1
|
Abstract
Previous studies have described a transcriptional "memory effect," whereby transcript levels of many Abf1-regulated genes in the budding yeast Saccharomyces cerevisiae are undiminished even after Abf1 has dissociated from its regulatory sites. Here we provide additional support for this effect and investigate its molecular basis. We show that the effect is observed in a distinct abf1 ts mutant from that used in earlier studies, demonstrating that it is robust, and use chromatin immunoprecipitation to show that Abf1 association is decreased similarly from memory effect and transcriptionally responsive genes at the restrictive temperature. We also demonstrate that the association of TATA-binding protein and Pol II decreases after the loss of Abf1 binding for transcriptionally responsive genes but not for memory effect genes. Examination of genome-wide nucleosome occupancy data reveals that although transcriptionally responsive genes exhibit increased nucleosome occupancy in abf1 ts yeast, the promoter regions of memory effect targets show no change in abf1 ts mutants, maintaining an open chromatin conformation even after Abf1 eviction. This contrasting behavior reflects different inherent propensity for nucleosome formation between the two classes, driven by the presence of A/T-rich sequences upstream of the Abf1 site in memory effect gene promoters. These sequence-based differences show conservation in closely related fungi and also correlate with different gene expression noise, suggesting a physiological basis for greater access to "memory effect" promoter regions. Thus, our results establish a conserved mechanism underlying a transcriptional memory effect whereby sequences surrounding Abf1 binding sequences affect local nucleosome occupancy following loss of Abf1 binding. Furthermore, these findings demonstrate that sequence-based differences in the propensity for nucleosome occupancy can influence the transcriptional response of genes to an altered regulatory signal.
Collapse
|
2
|
Lin Z, Wang TY, Tsai BS, Wu FT, Yu FJ, Tseng YJ, Sung HM, Li WH. Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts. Genome Biol Evol 2013; 5:1065-78. [PMID: 23650209 PMCID: PMC3698916 DOI: 10.1093/gbe/evt067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Woo DK, Phang TL, Trawick JD, Poyton RO. Multiple pathways of mitochondrial-nuclear communication in yeast: Intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:135-45. [DOI: 10.1016/j.bbagrm.2008.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/14/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
|
4
|
Yarragudi A, Parfrey LW, Morse RH. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. Nucleic Acids Res 2006; 35:193-202. [PMID: 17158163 PMCID: PMC1802568 DOI: 10.1093/nar/gkl1059] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abf1 and Rap1 are general regulatory factors (GRFs) that contribute to transcriptional activation of a large number of genes, as well as to replication, silencing and telomere structure in yeast. In spite of their widespread roles in transcription, the scope of their functional targets genome-wide has not been previously determined. Here, we use microarrays to examine the contribution of these essential GRFs to transcription genome-wide, by using ts mutants that dissociate from their binding sites at 37°C. We then combine this data with published ChIP-chip studies and motif analysis to identify probable direct targets for Abf1 and Rap1. We also identify a substantial number of genes likely to bind Rap1 or Abf1, but not affected by loss of GRF binding. Interestingly, the results strongly suggest that Rap1 can contribute to gene activation from farther upstream than can Abf1. Also, consistent with previous work, more genes that bind Abf1 are unaffected by loss of binding than those that bind Rap1. Finally, we show for several such genes that the Abf1 C-terminal region, which contains the putative activation domain, is not needed to confer this peculiar ‘memory effect’ that allows continued transcription after loss of Abf1 binding.
Collapse
Affiliation(s)
- Arunadevi Yarragudi
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of HealthAlbany, NY 12201-2002, USA
| | - Laura Wegener Parfrey
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of HealthAlbany, NY 12201-2002, USA
| | - Randall H. Morse
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of HealthAlbany, NY 12201-2002, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public HealthAlbany, NY 12201-2002, USA
- To whom correspondence should be addressed. Tel: +1 518 486 3116; Fax: +1 518 474 3181;
| |
Collapse
|
5
|
Wheeler GL, Trotter EW, Dawes IW, Grant CM. Coupling of the Transcriptional Regulation of Glutathione Biosynthesis to the Availability of Glutathione and Methionine via the Met4 and Yap1 Transcription Factors. J Biol Chem 2003; 278:49920-8. [PMID: 14514673 DOI: 10.1074/jbc.m310156200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Depletion of the cellular pool of glutathione is detrimental to eukaryotic cells and in Saccharomyces cerevisiae leads to sensitivity to oxidants and xenobiotics and an eventual cell cycle arrest. Here, we show that the Yap1 and Met4 transcription factors regulate the expression of gamma-glutamylcysteine synthetase (GSH1), encoding the rate-limiting enzyme in glutathione biosynthesis to prevent the damaging effects of glutathione depletion. Transcriptional profiling of a gsh1 mutant indicates that glutathione depletion leads to a general activation of Yap1 target genes, but the expression of Met4-regulated genes remains unaltered. Glutathione depletion appears to result in Yap1 activation via oxidation of thioredoxins, which normally act to down-regulate the Yap1-mediated response. The requirement for Met4 in regulating GSH1 expression is lost in the absence of the centromere-binding protein Cbf1. In contrast, the Yap1-mediated effect is unaffected, indicating that Met4 acts via Cbf1 to regulate the Yap1-mediated induction of GSH1 expression in response to glutathione depletion. Furthermore, yeast cells exposed to the xenobiotic 1-chloro-2,4-dintrobenzene are rapidly depleted of glutathione, accumulate oxidized thioredoxins, and elicit the Yap1/Met4-dependent transcriptional response of GSH1. The addition of methionine, which promotes Met4 ubiquitination and inactivation, specifically represses GSH1 expression after 1-chloro-2,4-dintrobenzene exposure but does not affect Yap1 activation. These results indicate that the Yap1-dependent activation of GSH1 expression in response to glutathione depletion is regulated by the sulfur status of the cell through a specific Met4-dependent mechanism.
Collapse
Affiliation(s)
- Glen L Wheeler
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | |
Collapse
|
6
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Brandão RL, Etchebehere L, Queiroz CC, Trópia MJ, Ernandes JR, Gonçalves T, Loureiro-Dias MC, Winderickx J, Thevelein JM, Leiper FC, Carling D, Castro IM. Evidence for involvement of Saccharomyces cerevisiae protein kinase C in glucose induction of HXT genes and derepression of SUC2. FEMS Yeast Res 2002; 2:93-102. [PMID: 12702297 DOI: 10.1111/j.1567-1364.2002.tb00074.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Delta mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V(max) of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Delta mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Delta mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade.
Collapse
Affiliation(s)
- R L Brandão
- Laboratório de Bioquímica Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schroeder SC, Weil PA. Genetic tests of the role of Abf1p in driving transcription of the yeast TATA box bindng protein-encoding gene, SPT15. J Biol Chem 1998; 273:19884-91. [PMID: 9677425 DOI: 10.1074/jbc.273.31.19884] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report we describe studies which utilized yeast strains bearing gain and loss of function alleles of ABF1 in order to attempt to directly implicate Abf1p in modulating transcription of the TBP-encoding gene, SPT15, in vivo. We found that overexpression of Abf1p in a yeast cell increased transcription of the TBP-encoding gene and that this stimulation depended upon the exact sequence of the Abf1p binding site (ABF1) present in the gene. Further, in a yeast strain expressing a temperature sensitive form of Abf1p, occupancy of the chromosomal ABF1 site in the TBP-encoding gene was immediately lost following a temperature shift. Both results suggest that Abf1p drives transcription of the TBP-encoding gene. Surprisingly though we found that continuous ABF1 cis-element occupancy by Abf1p was not acutely required for normal levels of transcription of either the TBP-encoding gene or other "Abf1p-driven" genes tested. We propose a model to explain these results and suggest mechanisms by which Abf1p could activate gene transcription.
Collapse
Affiliation(s)
- S C Schroeder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|
9
|
Ruzzi M, Marconi A, Saliola M, Fabiani L, Montebove F, Frontali L. The sequence of a 8 kb segment on the right arm of yeast chromosome VII identifies four new open reading frames and the genes for yTAFII145. Yeast 1997; 13:365-8. [PMID: 9133740 DOI: 10.1002/(sici)1097-0061(19970330)13:4<365::aid-yea78>3.0.co;2-f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the sequence of a 8,061 bp fragment of Saccharomyces cerevisiae chromosome VII. Five open reading frames (ORFs) of at least 100 amino acids were identified. Three show similarities to the amino-acid sequence of known gene products. ORF G9374 corresponds to the gene coding for the yTAFII145 protein: a TBP-associated factor whose amino-acid sequence was previously reported (Reese et al., 1994). The remaining ORF does not display similarities to known sequences.
Collapse
Affiliation(s)
- M Ruzzi
- Department of Agrobiology and Agrochemistry, University of Viterbo La Tuscia, Italy
| | | | | | | | | | | |
Collapse
|
10
|
De Winde JH, Crauwels M, Hohmann S, Thevelein JM, Winderickx J. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:633-43. [PMID: 8917466 DOI: 10.1111/j.1432-1033.1996.00633.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Addition of rapidly fermentable sugars to cells of the yeast Saccharomyces cerevisiae grown on nonfermentable carbon sources causes a variety of short-term and long-term regulatory effects, leading to an adaptation to fermentative metabolism. One important feature of this metabolic switch is the occurrence of extensive transcriptional repression of a large group of genes. We have investigated transcriptional regulation of the SUC2 gene encoding repressible invertase, and of HXK1, HXK2 and GLK1 encoding the three known yeast hexose kinases during transition from derepressed to repressed growth conditions. Comparing yeast strains that express various combinations of the hexose kinase genes, we have determined the importance of each of these kinases for establishing the catabolite-repressed state. We show that catabolite repression involves two distinct mechanisms. An initial rapid response is mediated through any kinase, including Glk1, which is able to phosphorylate the available sugar. In contrast, long-term repression specifically requires Hxk2 on glucose and either Hxk1 or Hxk2 on fructose. Both HXK1 and GLK1 are repressed upon addition of glucose or fructose. However, fructose repression of Hxk1 is only transient, which is in line with its preference for fructose as substrate and its requirement for long-term fructose repression. In addition, expression of HXK1 and GLK1 is regulated through cAMP-dependent protein kinase. These results indicate that sugar sensing and establishment of catabolite repression are controlled by an interregulatory network, involving all three yeast sugar kinases and the Ras-cAMP pathway.
Collapse
Affiliation(s)
- J H De Winde
- Departement Biologie, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
11
|
Oechsner U, Bandlow W. Interactions of the yeast centromere and promoter factor, Cpf1p, with the cytochrome c1 upstream region and functional implications on regulated gene expression. Nucleic Acids Res 1996; 24:2395-403. [PMID: 8710512 PMCID: PMC145936 DOI: 10.1093/nar/24.12.2395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The upstream activation site (UAS) of the cytochrome c1 gene, CYT1, contains sequences for DNA-binding of several transcription factors. Among them are the heme-dependent protein, Hap1p, and the multiprotein complex, Hap2/3/4/5, which mediate transcriptional induction under aerobic conditions and after exhaustion of glucose, respectively. The multiple interactions of nuclear proteins with the UAS region of CYT1 observed in electrophoretic mobility shift experiments are influenced by carbon source and oxygen tension, but are independent of both regulators, Hap1p and Hap2/3/4/5. All protein-DNA complexes obtained are solely due to the association of the centromere and promoter factor 1 (Cpf1p) with the centromere determining element (CDE I)-like motif at the 5' boundary of the UAS(CYT1). This motif overlaps with a consensus sequence for the binding of the general factor Abf1p. Functional analyses after the separate introduction of point mutations into both elements reveal no role for the latter protein and only a minor role for Cpf1p in the regulated expression of CYT1/lacZ chimaeric proteins. However, in cpf1-mutants, induction of CYT1 reaches higher steady state levels and adaptation to aerobic conditions occurs faster than in wild-type. Thus, Cpf1p seems to reduce CYT1 promoter activity under partly inducing conditions, e.g. when only one of the activators, Hap1p or the Hap2 complex, exerts its function.
Collapse
Affiliation(s)
- U Oechsner
- Institute for Genetics and Microbiology, Universität Munchen, Germany
| | | |
Collapse
|
12
|
Packham EA, Graham IR, Chambers A. The multifunctional transcription factors Abf1p, Rap1p and Reb1p are required for full transcriptional activation of the chromosomal PGK gene in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:348-56. [PMID: 8602150 DOI: 10.1007/bf02174393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have identified two new transcription factor binding sites upstream of the previously defined UAS within the phosphoglycerate kinase (PGK) gene promoter in Saccharomyces cerevisiae. These sites are bound in vitro by the multifunctional factors Cpf1p and Reb1p. We have generated targeted deletions of Rap1p, Abf1p and Reb1p binding sites in the promoter of the chromosomal copy of the PGK gene. Northern blot analysis confirmed that most PGK promoter activity is mediated through the Rap1p binding site. However, significant effects are also mediated through both the Reb1p and Abf1p sites. In contrast, when the promoter is present on a high-copy-number plasmid, both the Abf1p and Reb1p sites play no role in transcriptional activation. The role of Cpf1p was examined using a cpf1 null strain. Cpf1p was found to have little if any, effect on activation of either the chromosomal or plasmid-borne PGK gene.
Collapse
Affiliation(s)
- E A Packham
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
13
|
Chambers A, Packham EA, Graham IR. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr Genet 1995; 29:1-9. [PMID: 8595651 DOI: 10.1007/bf00313187] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Chambers
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
14
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
15
|
Planta RJ, Gonçalves PM, Mager WH. Global regulators of ribosome biosynthesis in yeast. Biochem Cell Biol 1995; 73:825-34. [PMID: 8721998 DOI: 10.1139/o95-090] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Three abundant ubiquitous DNA-binding protein factors appear to play a major role in the control of ribosome biosynthesis in yeast. Two of these factors mediate the regulation of transcription of ribosomal protein genes (rp-genes) in yeasts. Most yeast rp-genes are under transcriptional control of Rap1p (repressor-activator protein), while a small subset of rp-genes is activated through Abf1p (ARS binding factor). The third protein, designated Reb1p (rRNA enhancer binding protein), which binds strongly to two sites located upstream of the enhancer and the promoter of the rRNA operon, respectively, appears to play a crucial role in the efficient transcription of the chromosomal rDNA. All three proteins, however, have many target sites on the yeast genome, in particular, in the upstream regions of several Pol II transcribed genes, suggesting that they play a much more general role than solely in the regulation of ribosome biosynthesis. Furthermore, some evidence has been obtained suggesting that these factors influence the chromatin structure and creat a nucleosome-free region surrounding their binding sites. Recent studies indicate that the proteins can functionally replace each other in various cases and that they act synergistically with adjacent additional DNA sequences. These data suggest that Abf1p, Rap1p, and Reb1p are primary DNA-binding proteins that serve to render adjacent cis-acting elements accessible to specific trans-acting factors.
Collapse
Affiliation(s)
- R J Planta
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam Vrije Universiteit, The Netherlands
| | | | | |
Collapse
|
16
|
De Winde JH, Grivell LA. Regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Intricate interplay between general and specific transcription factors in the promoter of the QCR8 gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:200-8. [PMID: 7588747 DOI: 10.1111/j.1432-1033.1995.200_1.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcription of the QCR8 gene, encoding subunit VIII of the Saccharomyces cerevisiae mitochondrial ubiquinol-cytochrome c oxidoreductase (QCR), is controlled by the carbon-source-dependent heme-activator protein complex HAP2/3/4 and the general transcriptional regulators autonomous replication-site-binding factor ABF1 and centromere-binding and promoter-binding factor CPF1. In this study, we investigate and dissect the relative contributions and mutual interactions of these regulators in transcriptional control. Transcription was analyzed both under steady-state conditions and during nutritional shifts, in hap delta mutants and after site-specific mutagenesis of the various binding sites in the chromosomal context of the QCR8 gene. We present evidence for both direct and indirect interactions between ABF1 and HAP2/3/4, and show that HAP2/3/4 is essential for a rapid transcriptional induction during transition from repressed to derepressed conditions. However, the activator is not the only determinant for carbon-source-dependent regulation, and we observe a functional difference between HAP2/3/4 and the HAP2/3 subcomplex. ABF1 is required for maintainance of basal repressed and derepressed transcription in the steady state of growth. The repressive action of the negative modulator CPF1 during escape from glucose repression is overcome through the cooperative action of ABF1 and HAP2/3/4. The implications of the intricate interactions of these DNA-binding regulators for control of expression of mitochondrial protein genes are discussed.
Collapse
Affiliation(s)
- J H De Winde
- Section for Molecular Biology, Institute for Molecular Cell Biology, BioCentrum Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Mulder W, Scholten IH, Grivell LA. Carbon catabolite regulation of transcription of nuclear genes coding for mitochondrial proteins in the yeast Kluyveromyces lactis. Curr Genet 1995; 28:267-73. [PMID: 8529273 DOI: 10.1007/bf00309786] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Promoter regions of the KlQCR7, KlQCR8 and KlCYC1 genes, coding for subunits of the bc1-complex and cytochrome c respectively, in the short-term Crabtree-negative yeast Kluyveromyces lactis differ markedly in sequence from their Saccharomyces cerevisiae counterparts. They have, however, conserved very similar configurations of binding-site motifs for various transcription factors known to be involved in global and carbon-source regulation in S. cerevisiae. To investigate the carbon source-dependent expression of these genes in K. lactis, we have carried out medium-shift experiments and determined transcript levels during the shifts. In sharp contrast to the situation in S. cerevisiae, the level of expression in K. lactis is not affected when glucose is added to a non-fermentable carbon-source medium. However, the genes are not constitutively expressed, but become significantly induced when the cells are shifted from glucose to a non-fermentable carbon source. Finally, induction of transcriptional activation does not occur in media containing both glucose and non-fermentable carbon sources.
Collapse
Affiliation(s)
- W Mulder
- Section for Molecular Biology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Betina S, Gavurníková G, Haviernik P, Sabová L, Kolarov J. Expression of the AAC2 gene encoding the major mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae is controlled at the transcriptional level by oxygen, heme and HAP2 factor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:651-7. [PMID: 7758459 DOI: 10.1111/j.1432-1033.1995.tb20510.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the Saccharomyces cerevisiae AAC2 gene encoding the major mitochondrial ADP/ATP carrier was examined. The intracellular level of the carrier protein, as well as the level of the AAC2-gene-specific mRNA, is influenced by the presence or absence of oxygen or of heme, and it is subject to carbon-source control. In addition, the expression of AAC2 gene requires the products of the HAP2 and HAP3 genes, but not that of the HAP1 gene. The 5'-flanking region of the gene was isolated, sequenced and fused to the lacZ reporter gene in order to study the effect of carbon sources and of specific deletion mutations on expression of the gene in yeast transformants. The expression of the reporter gene reveals that the AAC2 gene possesses a strong inducible promoter. The promoter analysis, combined with expression studies in the wild-type as well as in various mutant strains, identified an upstream activation site (UAS) contained within a sequence between -393 bp and -268 bp, and several major initiation sites of AAC2 mRNA between -105bp and -95 bp. Deletion analysis also shows that the TATA boxes located 45 bp and 104 bp upstream of the 5'-ends of AAC2 mRNA are not essential for the transcription. The UAS of the AAC2 gene is required for activation by HAP2 and heme and for release from glucose repressin. A restriction fragment containing the UAS conferred oxygen and carbon source regulation when placed upstream of another yeast gene encoding ADP/ATP carrier (AAC3), deleted of its regulatory sequences. The UAS of the AAC2 gene contains at least two distinct motifs for DNA-binding transcriptional activators, including one which is identical with the core HAP2/3/4 binding motif, and a second one with the ABF1 consensus binding sequence. Our results indicate that these sequences mediate the effects of the respective transactivator on the oxygen- and carbon-source-dependent transcription of the AAC2 gene.
Collapse
Affiliation(s)
- S Betina
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava
| | | | | | | | | |
Collapse
|
19
|
Künzler M, Springer C, Braus GH. Activation and repression of the yeast ARO3 gene by global transcription factors. Mol Microbiol 1995; 15:167-78. [PMID: 7752892 DOI: 10.1111/j.1365-2958.1995.tb02231.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ARO3 gene of Saccharomyces cerevisiae codes for the phenylalanine-inhibited 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (EC 4.1.2.15) and is regulated by the general control system of amino acid biosynthesis through a single GCN4-binding site in its promoter. A combined deletion and mutation analysis of the ARO3 promoter region in a delta gcn4-background revealed two additional regulatory systems involved in ARO3 transcription. The ARO3 gene is (i) activated through a sequence element which binds the multifunctional DNA-binding protein ABF1 in vitro and (ii) repressed through an URS1 element, which binds the same protein in vitro as the URS1 element in the CAR1 promoter. Since both the ABF1-binding site and the URS1 element represent cis-acting elements of global transcription regulatory systems in yeast, the ARO3 gene is the first example of a GCN4-regulated gene which is both activated and repressed by global transcription factors. Activation of the ARO3 gene through the ABF1-binding site and repression through the URS1 element seem to be independent of each other and independent of activation by the GCN4 protein.
Collapse
Affiliation(s)
- M Künzler
- Institut für Mikrobiologie, Biochemie und Genetik, Friedrich-Alexander-Universität, Erlangen, Germany
| | | | | |
Collapse
|
20
|
Mulder W, Scholten IH, van Roon H, Grivell LA. Isolation and characterisation of the linked genes APA2 and QCR7, coding for Ap4A phosphorylase II and the 14 kDa subunit VII of the mitochondrial bc1-complex in the yeast Kluyveromyces lactis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:719-23. [PMID: 7948033 DOI: 10.1016/0167-4781(94)90235-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the isolation and characterization of the KlQCR7 gene encoding subunit VII of the mitochondrial bc1 complex of the yeast Kluyveromyces lactis. The coding region is 69.3% identical to its counterpart in Saccharomyces cerevisiae (ScQCR7). Like the KlQCR8 gene (Mulder et al., accompanying paper) expression of the KlQCR7 gene during growth on glucose is high and can be further induced when cells are grown on non-fermentable carbon sources. The chromosomal linkage of the APA2 and QCR7 genes is conserved between S. cerevisiae and K. lactis. The intergenic regions containing the QCR7 promoters of the two yeasts, differ significantly in length and lack overall DNA sequence similarity, but they do share a binding site for the transcription factor complex HAP2/3/4. The KlQCR7 promoter contains, in addition, a CPF1 consensus binding site which is absent from ScQCR7. Deletion of a 35 bp region containing these two sites severely lowers the mRNA expression during growth on both glucose and ethanol/glycerol, but growth rate on both carbon sources is only mildly affected. Interestingly, in respect to the KlQCR7 gene, KlCPF1 seems to act as an important transcriptional activator, thus contrasting the proposed repressor function of ScCPF1 for the ScQCR8 gene of S. cerevisiae.
Collapse
Affiliation(s)
- W Mulder
- Section for Molecular Biology, Biocentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
21
|
Mulder W, Scholten IH, Nagelkerken B, Grivell LA. Isolation and characterisation of the linked genes, FPS1 and QCR8, coding for farnesyl-diphosphate synthase and the 11 kDa subunit VIII of the mitochondrial bc1-complex in the yeast Kluyveromyces lactis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:713-8. [PMID: 7948032 DOI: 10.1016/0167-4781(94)90234-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The KlQCR8 gene of the yeast Kluyveromyces lactis encoding subunit VIII of the mitochondrial bc1 complex is 70.2% identical to its counterpart in Saccharomyces cerevisiae (ScQCR8). As in S. cerevisiae, chromosomal linkage between the K. lactis QCR8 and FPS1 genes is conserved, the two genes being separated by only 292 bp. Disruption of the KlQCR8 gene results in a respiratory-deficient phenotype. Compared with S. cerevisiae, expression of the KlQCR8 gene in glucose-grown cells is relatively high, yet is significantly induced when the cells are grown on non-fermentable carbon sources. The QCR8 promoters regions of the two yeasts lack overall DNA sequence similarity, but share DNA-binding sites for the transcription factors ABF1, CPF1 and HAP2/3/4. Deletion from the KlQCR8 promoter of a 93 bp region containing these sites significantly lowers mRNA levels during growth on either glucose or ethanol/glycerol, with a consequent reduction of growth rate on ethanol/glycerol.
Collapse
Affiliation(s)
- W Mulder
- Section for Molecular Biology, Biocentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Mulder W, Scholten IH, de Boer RW, Grivell LA. Sequence of the HAP3 transcription factor of Kluyveromyces lactis predicts the presence of a novel 4-cysteine zinc-finger motif. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:96-106. [PMID: 7845362 DOI: 10.1007/bf00279755] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Kluyveromyces lactis homologue of the Saccharomyces cerevisiae HAP3 gene was isolated by functional complementation of the respiratory-deficient phenotype of the S. cerevisiae hap3::HIS4 strain SHY40. The KlHAP3 gene encodes a protein of 205 amino acids, of which the central B-domain of 90 residues is highly homologous to HAP3 counterparts of S. cerevisiae and higher eukaryotes. The protein contains a novel 4-cysteine zinc-finger motif and we propose by analogy that all other homologous HAP3 proteins contain the same motif, with the position containing the third cysteine being occupied by a serine residue. In contrast to the situation in S. cerevisiae, disruption of the KlHAP3 gene in K. lactis does not result in a respiratory-deficient phenotype and the growth of the null strain is indistinguishable from wild type. There is also no effect on the expression of the carbon source-regulated KlCYC1 gene, suggesting either a different role for the HAP2/3/4 complex, or the existence of a different mechanism of carbon source regulation. Sequence verification of the S. cerevisiae HAP3 locus reveals that, just as in K. lactis, a long open reading frame (ORF) is present upstream of the HAP3 gene. These highly homologous ORFs are predicted to have at least eight membrane-spanning fragments, but do not show significant homology to any known sequence present in databases. The ScORFX gene is transcribed in the opposite direction to ScHAP3, but, in contrast to an earlier report by Hahn et al. (1988), the transcripts of the two genes do not overlap. The model proposed by these authors, in which the ScHAP3 gene is regulated by an anti-sense non-coding mRNA, is therefore not correct.
Collapse
Affiliation(s)
- W Mulder
- Section for Molecular Biology, Institute for Molecular Cell Biology, Biocentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Dang VD, Valens M, Bolotin-Fukuhara M, Daignan-Fornier B. A genetic screen to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Yeast 1994; 10:1273-83. [PMID: 7900416 DOI: 10.1002/yea.320101004] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have developed a screening method to isolate yeast genes regulated by a specific transcription activator. The screen is based on the use of expression libraries in which the lacZ reporter gene is placed under control of yeast regulatory elements. Two partially representative libraries, constructed by different methods, were used to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Among 26 fusions shown to be regulated by Hap2p only CYT1 was known to be regulated by this activator. Sequence analysis revealed that most of the remaining regulated fusions are in new yeast genes, while some are in previously characterized yeast genes (PTP1, RPM2, SDH1). Optimal expression of these three genes also requires Hap3p and Hap4p and is regulated by carbon source. Hap2p was known to regulate expression of genes involved in Krebs cycle, electron transport and heme biosynthesis. Our results suggest that Hap2p could play a more general role by regulating other mitochondrial processes such as protein import and phosphate transport (PTP1) or maturation of mitochondrial tRNAs (RPM2). Among the remaining regulated fusions, two of them correspond to open reading frames (ORFs) on chromosomes III and XI whose nucleotide sequences have been entirely determined. The use of this approach to functionally analyse ORFs of unknown function is discussed.
Collapse
Affiliation(s)
- V D Dang
- Laboratoire de Génétique Moléculaire, Université de Paris Sud, Orsay, France
| | | | | | | |
Collapse
|
24
|
Mulder W, Winkler AA, Scholten IH, Zonneveld BJ, de Winde JH, Yde Steensma H, Grivell LA. Centromere promoter factors (CPF1) of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis are functionally exchangeable, despite low overall homology. Curr Genet 1994; 26:198-207. [PMID: 7859301 DOI: 10.1007/bf00309548] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The KlCPF1 gene, coding for the centromere and promoter factor CPF1 from Kluyveromyces lactis, has been cloned by functional complementation of the methionine auxotrophic phenotype of a Saccharomyces cerevisiae mutant lacking ScCPF1. The amino-acid sequences of both CPF1 proteins show a relatively-low overall identity (31%), but a highly-homologous C-terminal domain (86%). This region constitutes the DNA-binding domain with basic-helix-loop-helix and leucine-zipper motifs, features common to the myc-related transcription factor family. The N-terminal two-thirds of the CPF1 proteins show no significant similarity, although the presence of acidic regions is a shared feature. In KlCPF1, the acidic region is a prominent stretch of approximately 40 consecutive aspartate and glutamate residues, suggesting that this part might be involved in transcriptional activation. In-vitro mobility-shift experiments were used to establish that both CPF1 proteins bind to the consensus binding site RTCACRTG (CDEI element). In contrast to S. cerevisiae, CPF1 gene-disruption is lethal in K. lactis. The homologous CPF1 genes were transformed to both S. cerevisiae and K. lactis cpf1-null strains. Indistinguishable phenotypes were observed, indicating that, not withstanding the long nonconserved N-terminal region, the proteins are sufficiently homologous to overcome the phenotypes associated with cpf1 gene-disruption.
Collapse
Affiliation(s)
- W Mulder
- Section for Molecular Biology, Biocentrum Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Rosenkrantz M, Kell CS, Pennell EA, Devenish LJ. The HAP2,3,4 transcriptional activator is required for derepression of the yeast citrate synthase gene, CIT1. Mol Microbiol 1994; 13:119-31. [PMID: 7984086 DOI: 10.1111/j.1365-2958.1994.tb00407.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The yeast nuclear gene CIT1 encodes mitochondrial citrate synthase, which catalyses the first and rate-limiting step of the tricarboxylic acid (TCA) cycle. Transcription of CIT1 is subject to glucose repression. Mutations in HAP2, HAP3 or HAP4 block derepression of a CIT1-lacZ gene fusion. The HAP2,3,4 transcriptional activator also activates nuclear genes encoding components of the mitochondrial electron transport chain, and thus it co-ordinates derepression of two major mitochondrial functions. Two DNA sequences resembling the consensus HAP2,3,4-binding site (ACCAATNA) are located at approximately -310 and -290, upstream of the CIT1 coding sequence. Deletion and mutation analysis indicates that the -290 element is critical for activation by HAP2,3,4. Glucose-repressed expression of CIT1 is largely independent of HAP2,3,4, is repressed by glutamate, and requires a DNA sequence between -367 and -348. Evidence is presented for a second HAP2,3,4-independent activation element located just upstream and overlapping the -290 HAP2,3,4 element.
Collapse
Affiliation(s)
- M Rosenkrantz
- Department of Microbiology and Immunology, Virginia Commonwealth University/Medical College of Virginia, Richmond 23298-0678
| | | | | | | |
Collapse
|
26
|
Hoekstra R, Groeneveld P, Van Verseveld HW, Stouthamer AH, Planta RJ. Transcription regulation of ribosomal protein genes at different growth rates in continuous cultures of Kluyveromyces yeasts. Yeast 1994; 10:637-51. [PMID: 7524248 DOI: 10.1002/yea.320100508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the relationship between the growth rate of two Kluyveromyces strains that differ in their maximum growth rate, namely K. lactis (mumax = 0.5 h-1) and K. marxianus (mumax = 1.1 h-1), and the transcription rate of ribosomal protein (rp) genes in these strains. The growth rate of either strain was varied by culturing the cells in a chemostat under conditions of glucose limitation at different dilution rates. Although the steady-state levels of transcription of the rp-genes of both Kluyveromyces strains were tightly coupled to the cellular growth rate, no clear relationship between the level of rp-gene transcription and the amount of in vitro binding of the RAP1- and ABF1-like proteins to the promoters of these rp-genes was observed. Upon a sudden increase in the growth rate of a steady-state culture, the transcription of rp-genes of K. lactis showed a different response from that in K. marxianus. Whereas a substantial overexpression of the K. lactis rp-genes was found during at least 4-5 h, the level of expression of the K. marxianus rp-genes was almost immediately adjusted to the new growth rate.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Biochemistry and Molecular Biology, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Zollner A, Rödel G, Haid A. Expression of the Saccharomyces cerevisiae CYT2 gene, encoding cytochrome c1 heme lyase. Curr Genet 1994; 25:291-8. [PMID: 8082171 DOI: 10.1007/bf00351480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper we examine the expression of the Saccharomyces cerevisiae CYT2 gene, which encodes cytochrome c1 heme lyase. This enzyme is required for covalent attachment of heme to apocytochrome c1, a subunit of the mitochondrial respiratory chain. Transcription of the 1-kb CYT2 mRNA initiates at four prominent sites at a distance of 52-225 bp in front of the AUG start codon. The level of CYT2 mRNA is not influenced by the presence or absence of oxygen or of heme, but it is subject to carbon-source control. The concentration of the CYT2 mRNA is significantly reduced in glucose-grown cells as compared to cells grown under non-repressing conditions. Neither the HAPp activator proteins nor MIG1p, a repressor protein involved in glucose repression, seem to mediate this effect.
Collapse
Affiliation(s)
- A Zollner
- Institut für Genetik und Mikrobiologie, Universität München, Germany
| | | | | |
Collapse
|
28
|
Vander Zee C, Jordan E, Breen G. ATPF1 binding site, a positive cis-acting regulatory element of the mammalian ATP synthase alpha-subunit gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37469-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
De Winde JH, Van Leeuwen HC, Grivell LA. The multifunctional regulatory proteins ABF1 and CPF1 are involved in the formation of a nuclease-hypersensitive region in the promoter of the QCR8 gene. Yeast 1993; 9:847-57. [PMID: 8212892 DOI: 10.1002/yea.320090805] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The abundant DNA-binding proteins ABF1 and CPF1 are members of a family of global regulators with diverse chromosomal functions in the yeast Saccharomyces cerevisiae. Recent evidence suggests that these protein factors may be involved in establishing and maintaining well-defined chromatin in promoter regions and other genetic elements. We have investigated the involvement of ABF1 and CPF1 in chromatin organization at the QCR8 gene, encoding subunit VIII of the mitochondrial ubiquinol-cytochrome c oxidoreductase. The promoter region of the QCR8 gene contains overlapping binding sites for ABF1 and CPF1. Nucleosome positioning studies indicate that the QCR8 gene is associated with a phased array of nucleosomes under both catabolite-repressed and derepressed growth conditions. Analysis of binding site mutants reveals that both ABF1 and CPF1 are involved in maintaining a nuclease-hypersensitive region in the QCR8 promoter. The chromatin structure at QCR8 during steady-state growth is, however, mainly dependent on binding of ABF1 to the promoter region. Implications of these findings for the role played by ABF1 and CPF1 in the regulation of mitochondrial biogenesis and other processes important for cell growth and division will be discussed.
Collapse
Affiliation(s)
- J H De Winde
- Department of Molecular Cell Biology, University of Amsterdam
| | | | | |
Collapse
|
30
|
Jordan EM, Breen GA. Upstream region of a nuclear gene encoding the alpha-subunit of the human mitochondrial F0F1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:115-7. [PMID: 8387339 DOI: 10.1016/0167-4781(93)90256-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An expressed nuclear gene (ATPA) that encodes the alpha-subunit of the human mitochondrial F0F1 ATP synthase complex was isolated from a human genomic library. The nucleotide sequence of the 5'-flanking region of this gene was determined. No typical TATA or CCAAT boxes were found in this region. The 5'-flanking region of this gene contains several sequences that are found in a number of nuclear genes that encode proteins of the mitochondrial oxidative phosphorylation system and which might play a role in regulating their expression. The nucleotide sequence of the 5'-flanking region of the human ATPA gene is highly homologous (overall homology approx. 70%) to the corresponding region of the bovine ATPA1 gene.
Collapse
Affiliation(s)
- E M Jordan
- Department of Molecular and Cell Biology, University of Texas, Dallas, Richardson 75083-0688
| | | |
Collapse
|
31
|
Abstract
It is becoming increasingly clear that nucleosome structure is integrally involved in gene regulation. In particular, the study of inducible genes has shown that nucleosomes not only contribute to a repressed basal state, but can also be rearranged in response to induction. The mechanism of this process is just beginning to be elucidated, and genetic studies have implicated several proteins in the modulation of nucleosome structure.
Collapse
Affiliation(s)
- J Svaren
- Institut für Physiologische Chemie, Universität München, Germany
| | | |
Collapse
|