1
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
2
|
Pathway sensor-based functional genomics screening identifies modulators of neuronal activity. Sci Rep 2018; 8:17597. [PMID: 30514868 PMCID: PMC6279925 DOI: 10.1038/s41598-018-36008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Neuronal signal transduction shapes brain function and malfunction may cause mental disorders. Despite the existence of functional genomics screens for proliferation and toxicity, neuronal signalling has been difficult to address so far. To overcome this limitation, we developed a pooled screening assay which combines barcoded activity reporters with pooled genetic perturbation in a dual-expression adeno-associated virus (AAV) library. With this approach, termed pathScreener, we comprehensively dissect signalling pathways in postmitotic neurons. This overcomes several limitations of lentiviral-based screens. By applying first a barcoded and multiplexed reporter assay, termed cisProfiler, we identified the synaptic-activity responsive element (SARE) as top performance sensor of neuronal activity. Next, we targeted more than 4,400 genes and screened for modulatory effects on SARE activity in primary cortical neurons. We identified with high replicability many known genes involved in glutamatergic synapse-to-nucleus signalling of which a subset was validated in orthogonal assays. Several others have not yet been associated with the regulation of neuronal activity such as the hedgehog signalling members Ptch2 and Ift57. This assay thus enhances the toolbox for analysing regulatory processes during neuronal signalling and may help identifying novel targets for brain disorders.
Collapse
|
3
|
Leśniewska E, Boguta M. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol 2017; 7:rsob.170001. [PMID: 28228471 PMCID: PMC5356446 DOI: 10.1098/rsob.170001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9. J Genet Genomics 2015; 43:25-36. [PMID: 26842991 DOI: 10.1016/j.jgg.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) is an adaptive immune system in bacteria and archaea to defend against invasion from foreign DNA fragments. Recently, it has been developed as a powerful targeted genome editing tool for a wide variety of species. However, its application in maize has only been tested with transiently expressed somatic cells or with a limited number of stable transgenic T0 plants. The exact efficiency and specificity of the CRISPR/Cas system in the highly complex maize genome has not been documented yet. Here we report an extensive study of the well-studied type II CRISPR-Cas9 system for targeted genome editing in maize, with the codon-optimized Cas9 protein and the short non-coding guide RNA generated through a functional maize U6 snRNA promoter. Targeted gene mutagenesis was detected for 90 loci by maize protoplast assay, with an average cleavage efficiency of 10.67%. Stable knockout transformants for maize phytoene synthase gene (PSY1) were obtained. Mutations occurred in germ cells can be stably inherited to the next generation. Moreover, no off-target effect was detected at the computationally predicted putative off-target loci. No significant difference between the transcriptomes of the Cas9 expressed and non-expressed lines was detected. Our results confirmed that the CRISPR-Cas9 could be successfully applied as a robust targeted genome editing system in maize.
Collapse
Affiliation(s)
- Jinjie Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Ning Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Silong Sun
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Weilong Yang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Arimbasseri AG, Rijal K, Maraia RJ. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2015; 5:e27639. [PMID: 25764110 DOI: 10.4161/trns.27369] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
6
|
Arimbasseri AG, Maraia RJ. Biochemical analysis of transcription termination by RNA polymerase III from yeast Saccharomyces cerevisiae. Methods Mol Biol 2015; 1276:185-98. [PMID: 25665564 PMCID: PMC6311530 DOI: 10.1007/978-1-4939-2392-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Eukaryotic RNA polymerase III (pol III) transcribes short noncoding RNA genes such as those encoding tRNAs, 5S rRNA, U6 snRNA, and a few others. As compared to its pol II counterpart, Pol III has several advantages, including the relative simplicity, stability, and more direct connectivity of its transcription machinery. Only two transcription factor complexes, TFIIIB and TFIIIC, are required to faithfully initiate and direct multiple rounds of transcription by pol III. Moreover, in contrast to an intricate multipartite mechanism of pol II termination, pol III termination is extremely simple, responsive to a monopartite signal (oligo T stretch on the nontemplate DNA strand) and mediated by a stably associated termination subcomplex of three integral subunits (Arimbasseri et al. Transcription 4(6), 2013). This makes pol III a valuable model for dissecting intrinsic molecular mechanisms of eukaryotic transcription termination. In this chapter, we provide protocols we adapted to study the biochemistry of transcription termination by S. cerevisiae pol III.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 31, Bethesda, MD, 20892, USA
| | | |
Collapse
|
7
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
8
|
Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol Cell Biol 2013; 33:1571-81. [PMID: 23401852 DOI: 10.1128/mcb.01733-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription termination by RNA polymerase (Pol) III serves multiple purposes; it delimits interference with downstream genes, forms 3' oligo(U) binding sites for the posttranscriptional processing factor, La protein, and resets the polymerase complex for reinitiation. Although an interplay of several Pol III subunits is known to collectively control these activities, how they affect molecular function of the active center during termination is incompletely understood. We have approached this using immobilized Pol III-nucleic acid scaffolds to examine the two major components of termination, transcription pausing and RNA release. This allowed us to distinguish two mechanisms of termination by isolated Saccharomyces cerevisiae Pol III. A core mechanism can operate in the absence of C53/37 and C11 subunits but requires synthesis of 8 or more 3' U nucleotides, apparently reflecting inherent sensitivity to an oligo(rU·dA) hybrid that is the termination signal proper. The holoenzyme mechanism requires fewer U nucleotides but uses C53/37 and C11 to slow elongation and prevent terminator arrest. N-terminal truncation of C53 or point mutations that disable the cleavage activity of C11 impair their antiarrest activities. The data are consistent with a model in which C53, C37, and C11 activities are functionally integrated with the active center of Pol III during termination.
Collapse
|
9
|
Rijal K, Maraia RJ. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res 2012; 41:139-55. [PMID: 23093604 PMCID: PMC3592421 DOI: 10.1093/nar/gks985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How eukaryotic RNA polymerases switch from elongation to termination is unknown. Pol III subunits Rpc53 and Rpc37 (C53/37) form a heterodimer homologous to TFIIFβ/α. C53/37 promotes efficient termination and together with C11 also mediates pol III recycling in vitro. We previously developed Schizosaccharomyces pombe strains that report on two pol III termination activities: RNA oligo(U) 3′-end cleavage, and terminator readthrough. We randomly mutagenized C53 and C37 and isolated many C37 mutants with terminator readthrough but no comparable C53 mutants. The majority of C37 mutants have strong phenotypes with up to 40% readthrough and map to a C-terminal tract previously localized near Rpc2p in the pol III active center while a minority represent a distinct class with weaker phenotype, less readthrough and 3′-oligo(U) lengthening. Nascent pre-tRNAs released from a terminator by C37 mutants have shorter 3′-oligo(U) tracts than in cleavage-deficient C11 double mutants indicating RNA 3′-end cleavage during termination. We asked whether termination deficiency affects transcription output in the mutants in vivo both by monitoring intron-containing nascent transcript levels and 14C-uridine incorporation. Surprisingly, multiple termination mutants have no decrease in transcript output relative to controls. These data are discussed in context of current models of pol III transcription.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:362-75. [PMID: 21572561 PMCID: PMC3092161 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
11
|
Iben JR, Mazeika JK, Hasson S, Rijal K, Arimbasseri AG, Russo AN, Maraia RJ. Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res 2011; 39:6100-13. [PMID: 21450810 PMCID: PMC3152337 DOI: 10.1093/nar/gkr182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase III recognizes and pauses at its terminator, an oligo(dT) tract in non-template DNA, terminates 3' oligo(rU) synthesis within this sequence, and releases the RNA. The pol III subunit Rpc11p (C11) mediates RNA 3'-5' cleavage in the catalytic center of pol III during pausing. The amino and carboxyl regions of C11 are homologous to domains of the pol II subunit Rpb9p, and the pol II elongation and RNA cleavage factor, TFIIS, respectively. We isolated C11 mutants from Schizosaccharomyces pombe that cause pol III to readthrough terminators in vivo. Mutant RNA confirmed the presence of terminator readthrough transcripts. A predominant mutation site, F32, resides in the C11 Rpb9-like domain. Another mutagenic approach confirmed the F32 mutation and also isolated I34 and Y30 mutants. Modeling Y30, F32 and I34 of C11 in available cryoEM pol III structures predicts a hydrophobic patch that may interface with C53/37. Another termination mutant, Rpc2-T455I, appears to reside internally, near the RNA-DNA hybrid. We show that the Rpb9 and TFIIS homologous mutants of C11 reflect distinct activities, that differentially affect terminator recognition and RNA 3' cleavage. We propose that these C11 domains integrate action at the upper jaw and center of pol III during termination.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Commissioned Corps, US Public Health Service, Bethesda, MD, USA. 20892
| | | | | | | | | | | | | |
Collapse
|
12
|
Orioli A, Pascali C, Quartararo J, Diebel KW, Praz V, Romascano D, Percudani R, van Dyk LF, Hernandez N, Teichmann M, Dieci G. Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Res 2011; 39:5499-512. [PMID: 21421562 PMCID: PMC3141230 DOI: 10.1093/nar/gkr074] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3′-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T≥4 stretch within 50 bp of 3′-flanking region. In vitro analysis of tDNAs with a distanced T≥4 revealed the existence of non-canonical terminators resembling degenerate T≥5 elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3′ trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3′-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3′-trailer sequences with the potential to contribute novel functional ncRNAs.
Collapse
Affiliation(s)
- Andrea Orioli
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vizoso M, Vierna J, González-Tizón AM, Martínez-Lage A. The 5S rDNA Gene Family in Mollusks: Characterization of Transcriptional Regulatory Regions, Prediction of Secondary Structures, and Long-Term Evolution, with Special Attention to Mytilidae Mussels. J Hered 2011; 102:433-47. [DOI: 10.1093/jhered/esr046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Spitalny P, Thomm M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 2007; 67:958-70. [PMID: 18182021 PMCID: PMC2253867 DOI: 10.1111/j.1365-2958.2007.06084.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An archaeal histone gene from the hyperthermophile Pyrococcus furiosus containing four consecutive putative oligo-dT terminator sequences was used as a model system to investigate termination signals and the mechanism of termination in vitro. The archaeal RNA polymerase terminated with high efficiency at the first terminator at 90°C when it contained five to six T residues, at 80°C readthrough was significantly increased. A putative hairpin structure upstream of the first terminator had no effect on termination efficiency. Template competition experiments starting with RNA polymerase molecules engaged in ternary complexes revealed recycling of RNA polymerase from the terminator to the promoter of the same template. This facilitated reinitiation was dependent upon the presence of a terminator sequence suggesting that pausing at the terminator is required for recycling as in the RNA polymerase III system. Replacement of the sequences immediately downstream of the oligo-dT terminator by an AT-rich segment improved termination efficiency. Both AT-rich and GC-rich downstream sequences seemed to impair the facilitated reinitiation pathway. Our data suggest that recycling is dependent on a subtle interplay of pausing of RNA polymerase at the terminator and RNA polymerase translocation beyond the oligo-dT termination signal that is dramatically affected by downstream sequences.
Collapse
Affiliation(s)
- Patrizia Spitalny
- Department of Microbiology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | |
Collapse
|
15
|
Ferrari R, Dieci G. The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors. Cell Mol Biol Lett 2007; 13:112-8. [PMID: 17965971 PMCID: PMC6275715 DOI: 10.2478/s11658-007-0041-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 07/31/2007] [Indexed: 12/04/2022] Open
Abstract
Transcription reinitiation by RNA polymerase (Pol) III proceeds through facilitated recycling, a process by which the terminating Pol III, assisted by the transcription factors TFIIIB and TFIIIC, rapidly reloads onto the same transcription unit. To get further insight into the Pol III transcription mechanism, we analyzed the kinetics of transcription initiation and reinitiation of a simplified in vitro transcription system consisting only of Pol III and template DNA. The data indicates that, in the absence of transcription factors, first-round transcription initiation by Pol III proceeds at a normal rate, while facilitated reinitiation during subsequent cycles is compromised.
Collapse
Affiliation(s)
- Roberto Ferrari
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| |
Collapse
|
16
|
Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA (NEW YORK, N.Y.) 2006; 12:508-21. [PMID: 16431988 PMCID: PMC1383588 DOI: 10.1261/rna.2305406] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
1-Methyladenosine modification at position 58 of tRNA is catalyzed by a two-subunit methyltransferase composed of Trm6p and Trm61p in Saccharomyces cerevisiae. Initiator tRNA (tRNAi(Met)) lacking m1A58 (hypomethylated) is rendered unstable through the cooperative function of the poly(A) polymerases, Trf4p/Trf5p, and the nuclear exosome. We provide evidence that a catalytically active Trf4p poly(A) polymerase is required for polyadenylation of hypomethylated tRNAi(Met) in vivo. DNA sequence analysis of tRNAi(Met) cDNAs and Northern hybridizations of poly(A)+ RNA provide evidence that nascent pre-tRNAi(Met) transcripts are targeted for polyadenylation and degradation. We determined that a mutant U6 snRNA and an aberrant form of 5S rRNA are stabilized in the absence of Trf4p, supporting that Trf4p facilitated RNA surveillance is a global process that stretches beyond hypomethylated tRNAi(Met). We conclude that an array of RNA polymerase III transcripts are targeted for Trf4p/ Trf5p-dependent polyadenylation and turnover to eliminate mutant and variant forms of normally stable RNAs.
Collapse
MESH Headings
- Base Sequence
- Catalytic Domain/genetics
- DNA, Fungal/genetics
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Methylation
- Mutagenesis, Site-Directed
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sujatha Kadaba
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Wehr Life Sciences, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
17
|
Landrieux E, Alic N, Ducrot C, Acker J, Riva M, Carles C. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J 2005; 25:118-28. [PMID: 16362040 PMCID: PMC1356358 DOI: 10.1038/sj.emboj.7600915] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 11/22/2005] [Indexed: 11/09/2022] Open
Abstract
While initiation of transcription by RNA polymerase III (Pol III) has been thoroughly investigated, molecular mechanisms driving transcription termination remain poorly understood. Here we describe how the characterization of the in vitro transcriptional properties of a Pol III variant (Pol IIIdelta), lacking the C11, C37, and C53 subunits, revealed crucial information about the mechanisms of Pol III termination and reinitiation. The specific requirement for the C37-C53 complex in terminator recognition was determined. This complex was demonstrated to slow down elongation by the enzyme, adding to the evidence implicating the elongation rate as a critical determinant of correct terminator recognition. In addition, the presence of the C37-C53 complex required the simultaneous addition of C11 to Pol IIIdelta for the enzyme to reinitiate after the first round of transcription, thus uncovering a role for polymerase subunits in the facilitated recycling process. Interestingly, we demonstrated that the role of C11 in recycling was independent of its role in RNA cleavage. The data presented allowed us to propose a model of Pol III termination and its links to reinitiation.
Collapse
Affiliation(s)
- Emilie Landrieux
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Nazif Alic
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Cécile Ducrot
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Joël Acker
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| | - Michel Riva
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, F-91191 Gif sur Yvette Cedex, France. Tel.: +33 1 69 08 84 17; Fax: +33 1 69 08 47 12; E-mail:
| | - Christophe Carles
- CEA/Saclay, Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, Gif sur Yvette, France
| |
Collapse
|
18
|
Song J, Pang S, Lu Y, Chiu R. Poly(U) and polyadenylation termination signals are interchangeable for terminating the expression of shRNA from a pol II promoter. Biochem Biophys Res Commun 2004; 323:573-8. [PMID: 15369789 DOI: 10.1016/j.bbrc.2004.08.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Indexed: 11/17/2022]
Abstract
Most short hairpin RNA (shRNA)-expressing vectors use RNA polymerase III promoters, as expression of shRNAs from RNA polymerase II promoters is not well understood, due to the lack of defined transcription initiation sites and functional localization of the transcription termination signal. Here we describe a modified cytomegavirus (CMV) promoter, an RNA polymerase II promoter, to express shRNAs with only four overhangs at the 5' end. The expression of shRNAs from the modified CMV promoter was terminated by the transcription termination, the polyadenylation, or the poly(U) termination signal. These results demonstrated that the poly(U) and polyadenylation termination signals are interchangeable for terminating the expression of shRNAs from the CMV promoter and result in similar efficacies in inhibiting endogenous target genes in mammalian cells.
Collapse
Affiliation(s)
- Jun Song
- Dental Research Institute, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
19
|
Guffanti E, Corradini R, Ottonello S, Dieci G. Functional dissection of RNA polymerase III termination using a peptide nucleic acid as a transcriptional roadblock. J Biol Chem 2004; 279:20708-16. [PMID: 14970213 DOI: 10.1074/jbc.m311295200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that a T(10) peptide nucleic acid (PNA) bound to the transcriptional terminator of a Saccharomyces cerevisiae tDNA(Ile)(TAT) gene arrests elongating yeast RNA polymerase (pol) III at a position that precedes by 20 bp the upstream end of the PNA roadblock (Dieci, G., Corradini, R., Sforza, S., Marchelli, R., and Ottonello, S. (2001) J. Biol. Chem. 276, 5720-5725). Here, a PNA-binding cassette was placed at various distances downstream of a functional tDNA(Ile) transcriptional terminator (T(6)) that is not bound by the T(10) PNA, and the effect of the PNA roadblock on RNA 3'-end formation, transcript release, and transcription reinitiation was examined. With a PNA roadblock placed as close as 5 bp downstream of the T(6) terminator, pol III could still reach the termination site and complete pre-tRNA synthesis, implying that the catalytic site-to-front edge (C-F) distance of the polymerase can shorten by >10 bp upon recognition of the terminator element. In addition, transcripts synthesized by a PNA-roadblocked terminating pol III were found to be released from transcription complexes. Interestingly, however, the same roadblock dramatically reduced the rate of transcription reinitiation. Also, when placed 5 bp downstream of a mutationally inactivated terminator element (T(3)GT(2)), the PNA roadblock restored transcription termination, thus indicating that the inactivated terminator is compromised in its ability to cause pol III pausing, but can still induce C-F distance shortening and transcript release. The latter two activities were found to be further impaired in variants of the inactivated terminator bearing fewer than three consecutive T residues (T(2)G(2)T(2) and TG(2)TGT). The data indicate that RNA polymerase pausing, C-F distance shortening, and transcript release are functionally distinguishable features of the termination process and point to the RNA release propensity of pol III as a major determinant of its remarkably high termination efficiency.
Collapse
Affiliation(s)
- Elisa Guffanti
- Dipartimento di Biochimica e Biologia Molecolare and Dipartimento di Chimica Organica e Industriale, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | | | |
Collapse
|
20
|
Maraia RJ, Intine RV. La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expr 2002; 10:41-57. [PMID: 11868987 PMCID: PMC5977531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
After transcription by RNA polymerase (pol) III, nascent Pol III transcripts pass through RNA processing, modification, and transport machineries as part of their posttranscriptional maturation process. The first factor to interact with Pol III transcripts is La protein, which binds principally via its conserved N-terminal domain (NTD), to the UUU-OH motif that results from transcription termination. This review includes a sequence Logo of the most conserved region of La and its refined modeling as an RNA recognition motif (RRM). La protects RNAs from 3' exonucleolytic digestion and also contributes to their nuclear retention. The variety of modifications found on La-associated RNAs is reviewed in detail and considered in the contexts of how La may bind the termini of structured RNAs without interfering with recognition by modification enzymes, and its ability to chaperone RNAs through multiple parts of their maturation pathways. The CTD of human La recognizes the 5' end region of nascent RNA in a manner that is sensitive to serine 366 phosphorylation. Although the CTD can control pre-tRNA cleavage by RNase P, a rate-limiting step in tRNASerUGA maturation, the extent to which it acts in the maturation pathway(s) of other transcripts is unknown but considered here. Evidence that a fraction of La resides in the nucleolus together with recent findings that several Pol III transcripts pass through the nucleolus is also reviewed. An imminent goal is to understand how the bipartite RNA binding, intracellular trafficking, and signal transduction activities of La are integrated with the maturation pathways of the various RNAs with which it associates.
Collapse
Affiliation(s)
- Richard J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
21
|
Abstract
Ubiquitous in eukaryotic cells, the La protein associates with the 3' termini of many newly synthesized small RNAs. RNAs bound by the La protein include all nascent transcripts made by RNA polymerase III as well as certain small RNAs synthesized by other RNA polymerases. Recent genetic and biochemical analyses have revealed that binding by the La protein protects the 3' ends of these RNAs from exonucleases. This La-mediated stabilization is required for the normal pathway of pre-tRNA maturation, facilitates assembly of small RNAs into functional RNA-protein complexes, and contributes to nuclear retention of certain small RNAs. Studies of mutant La proteins have given some insights into how the La protein specifically recognizes its RNA targets. However, many questions remain regarding the molecular mechanisms by which La protein binding influences multiple steps in small RNA biogenesis. This review focuses on the roles of the La protein in small RNA biogenesis and also discusses data that implicate the La protein in the translation of specific mRNAs.
Collapse
Affiliation(s)
- Sandra L Wolin
- Departments of Cell Biology and Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA.
| | | |
Collapse
|
22
|
Hamada M, Sakulich AL, Koduru SB, Maraia RJ. Transcription termination by RNA polymerase III in fission yeast. A genetic and biochemically tractable model system. J Biol Chem 2000; 275:29076-81. [PMID: 10843998 DOI: 10.1074/jbc.m003980200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order for RNA polymerase (pol) III to produce a sufficient quantity of RNAs of appropriate structure, initiation, termination, and reinitiation must be accurate and efficient. Termination-associated factors have been shown to facilitate reinitiation and regulate transcription in some species. Suppressor tRNA genes that differ in the dT(n) termination signal were examined for function in Schizosaccharomyces pombe. We also developed an S. pombe extract that is active for tRNA transcription that is described here for the first time. The ability of this tRNA gene to be transcribed in extracts from different species allowed us to compare termination in three model systems. Although human pol III terminates efficiently at 4 dTs and S. pombe at 5 dTs, Saccharomyces cerevisiae pol III requires 6 dTs to direct comparable but lower termination efficiency and also appears qualitatively distinct. Interestingly, this pattern of sensitivity to a minimal dT(n) termination signal was found to correlate with the sensitivity to alpha-amanitin, as S. pombe was intermediate between human and S. cerevisiae pols III. The results establish that the pols III of S. cerevisiae, S. pombe, and human exhibit distinctive properties and that termination occurs in S. pombe in a manner that is functionally more similar to human than is S. cerevisiae.
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, NICHHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The analyses of previously described 5S rRNA gene sequences show that some of the expressed 5S rRNA genes present in the mouse and rat genomes were derived from the retrotransposition of 5S rRNA transcripts. These analyses demonstrate that new 5S rRNA gene copies can originate by retrotransposition and that some of these retrotranscribed genes are expressed.
Collapse
Affiliation(s)
- G Drouin
- Département de biologie, Université d'Ottawa, ON, Canada.
| |
Collapse
|
24
|
Gunnery S, Ma Y, Mathews MB. Termination sequence requirements vary among genes transcribed by RNA polymerase III. J Mol Biol 1999; 286:745-57. [PMID: 10024448 DOI: 10.1006/jmbi.1998.2518] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA polymerase III (pol III) transcription generally terminates at a run of four or more thymidine (T) residues but some pol III genes contain runs of T residues that are not recognized as termination signals. Here, we investigate the terminal signal requirements that are operative in adenovirus virus-associated (VA) RNA genes. In the Xenopus 5 S RNA gene, efficient termination requires the T residues to be in a G+C-rich sequence context, but a run of five T residues in a G+C-rich context does not cause pol III termination when placed 30 nt downstream of the adenovirus-2 VA RNAI promoter in a VA-Tat chimeric gene. The failure of pol III to recognize this putative termination signal is not due to the chimeric nature of the gene or to the proximity of the signal to the promoter, but to its sequence context. Termination at the VA RNA gene site requires a T-rich sequence and is inhibited by the proximity of G residues, but is insensitive to the presence of A residues. The T-rich sequence need not be uninterrupted, however. In the VA RNA gene of the avian adenovirus, CELO, the first of two tandem termination signals contains an interrupted run of T residues, TTATT, which functions as a terminator with high (although not complete) efficiency. These findings, together with a survey of sequences neighboring the terminal site of other pol III genes, lead to the conclusion that pol III termination signals are more complex than hitherto recognized, and that sequence context requirements differ between members of the class 1 and class 2 families of pol III genes.
Collapse
Affiliation(s)
- S Gunnery
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | | |
Collapse
|
25
|
Barcellini-Couget S, Fenard D, Bertrand E, Singer RH, Lefebvre JC, Doglio A. 3'-End modification of the adenoviral VA1 gene affects its expression in human cells: consequences for the design of chimeric VA1 RNA ribozymes. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:379-90. [PMID: 9826265 DOI: 10.1089/oli.1.1998.8.379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polymerase III (pol III)-dependent genes, like the adenoviral VA1 gene, are of particular interest for expressing small therapeutic RNAs into cells. A new VA1 RNA carrier molecule was generated through the deletion of the VA1 RNA central domain to give rise to the VAdeltaIV RNA vector that was devoid of undesirable physiologic activity (i.e., inhibition of the interferon-induced protein kinase, PKR). This vector was used to express in human cells hammerhead ribozymes targeted against the human immunodeficiency virus (HIV). Eight anti-HIV ribozymes were inserted at the 3'-end of this vector immediately before the four T-residues that serve as a transcription termination signal. Although the constructs were active in vitro, they failed to inhibit HIV replication in transient assays. Analysis of the intracellular ribozyme expression in cells revealed several anomalies. First, using mutant derivatives, we showed that the presence of two or three consecutive T-residues in the ribozyme portion was sufficient to promote the release of anomalous short transcripts. Second, when the ribozyme did not contain T-rich sequence, full-length transcripts were produced, but these transcripts were very unstable and were retained in the cell nucleus. In contrast, insertion of the ribozyme in place of the central domain of VA1 RNA led to production of full-length transcripts that were stable and located in the cytoplasm but that were not found to be active in vitro. Taken together, these results have important consequences for the future design of active intracellular ribozymes based on the use of pol III-transcribed genes.
Collapse
|
26
|
Westaway SK, Cagnon L, Chang Z, Li S, Li H, Larson GP, Zaia JA, Rossi JJ. Virion encapsidation of tRNA(3Lys)-ribozyme chimeric RNAs inhibits HIV infection. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:185-97. [PMID: 9669656 DOI: 10.1089/oli.1.1998.8.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retroviruses require a specific host cellular tRNA primer for initiation of first-strand DNA synthesis. This primer is bound by viral proteins and copackaged into virions. We have exploited this property in the design and testing of an antiviral ribozyme fused to tRNA(3Lys), the primer used for lentiviral replication, including human immunodeficiency virus (HIV-1 and HIV-2). The chimera consists of tRNA(3Lys) covalently attached to a hammerhead ribozyme, which is targeted to the region immediately upstream of the primer binding site of the HIV-1 genome. The tRNA-ribozyme chimeric transcript is catalytically active in vitro and is efficiently bound by HIV reverse transcriptase with an affinity similar to that of tRNA(3Lys). We have expressed the chimeric RNAs from either the tRNA(3Lys) intragenic RNA polymerase III promoter or from a human U6 snRNA promoter. The U6 promoter results in up to 10-fold enhanced expression of the tRNA-ribozyme. Most importantly, the tRNA(3Lys)-ribozymes are encapsidated in HIV-1 virions such that they are effective in substantially reducing the level of infectious virus produced from cells cotransfected with HIV-1 proviral DNA. These results demonstrate the feasibility of using this novel strategy to reduce HIV infectivity and more generally indicate the potential power of using the retroviral primer tRNAs as tools for expressing and delivering ribozymes and other antiretroviral RNAs to the virion capsid.
Collapse
MESH Headings
- Anti-HIV Agents/pharmacology
- Base Sequence
- Cell Line
- HIV/drug effects
- HIV/genetics
- HIV/physiology
- HIV Reverse Transcriptase/metabolism
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA, Small Nuclear/genetics
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Lys/pharmacology
- RNA, Viral/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Transcription, Genetic
- Virion/physiology
- Virus Replication/drug effects
Collapse
Affiliation(s)
- S K Westaway
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010-3011, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Z, Roeder RG. DNA topoisomerase I and PC4 can interact with human TFIIIC to promote both accurate termination and transcription reinitiation by RNA polymerase III. Mol Cell 1998; 1:749-57. [PMID: 9660958 DOI: 10.1016/s1097-2765(00)80074-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A human TFIIIC-containing complex (operationally designated holo TFIIIC) has been isolated by immunoaffinity methods and further resolved into two components that are both required for promoter-directed transcription of the VA1 gene. One component, designated TFIIIC, contains 5 polypeptides previously ascribed to TFIIIC2 and 4 additional polypeptides that correspond to TFIIIC1. Included within the other component are factors, namely DNA topoisomerase I and PC4, previously shown to serve as coactivators for transcription by RNA polymerase II. Topoisomerase I and PC4 both enhance TFIIIC interactions with down-stream promoter regions and promote multiple, but not single, round transcription by RNA polymerase III from preformed preinitiation complexes. Novel functions for holo TFIIIC in transcription elongation and accurate termination events that could be important for efficient reinitiation are also described.
Collapse
Affiliation(s)
- Z Wang
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|
29
|
Abstract
We show that the high in vitro transcription efficiency of yeast RNA pol III is mainly due to rapid recycling. Kinetic analysis shows that RNA polymerase recycling on preassembled tDNA.TFIIIC.TFIIIB complexes is much faster than the initial transcription cycle. High efficiency of RNA pol III recycling is favored at high UTP concentrations and requires termination at the natural termination signal. Runoff transcription does not allow efficient recycling. The reinitiation process shows increased resistance to heparin as compared with the primary initiation cycle, as if RNA polymerase was not released after termination. Indeed, template competition assays show that RNA pol III is committed to reinitiate on the same gene. A model is proposed where the polymerase molecule is directly transferred from the termination site to the promoter.
Collapse
Affiliation(s)
- G Dieci
- Service de Biochimie et Génétique Moléculaire Commissariat à l'Energie Atomique-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
Affiliation(s)
- A M Edwards
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
31
|
Abstract
The transcription termination site for yeast RNA polymerase I requires not only an 11 bp binding site for Reb1p, but also about 46 bp of 5' flanking sequence. We propose that Reb1p bound to its site is part of a pause element, while the 5' flanking sequence contains a release element. Pausing requires little other than the DNA-binding domain of Reb1p and is not specific for polymerase I. The release element, however, can be polymerase specific. We propose a general model for eukaryotic transcription terminators in which termination occurs when a relatively nonspecific signal induces polymerase to pause in the context of a release element.
Collapse
Affiliation(s)
- W H Lang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104-2092
| | | | | | | | | |
Collapse
|
32
|
Aiyar S, Helmann J, deHaseth P. A mismatch bubble in double-stranded DNA suffices to direct precise transcription initiation by Escherichia coli RNA polymerase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Daube SS, von Hippel PH. RNA displacement pathways during transcription from synthetic RNA-DNA bubble duplexes. Biochemistry 1994; 33:340-7. [PMID: 7506932 DOI: 10.1021/bi00167a044] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previously [Daube, S.S., & von Hippel, P.H. (1992) Science 258, 1320] we have shown that functional transcription elongation complexes can be formed by adding ribonucleotide triphosphates, Mg2+, and either Escherichia coli or T7 RNA polymerase to synthetic RNA-DNA bubble-duplex constructs. Here these observations are extended to show that the RNA transcripts synthesized from these bubble-duplex constructs are properly displaced from the DNA template during transcription. Some details of the displacement process differ between the polymerases tested. Thus the transcript is fully and processively displaced in the course of T7 polymerase-catalyzed synthesis from the bubble-duplex constructs, while the presence of a large excess of an RNA (or DNA) oligomer complementary to the DNA template sequence within the "permanent" DNA bubble is required to attain complete displacement of the nascent RNA from the construct during synthesis with the core E. coli enzyme. In addition, a correlation is shown between proper RNA displacement and the achievement of full-length transcript synthesis. We conclude that both the T7 polymerase and the E. coli core enzyme actively displace the nascent transcript during elongation and that the requirement for an RNA trap with the E. coli enzyme reflects its slower rate of synthesis. This suggests that these experiments may provide insight into the relative rates of transcript elongation and secondary structure formation within the nascent RNA in elongation and termination. By use of the RNA oligomer trap methodology, multiple rounds of transcript synthesis should be achievable on these bubble-duplex constructs with any polymerase.
Collapse
Affiliation(s)
- S S Daube
- Department of Chemistry, University of Oregon, Eugene 97403
| | | |
Collapse
|