
- D A Albert
- Department of Medicine, University of Chicago, Illinois 60637, USA
| |
Collapse
|
12
|
Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol 1993. [PMID: 8355712 DOI: 10.1128/mcb.13.9.5710] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the human proto-oncogene c-myc is governed by two tandem principal promoters, termed P1 and P2. In general, the downstream promoter, P2, is predominant, which is in contrast to the promoter occlusion phenomenon usually observed in genes containing tandem promoters. A shift in human c-myc promoter usage has been observed in some tumor cells and in certain physiological conditions. However, the mechanisms that regulate promoter usage are not well understood. The present studies identify regulators which are required to promote transcription from both human c-myc promoters, P1 and P2, and have a role in determining their relative activities in vivo. A novel regulatory region located 101 bp upstream of P1 was characterized and contains five tandem repeats of the consensus sequence CCCTCCCC (CT element). The integrity of the region containing all five elements is required to promote transcription from P1 and for maximal activity from P2 in vivo. A single copy of this same element, designated CT-I2, also appears in an inverted orientation 53 bp upstream of the P2 transcription start site. This element has an inhibitory effect on P1 transcription and is required for P2 transcription. The transcription factor Sp1 was identified as the factor that binds specifically to the tandem CT elements upstream of P1 and to the CT-I2 element upstream of P2. In addition, the recently cloned zinc finger protein ZF87, or MAZ, was also able to bind these same elements in vitro. The five tandem CT elements can be functionally replaced by a heterologous enhancer that only in the absence of CT-I2 reverses the promoter usage, similar to what is observed in the translocated c-myc allele of Burkitt's lymphoma cells.
Collapse
|
13
|
Distinct properties of c-myc transcriptional elongation are revealed in Xenopus oocytes and mammalian cells and by template titration, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), and promoter mutagenesis. Mol Cell Biol 1993. [PMID: 8355707 DOI: 10.1128/mcb.13.9.5647] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A block to c-myc transcription elongation has been observed in Xenopus oocytes and mammalian cells. Here, we show that the distribution of RNA polymerase II transcription complexes in the c-myc promoter proximal region in Xenopus oocytes is different from that observed previously in mammalian cells. Thus, there are major differences in the c-myc elongation block observed in the two systems. In addition, as first reported for a Xenopus tubulin gene (K. M. Middleton and G. T. Morgan, Mol. Cell. Biol. 10:727-735, 1990). c-myc template titration experiments reveal the existence of two classes of RNA polymerase II transcription complexes in oocytes: one (at low template concentration) that is capable of reading through downstream sites of premature termination, and another (high template concentration) that does not. We show that these classes of polymerases are distinct from those previously identified by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), which distinguishes transcription complexes on the basis of transcribed distance, rather than on the basis of differential elongation through sites of premature termination. We also show that mutations that affect the efficiency of initiation of transcription from the c-myc P2 promoter can influence premature termination by at least two mechanisms: TATA box mutations function by the titration effect (decrease in transcription initiation results in a relative decrease in premature termination), while an upstream activator (E2F) site functions by contributing to the assembly of polymerase complexes competent to traverse the downstream sites of premature termination.
Collapse
|
14
|
Meulia T, Krumm A, Groudine M. Distinct properties of c-myc transcriptional elongation are revealed in Xenopus oocytes and mammalian cells and by template titration, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), and promoter mutagenesis. Mol Cell Biol 1993; 13:5647-58. [PMID: 8355707 PMCID: PMC360294 DOI: 10.1128/mcb.13.9.5647-5658.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A block to c-myc transcription elongation has been observed in Xenopus oocytes and mammalian cells. Here, we show that the distribution of RNA polymerase II transcription complexes in the c-myc promoter proximal region in Xenopus oocytes is different from that observed previously in mammalian cells. Thus, there are major differences in the c-myc elongation block observed in the two systems. In addition, as first reported for a Xenopus tubulin gene (K. M. Middleton and G. T. Morgan, Mol. Cell. Biol. 10:727-735, 1990). c-myc template titration experiments reveal the existence of two classes of RNA polymerase II transcription complexes in oocytes: one (at low template concentration) that is capable of reading through downstream sites of premature termination, and another (high template concentration) that does not. We show that these classes of polymerases are distinct from those previously identified by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), which distinguishes transcription complexes on the basis of transcribed distance, rather than on the basis of differential elongation through sites of premature termination. We also show that mutations that affect the efficiency of initiation of transcription from the c-myc P2 promoter can influence premature termination by at least two mechanisms: TATA box mutations function by the titration effect (decrease in transcription initiation results in a relative decrease in premature termination), while an upstream activator (E2F) site functions by contributing to the assembly of polymerase complexes competent to traverse the downstream sites of premature termination.
Collapse
Affiliation(s)
- T Meulia
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
15
|
DesJardins E, Hay N. Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol 1993; 13:5710-24. [PMID: 8355712 PMCID: PMC360307 DOI: 10.1128/mcb.13.9.5710-5724.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription of the human proto-oncogene c-myc is governed by two tandem principal promoters, termed P1 and P2. In general, the downstream promoter, P2, is predominant, which is in contrast to the promoter occlusion phenomenon usually observed in genes containing tandem promoters. A shift in human c-myc promoter usage has been observed in some tumor cells and in certain physiological conditions. However, the mechanisms that regulate promoter usage are not well understood. The present studies identify regulators which are required to promote transcription from both human c-myc promoters, P1 and P2, and have a role in determining their relative activities in vivo. A novel regulatory region located 101 bp upstream of P1 was characterized and contains five tandem repeats of the consensus sequence CCCTCCCC (CT element). The integrity of the region containing all five elements is required to promote transcription from P1 and for maximal activity from P2 in vivo. A single copy of this same element, designated CT-I2, also appears in an inverted orientation 53 bp upstream of the P2 transcription start site. This element has an inhibitory effect on P1 transcription and is required for P2 transcription. The transcription factor Sp1 was identified as the factor that binds specifically to the tandem CT elements upstream of P1 and to the CT-I2 element upstream of P2. In addition, the recently cloned zinc finger protein ZF87, or MAZ, was also able to bind these same elements in vitro. The five tandem CT elements can be functionally replaced by a heterologous enhancer that only in the absence of CT-I2 reverses the promoter usage, similar to what is observed in the translocated c-myc allele of Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- E DesJardins
- Ben May Institute, University of Chicago, Illinois 60637
| | | |
Collapse
|
16
|
Affiliation(s)
- S Wright
- Wellcome/CRC Institute of Cancer and Developmental Biology, Cambridge, England
| |
Collapse
|
17
|
Transcription elongation in the human c-myc gene is governed by overall transcription initiation levels in Xenopus oocytes. Mol Cell Biol 1993. [PMID: 8423795 DOI: 10.1128/mcb.13.2.1296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both transcription initiation and transcription elongation contribute to the regulation of steady-state c-myc RNA levels. We have used the Xenopus oocyte transcription assay to study premature transcription termination which occurs in the first exon and intron of the human c-myc gene. Previous studies showed that after injection into Xenopus oocytes transcription from the c-myc P1 promoter resulted in read-through transcripts whereas transcription from the stronger P2 promoter resulted in a combination of prematurely terminated and read-through transcripts. We now demonstrate that this promoter-specific processivity results from the overall amount of RNA polymerase II transcription occurring from either promoter. Parameters that reduce the amount of transcription from P1 or P2, such as decreased concentration of template injected or decreased incubation time, result in a reduction in the ratio of terminated to read-through c-myc transcripts. Conversely, when transcription levels are increased by higher concentrations of injected template, increased incubation time, or coinjection with competing template, the ratio of terminated to read-through transcripts increases. We hypothesize that an RNA polymerase II processivity function is depleted above a threshold level of transcription initiation, resulting in high levels of premature transcription termination. These findings account for the promoter-specific effects on transcription elongation previously seen in this assay system and suggest a mechanism whereby limiting transcription elongation factors may contribute to transcription regulation in other eukaryotic cells.
Collapse
|
18
|
Spencer CA, Kilvert MA. Transcription elongation in the human c-myc gene is governed by overall transcription initiation levels in Xenopus oocytes. Mol Cell Biol 1993; 13:1296-305. [PMID: 8423795 PMCID: PMC359015 DOI: 10.1128/mcb.13.2.1296-1305.1993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Both transcription initiation and transcription elongation contribute to the regulation of steady-state c-myc RNA levels. We have used the Xenopus oocyte transcription assay to study premature transcription termination which occurs in the first exon and intron of the human c-myc gene. Previous studies showed that after injection into Xenopus oocytes transcription from the c-myc P1 promoter resulted in read-through transcripts whereas transcription from the stronger P2 promoter resulted in a combination of prematurely terminated and read-through transcripts. We now demonstrate that this promoter-specific processivity results from the overall amount of RNA polymerase II transcription occurring from either promoter. Parameters that reduce the amount of transcription from P1 or P2, such as decreased concentration of template injected or decreased incubation time, result in a reduction in the ratio of terminated to read-through c-myc transcripts. Conversely, when transcription levels are increased by higher concentrations of injected template, increased incubation time, or coinjection with competing template, the ratio of terminated to read-through transcripts increases. We hypothesize that an RNA polymerase II processivity function is depleted above a threshold level of transcription initiation, resulting in high levels of premature transcription termination. These findings account for the promoter-specific effects on transcription elongation previously seen in this assay system and suggest a mechanism whereby limiting transcription elongation factors may contribute to transcription regulation in other eukaryotic cells.
Collapse
Affiliation(s)
- C A Spencer
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
19
|
Krumm A, Meulia T, Brunvand M, Groudine M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev 1992; 6:2201-13. [PMID: 1427080 DOI: 10.1101/gad.6.11.2201] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A conditional block to transcriptional elongation is an important mechanism for regulating c-myc gene expression. This elongation block within the first c-myc exon was defined originally in mammalian cells by nuclear run-on transcription analyses. Subsequent oocyte injection and in vitro transcription analyses suggested that sequences near the end of the first c-myc exon are sites of attenuation and/or premature termination. We report here that the mapping of single stranded DNA in vivo with potassium permanganate (KMnO4) and nuclear run-on transcription assays reveal that polymerase is paused near position +30 relative to the major c-myc transcription initiation site. Deletion of 350 bp, including the sites of 3'-end formation and intrinsic termination defined in oocyte injection and in vitro transcription assays does not affect-the pausing of polymerase in the promoter-proximal region. In addition, sequences upstream of +47 are sufficient to confer the promoter-proximal pausing of polymerases and to generate the polarity of transcription farther downstream. Thus, the promoter-proximal pausing of RNA polymerase II complexes accounts for the block to elongation within the c-myc gene in mammalian cells. We speculate that modification of polymerase complexes at the promoter-proximal pause site may determine whether polymerases can read through intrinsic sites of termination farther downstream.
Collapse
Affiliation(s)
- A Krumm
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | |
Collapse
|