1
|
Keyport Kik S, Christopher D, Glauninger H, Hickernell CW, Bard JAM, Lin KM, Squires AH, Ford M, Sosnick TR, Drummond DA. An adaptive biomolecular condensation response is conserved across environmentally divergent species. Nat Commun 2024; 15:3127. [PMID: 38605014 PMCID: PMC11009240 DOI: 10.1038/s41467-024-47355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cells must sense and respond to sudden maladaptive environmental changes-stresses-to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide a remarkable view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein-a core marker of stress granules-condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.
Collapse
Affiliation(s)
- Samantha Keyport Kik
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Dana Christopher
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Caitlin Wong Hickernell
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jared A M Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Kyle M Lin
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | | | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Mühlhofer M, Offensperger F, Reschke S, Wallmann G, Csaba G, Berchtold E, Riedl M, Blum H, Haslbeck M, Zimmer R, Buchner J. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress. FEBS Lett 2024; 598:635-657. [PMID: 38366111 DOI: 10.1002/1873-3468.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).
Collapse
Affiliation(s)
- Moritz Mühlhofer
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Felix Offensperger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Georg Wallmann
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Gergely Csaba
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Evi Berchtold
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| |
Collapse
|
3
|
Kik SK, Christopher D, Glauninger H, Hickernell CW, Bard JAM, Ford M, Sosnick TR, Drummond DA. An adaptive biomolecular condensation response is conserved across environmentally divergent species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551061. [PMID: 37546789 PMCID: PMC10402146 DOI: 10.1101/2023.07.28.551061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cells must sense and respond to sudden maladaptive environmental changes-stresses-to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide an unprecedented view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein-a core marker of stress granules-condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.
Collapse
Affiliation(s)
- Samantha Keyport Kik
- Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL
| | - Dana Christopher
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | - Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL
| | | | - Jared A. M. Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
| | | | - Tobin R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
4
|
Zeng L, Chen H, Wang Y, Hicks D, Ke H, Pruneda-Paz J, Dehesh K. ORA47 is a transcriptional regulator of a general stress response hub. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:562-571. [PMID: 35092704 DOI: 10.1111/tpj.15688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Transcriptional regulators of the general stress response (GSR) reprogram the expression of selected genes to transduce informational signals into cellular events, ultimately manifested in a plant's ability to cope with environmental challenges. Identification of the core GSR regulatory proteins will uncover the principal modules and their mode of action in the establishment of adaptive responses. To define the GSR regulatory components, we employed a yeast-one-hybrid assay to identify the protein(s) binding to the previously established functional GSR motif, termed the rapid stress response element (RSRE). This led to the isolation of octadecanoid-responsive AP2/ERF-domain transcription factor 47 (ORA47), a methyl jasmonate inducible protein. Subsequently, ORA47 transcriptional activity was confirmed using the RSRE-driven luciferase (LUC) activity assay performed in the ORA47 loss- and gain-of-function lines introgressed into the 4xRSRE::Luc background. In addition, the prime contribution of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) protein in the induction of RSRE was reaffirmed by genetic studies. Moreover, exogenous application of methyl jasmonate led to enhanced levels of ORA47 and CAMTA3 transcripts, as well as the induction of RSRE::LUC activity. Metabolic analyses illustrated the reciprocal functional inputs of ORA47 and CAMTA3 in increasing JA levels. Lastly, transient assays identified JASMONATE ZIM-domain1 (JAZ1) as a repressor of RSRE::LUC activity. Collectively, the present study provides fresh insight into the initial features of the mechanism that transduces informational signals into adaptive responses. This mechanism involves the functional interplay between the JA biosynthesis/signaling cascade and the transcriptional reprogramming that potentiates GSR. Furthermore, these findings offer a window into the role of intraorganellar communication in the establishment of adaptive responses.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Hao Chen
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yaqi Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Derrick Hicks
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Jose Pruneda-Paz
- Section of Cell and Developmental Biology, University of California, La Jolla, CA, 92093, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Liao HZ, Liao WJ, Zou DX, Zhang RQ, Ma JL. Identification and expression analysis of PUB genes in tea plant exposed to anthracnose pathogen and drought stresses. PLANT SIGNALING & BEHAVIOR 2021; 16:1976547. [PMID: 34633911 PMCID: PMC9208792 DOI: 10.1080/15592324.2021.1976547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The plant U-box (PUB) gene family, one of the major ubiquitin ligase families in plants, plays important roles in multiple cellular processes including environmental stress responses and resistance. The function of U-box genes has been well characterized in Arabidopsis and other plants. However, little is known about the tea plant (Camellia sinensis) PUB genes. Here, 89 U-box proteins were identified from the chromosome-scale referenced genome of tea plant. According to the domain organization and phylogenetic analysis, the tea plant PUB family were classified into ten classes, named Class I to X, respectively. Using previously released stress-related RNA-seq data in tea plant, we identified 34 stress-inducible CsPUB genes. Specifically, eight CsPUB genes were expressed differentially under both anthracnose pathogen and drought stresses. Moreover, six of the eight CsPUBs were upregulated in response to these two stresses. Expression profiling performed by qRT-PCR was consistent with the RNA-seq analysis, and stress-related cis-acting elements were identified in the promoter regions of the six upregulated CsPUB genes. These results strongly implied the putative functions of U-box ligase genes in response to biotic and abiotic stresses in tea plant.
Collapse
Affiliation(s)
- Hong-Ze Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi University for Nationalities, Nanning, China
| | - Wang-Jiao Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Dong-Xia Zou
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Ri-Qing Zhang
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Lin Ma
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| |
Collapse
|
6
|
Sporulation in Ashbya gossypii. J Fungi (Basel) 2020; 6:jof6030157. [PMID: 32872517 PMCID: PMC7558398 DOI: 10.3390/jof6030157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022] Open
Abstract
Ashbya gossypii is a filamentous ascomycete belonging to the yeast family of Saccharomycetaceae. At the end of its growth phase Ashbya generates abundant amounts of riboflavin and spores that form within sporangia derived from fragmented cellular compartments of hyphae. The length of spores differs within species of the genus. Needle-shaped Ashbya spores aggregate via terminal filaments. A. gossypii is a homothallic fungus which may possess a and α mating types. However, the solo-MATa type strain is self-fertile and sporulates abundantly apparently without the need of prior mating. The central components required for the regulation of sporulation, encoded by IME1, IME2, IME4, KAR4, are conserved with Saccharomyces cerevisiae. Nutrient depletion generates a strong positive signal for sporulation via the cAMP-PKA pathway and SOK2, which is also essential for sporulation. Strong inhibitors of sporulation besides mutations in the central regulatory genes are the addition of exogenous cAMP or the overexpression of the mating type gene MATα2. Sporulation has been dissected using gene-function analyses and global RNA-seq transcriptomics. This revealed a role of Msn2/4, another potential PKA-target, for spore wall formation and a key dual role of the protein A kinase Tpk2 at the onset of sporulation as well as for breaking the dormancy of spores to initiate germination. Recent work has provided an overview of ascus development, regulation of sporulation and spore maturation. This will be summarized in the current review with a focus on the central regulatory genes. Current research and open questions will also be discussed.
Collapse
|
7
|
Multi-kinase control of environmental stress responsive transcription. PLoS One 2020; 15:e0230246. [PMID: 32160258 PMCID: PMC7065805 DOI: 10.1371/journal.pone.0230246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/26/2020] [Indexed: 11/19/2022] Open
Abstract
Cells respond to changes in environmental conditions by activating signal transduction pathways and gene expression programs. Here we present a dataset to explore the relationship between environmental stresses, kinases, and global gene expression in yeast. We subjected 28 drug-sensitive kinase mutants to 10 environmental conditions in the presence of inhibitor and performed mRNA deep sequencing. With these data, we reconstructed canonical stress pathways and identified examples of crosstalk among pathways. The data also implicated numerous kinases in novel environment-specific roles. However, rather than regulating dedicated sets of target genes, individual kinases tuned the magnitude of induction of the environmental stress response (ESR)–a gene expression signature shared across the set of perturbations–in environment-specific ways. This suggests that the ESR integrates inputs from multiple sensory kinases to modulate gene expression and growth control. As an example, we provide experimental evidence that the high osmolarity glycerol pathway is an upstream negative regulator of protein kinase A, a known inhibitor of the ESR. These results elaborate the central axis of cellular stress response signaling.
Collapse
|
8
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Chen X, Jiang Y, Gao F, Zheng W, Krock TJ, Stover NA, Lu C, Katz LA, Song W. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 2019; 19:1292-1308. [PMID: 30985983 PMCID: PMC6764898 DOI: 10.1111/1755-0998.13023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
As a model organism for studies of cell and environmental biology, the free-living and cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e., separate germline and somatic nuclei in each cell/organism), "gene-sized" chromosomes, stop codon reassignment, programmed ribosomal frameshifting (PRF) and strong resistance to environmental stressors. However, the molecular mechanisms that account for these remarkable traits remain largely unknown. Here we report a combined analysis of de novo assembled high-quality macronuclear (MAC; i.e., somatic) and partial micronuclear (MIC; i.e., germline) genome sequences for E. vannus, and transcriptome profiling data under varying conditions. The results demonstrate that: (a) the MAC genome contains more than 25,000 complete "gene-sized" nanochromosomes (~85 Mb haploid genome size) with the N50 ~2.7 kb; (b) although there is a high frequency of frameshifting at stop codons UAA and UAG, we did not observe impaired transcript abundance as a result of PRF in this species as has been reported for other euplotids; (c) the sequence motif 5'-TA-3' is conserved at nearly all internally-eliminated sequence (IES) boundaries in the MIC genome, and chromosome breakage sites (CBSs) are duplicated and retained in the MAC genome; (d) by profiling the weighted correlation network of genes in the MAC under different environmental stressors, including nutrient scarcity, extreme temperature, salinity and the presence of ammonia, we identified gene clusters that respond to these external physical or chemical stimulations, and (e) we observed a dramatic increase in HSP70 gene transcription under salinity and chemical stresses but surprisingly, not under temperature changes; we link this temperature-resistance to the evolved loss of temperature stress-sensitive elements in regulatory regions. Together with the genome resources generated in this study, which are available online at Euplotes vannus Genome Database (http://evan.ciliate.org), these data provide molecular evidence for understanding the unique biology of highly adaptable microorganisms.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Weibo Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Timothy J. Krock
- Department of Computer Science and Information Systems, Bradley University, Peoria, IL 61625, USA
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
10
|
Vamvakas SS, Kapolos J, Farmakis L, Koskorellou G, Genneos F. Ser625 of msn2 transcription factor is indispensable for ethanol tolerance and alcoholic fermentation process. Biotechnol Prog 2019; 35:e2837. [PMID: 31087774 DOI: 10.1002/btpr.2837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 11/11/2022]
Abstract
The genetic modification of yeast strains can be used as an approach for the improvement of ethanol fermentation. msn2p transcription factor is implicated in yeast stress response and its activation is controlled by protein kinase A (PKA). PKA activation inhibits the translocation of msn2p to the nucleus. An in silico analysis of msn2 protein sequence revealed serine residue at position 625 as a potent target of PKA. Thus, substitution of this serine residue with alanine increases the susceptibility of the cells to ethanol challenge reducing IC50 from 3% vol/vol to 2.42% vol/vol. Additionally, cells carrying this substitution were shown a significantly reduced fermentation rate at 30°C and 18°C increasing the total fermentation time by approximately two and three times, respectively. These results clearly indicate that Ser625 is absolutely necessary for yeast to retain its fermentation ability and ethanol tolerance.
Collapse
Affiliation(s)
| | - John Kapolos
- Deparment of Food Technology, Technological Educational Institute of Peloponnese, Kalamata, Greece
| | - Lambros Farmakis
- Deparment of Food Technology, Technological Educational Institute of Peloponnese, Kalamata, Greece
| | - Gregoria Koskorellou
- Deparment of Food Technology, Technological Educational Institute of Peloponnese, Kalamata, Greece
| | - Fotios Genneos
- Deparment of Food Technology, Technological Educational Institute of Peloponnese, Kalamata, Greece
| |
Collapse
|
11
|
Abstract
Completion of the whole genome sequence of a laboratory yeast strain Saccharomyces cerevisiae in 1996 ushered in the development of genome-wide experimental tools and accelerated subsequent genetic study of S. cerevisiae. The study of sake yeast also shared the benefit of such tools as DNA microarrays, gene disruption-mutant collections, and others. Moreover, whole genome analysis of representative sake yeast strain Kyokai no. 7 was performed in the late 2000s, and enabled comparative genomics between sake yeast and laboratory yeast, resulting in some notable finding for of sake yeast genetics. Development of next-generation DNA sequencing and bioinformatics also drastically changed the field of the genetics, including for sake yeast. Genomics and the genome-wide study of sake yeast have progressed under these circumstances during the last two decades, and are summarized in this article. Abbreviations: AFLP: amplified fragment length polymorphism; CGH: comparative genomic hybridization; CNV: copy number variation; DMS: dimethyl succinate; DSW: deep sea water; LOH: loss of heterozygosity; NGS: next generation sequencer; QTL: quantitative trait loci; QTN: quantitative trait nucleotide; SAM: S-adenosyl methionine; SNV: single nucleotide variation.
Collapse
Affiliation(s)
- Takeshi Akao
- a National Research Institute of Brewing , Higashi-hiroshima , Japan
| |
Collapse
|
12
|
Soong YHV, Liu N, Yoon S, Lawton C, Xie D. Cellular and metabolic engineering of oleaginous yeast Yarrowia lipolytica for bioconversion of hydrophobic substrates into high-value products. Eng Life Sci 2019; 19:423-443. [PMID: 32625020 DOI: 10.1002/elsc.201800147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
The non-conventional oleaginous yeast Yarrowia lipolytica is able to utilize both hydrophilic and hydrophobic carbon sources as substrates and convert them into value-added bioproducts such as organic acids, extracellular proteins, wax esters, long-chain diacids, fatty acid ethyl esters, carotenoids and omega-3 fatty acids. Metabolic pathway analysis and previous research results show that hydrophobic substrates are potentially more preferred by Y. lipolytica than hydrophilic substrates to make high-value products at higher productivity, titer, rate, and yield. Hence, Y. lipolytica is becoming an efficient and promising biomanufacturing platform due to its capabilities in biosynthesis of extracellular lipases and directly converting the extracellular triacylglycerol oils and fats into high-value products. It is believed that the cell size and morphology of the Y. lipolytica is related to the cell growth, nutrient uptake, and product formation. Dimorphic Y. lipolytica demonstrates the yeast-to-hypha transition in response to the extracellular environments and genetic background. Yeast-to-hyphal transition regulating genes, such as YlBEM1, YlMHY1 and YlZNC1 and so forth, have been identified to involve as major transcriptional factors that control morphology transition in Y. lipolytica. The connection of the cell polarization including cell cycle and the dimorphic transition with the cell size and morphology in Y. lipolytica adapting to new growth are reviewed and discussed. This review also summarizes the general and advanced genetic tools that are used to build a Y. lipolytica biomanufacturing platform.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Na Liu
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Seongkyu Yoon
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Carl Lawton
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| | - Dongming Xie
- Massachusetts Biomanufacturing Center Department of Chemical Engineering University of Massachusetts Lowell Lowell MA USA
| |
Collapse
|
13
|
Vamvakas SS, Kapolos J, Farmakis L, Genneos F, Damianaki ME, Chouli X, Vardakou A, Liosi S, Stavropoulou E, Leivaditi E, Fragki M, Labrakou E, Gashi EG, Demoli D. Specific serine residues of Msn2/4 are responsible for regulation of alcohol fermentation rates and ethanol resistance. Biotechnol Prog 2018; 35:e2759. [PMID: 30507007 DOI: 10.1002/btpr.2759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/24/2018] [Indexed: 11/07/2022]
Abstract
Despite the fact that Saccharomyces cerevisiae has suicide tendencies since its product affects cell function, it is a key player in alcoholic fermentation. The presence of ethanol in the medium affects membrane integrity and fluidity, as well as the rate of ethanol production. The Msn2/4p transcription factors are key regulators in stress response and play a critical role in cell response to ethanol challenge. Protein kinase A (tpk1/2/3) is controlling the activation/inactivation of a multitude of proteins through phosphorylation at specific serine residues. Targets of Protein Kinase A (PKA) are also msn2/4 and phosphorylation of these two transcription factors by PKA resulting in obstruction of their translocation to the nucleus. This work attempts to reveal the significance of specific serine residues of Msn2/4p, as possible targets of PKA, through substitution of these serine residues with alanine. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2759, 2019.
Collapse
Affiliation(s)
| | - John Kapolos
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Lambros Farmakis
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Fotios Genneos
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Maria-Eleni Damianaki
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Xenia Chouli
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Aggeliki Vardakou
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Sofia Liosi
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Evgenia Stavropoulou
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Eleftheria Leivaditi
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Marianthi Fragki
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Elina Labrakou
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Eleni-Giselda Gashi
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Dimitra Demoli
- Dept. of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| |
Collapse
|
14
|
Factors Influencing the Production of Sensory Active Substances in Brewer's and Wine Yeast. KVASNY PRUMYSL 2017. [DOI: 10.18832/kp201720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Ricci F, Lauro FM, Grzymski JJ, Read R, Bakiu R, Santovito G, Luporini P, Vallesi A. The Anti-Oxidant Defense System of the Marine Polar Ciliate Euplotes nobilii: Characterization of the MsrB Gene Family. BIOLOGY 2017; 6:biology6010004. [PMID: 28106766 PMCID: PMC5371997 DOI: 10.3390/biology6010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 01/16/2023]
Abstract
Organisms living in polar waters must cope with an extremely stressful environment dominated by freezing temperatures, high oxygen concentrations and UV radiation. To shed light on the genetic mechanisms on which the polar marine ciliate, Euplotes nobilii, relies to effectively cope with the oxidative stress, attention was focused on methionine sulfoxide reductases which repair proteins with oxidized methionines. A family of four structurally distinct MsrB genes, encoding enzymes specific for the reduction of the methionine-sulfoxide R-forms, were identified from a draft of the E. nobilii transcriptionally active (macronuclear) genome. The En-MsrB genes are constitutively expressed to synthesize proteins markedly different in amino acid sequence, number of CXXC motifs for zinc-ion binding, and presence/absence of a cysteine residue specific for the mechanism of enzyme regeneration. The En-MsrB proteins take different localizations in the nucleus, mitochondria, cytosol and endoplasmic reticulum, ensuring a pervasive protection of all the major subcellular compartments from the oxidative damage. These observations have suggested to regard the En-MsrB gene activity as playing a central role in the genetic mechanism that enables E. nobilii and ciliates in general to live in the polar environment.
Collapse
Affiliation(s)
- Francesca Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore.
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Robert Read
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA.
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, Tirana 1019, Albania.
| | - Gianfranco Santovito
- Department of Biology, University of Padova, via U. Bassi 58/B, Padua 35100, Italy.
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| |
Collapse
|
16
|
Overexpression of smORF YNR034W-A/EGO4 in Saccharomyces cerevisiae increases the fermentative efficiency of Agave tequilana Weber must. ACTA ACUST UNITED AC 2017; 44:63-74. [DOI: 10.1007/s10295-016-1871-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
Collapse
|
17
|
The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism. G3-GENES GENOMES GENETICS 2016; 6:1327-43. [PMID: 26994287 PMCID: PMC4856084 DOI: 10.1534/g3.116.028506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms.
Collapse
|
18
|
Gomes EV, Costa MDN, de Paula RG, de Azevedo RR, da Silva FL, Noronha EF, Ulhoa CJ, Monteiro VN, Cardoza RE, Gutiérrez S, Silva RN. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Sci Rep 2015; 5:17998. [PMID: 26647876 PMCID: PMC4673615 DOI: 10.1038/srep17998] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants.
Collapse
Affiliation(s)
- Eriston Vieira Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana do Nascimento Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Ricci de Azevedo
- Department of Molecular and Cellular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Eliane F Noronha
- Department of Cellular Biology, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Cirano José Ulhoa
- Department of Biochemistry and Cellular Biology, Biological Sciences Institute, Federal University of Goias, Goiânia, Goiás, Brazil
| | | | - Rosa Elena Cardoza
- Department of Microbiology, University School of Agricultural Engineers, University of León, Ponferrada, Spain
| | - Santiago Gutiérrez
- Department of Microbiology, University School of Agricultural Engineers, University of León, Ponferrada, Spain
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Sjaarda CP, Abubaker KS, Castle AJ. Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Microb Biotechnol 2015; 8:918-29. [PMID: 25824278 PMCID: PMC4621445 DOI: 10.1111/1751-7915.12277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/16/2015] [Indexed: 12/25/2022] Open
Abstract
Laccases are used by fungi for several functions including defence responses to stresses associated with attack by other fungi. Laccase activity changes and the induction of two laccase genes, lcc1 and lcc2, in Agaricus bisporus were measured in response to toxic extracts of medium in which Trichoderma aggressivum, the cause of green mould disease, was grown. A strain of A. bisporus that shows resistance to the extracts showed higher basal levels and greater enzymatic activity after extract exposure than did a sensitive strain. Furthermore, pre-incubation of T. aggressivum extract with laccases reduced toxicity. Faster induction and greater numbers of lcc2 transcripts in response to the extract were noted in the resistant strain than in the sensitive strain. The timing and increase in lcc2 transcript abundance mirrored changes in total laccase activity. No correlation between resistance and lcc1 transcription was apparent. Transcript abundance in transformants with a siRNA construct homologous to both genes varied widely. A strong negative correlation between transcript abundance and sensitivity of the transformant to toxic extract was observed in plate assays. These results indicated that laccase activity and in particular that encoded by lcc2 contributes to toxin metabolism and by extension green mould disease resistance.
Collapse
Affiliation(s)
- Calvin P Sjaarda
- Department of Biological Sciences, Brock UniversitySt Catharines, ON, L2S 3A1, Canada
| | - Kamal S Abubaker
- Department of Biological Sciences, Brock UniversitySt Catharines, ON, L2S 3A1, Canada
| | - Alan J Castle
- Department of Biological Sciences, Brock UniversitySt Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
20
|
Fulgentini L, Passini V, Colombetti G, Miceli C, La Terza A, Marangoni R. UV Radiation and Visible Light Induce hsp70 Gene Expression in the Antarctic Psychrophilic Ciliate Euplotes focardii. MICROBIAL ECOLOGY 2015; 70:372-379. [PMID: 25666535 DOI: 10.1007/s00248-015-0566-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
The psychrophilic ciliate Euplotes focardii inhabits the shallow marine coastal sediments of Antarctica, where, over millions of years of evolution, it has reached a strict molecular adaptation to such a constant-temperature environment (about -2 °C). This long evolution at sub-zero temperatures has made E. focardii unable to respond to heat stress with the activation of its heat shock protein (hsp) 70 genes. These genes can, however, be expressed in response to other stresses, like the oxidative one, thus indicating that the molecular adaptation has exclusively altered the heat stress signaling pathways, while it has preserved hsp70 gene activation in response to other environmental stressors. Since radiative stress has proved to be affine to oxidative stress in several organisms, we investigated the capability of UV radiation to induce hsp70 transcription. E. focardii cell cultures were exposed to several different irradiation regimes, ranging from visible only to a mixture of visible, UV-A and UV-B. The irradiation values of each spectral band have been set to be comparable with those recorded in a typical Antarctic spring. Using Northern blot analysis, we measured the expression level of hsp70 immediately after irradiation (0-h-labeled samples), 1 h, and 2 h from the end of the irradiation. Surprisingly, our results showed that besides UV radiation, the visible light was also able to induce hsp70 expression in E. focardii. Moreover, spectrophotometric measurements have revealed no detectable endogenous pigments in E. focardii, making it difficult to propose a possible explanation for the visible light induction of its hsp70 genes. Further research is needed to conclusively clarify this point.
Collapse
|
21
|
Erives AJ, Fassler JS. Metabolic and chaperone gene loss marks the origin of animals: evidence for Hsp104 and Hsp78 chaperones sharing mitochondrial enzymes as clients. PLoS One 2015; 10:e0117192. [PMID: 25710177 PMCID: PMC4339202 DOI: 10.1371/journal.pone.0117192] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/17/2014] [Indexed: 12/31/2022] Open
Abstract
The evolution of animals involved acquisition of an emergent gene repertoire for gastrulation. Whether loss of genes also co-evolved with this developmental reprogramming has not yet been addressed. Here, we identify twenty-four genetic functions that are retained in fungi and choanoflagellates but undetectable in animals. These lost genes encode: (i) sixteen distinct biosynthetic functions; (ii) the two ancestral eukaryotic ClpB disaggregases, Hsp78 and Hsp104, which function in the mitochondria and cytosol, respectively; and (iii) six other assorted functions. We present computational and experimental data that are consistent with a joint function for the differentially localized ClpB disaggregases, and with the possibility of a shared client/chaperone relationship between the mitochondrial Fe/S homoaconitase encoded by the lost LYS4 gene and the two ClpBs. Our analyses lead to the hypothesis that the evolution of gastrulation-based multicellularity in animals led to efficient extraction of nutrients from dietary sources, loss of natural selection for maintenance of energetically expensive biosynthetic pathways, and subsequent loss of their attendant ClpB chaperones.
Collapse
Affiliation(s)
- Albert J. Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242–1324, United States of America
- * E-mail: (AJE); (JSF)
| | - Jan S. Fassler
- Department of Biology, University of Iowa, Iowa City, IA, 52242–1324, United States of America
- * E-mail: (AJE); (JSF)
| |
Collapse
|
22
|
Damon JR, Pincus D, Ploegh HL. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 2014; 26:270-82. [PMID: 25392298 PMCID: PMC4294674 DOI: 10.1091/mbc.e14-06-1145] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The URM1 pathway functions in a tRNA thiolation reaction that is required for synthesis of the mcm5s2U34 nucleoside found in tRNAs. Growth of Saccharomyces cerevisiae cells at an elevated temperature results in altered levels of modification enzymes, and this leads to decreased levels of tRNA thiolation. tRNA thiolation is tied to cellular stress responses. Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGluUUC, tGlnUUG, and tLysUUU in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.
Collapse
Affiliation(s)
- Jadyn R Damon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| |
Collapse
|
23
|
Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int J Food Microbiol 2014; 185:140-57. [DOI: 10.1016/j.ijfoodmicro.2014.05.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/18/2014] [Accepted: 05/04/2014] [Indexed: 11/21/2022]
|
24
|
Fujiwara K, Cabanos C, Toyota K, Kobayashi Y, Maruyama N. Differential expression and elution behavior of basic 7S globulin among cultivars under hot water treatment of soybean seeds. J Biosci Bioeng 2014; 117:742-8. [PMID: 24331980 DOI: 10.1016/j.jbiosc.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 01/19/2023]
Abstract
Basic 7S globulin (Bg7S), which accumulates in mature soybean (Glycine max) seeds, is an extracellular matrix protein. A large amount of Bg7S is synthesized de novo and is eluted from soybean seeds when immersed in 50-60°C water (hot water treatment, HWT). However, the Bg7S elution mechanism remains unclear. Under HWT, the seeds probably undergo heat stress and flooding stress. To obtain fundamental knowledge related to how Bg7S is eluted from hot-water-treated seeds, this study compared Bg7S elution among soybean cultivars having different flooding tolerance during pre-germination. The amounts of Bg7S eluted from seeds varied significantly among cultivars. Elution was suppressed by seed coats regarded as preventing the leakage of seed contents by rapid water imbibition. Furthermore, Bg7S expression levels differed among cultivars, although the difference did not result from any variation in Bg7S promoter sequences. However, the expression levels of Bg7S under HWT were not associated with the flooding tolerance level. Immunoelectron microscopy revealed that the Bg7S accumulated in the intercellular space of hot-water-treated seeds. Plasma membrane shrinkage was observed. The main proteins eluted from seeds under HWT were located in the extracellular space. This study clarified the mechanism of Bg7S elution from seeds under HWT.
Collapse
Affiliation(s)
- Keigo Fujiwara
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Cerrone Cabanos
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Toyota
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasunori Kobayashi
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuyuki Maruyama
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
25
|
Lee JCY, Tsoi A, Kornfeld GD, Dawes IW. Cellular responses toL-serine inSaccharomyces cerevisiae: roles of general amino acid control, compartmentalization, and aspartate synthesis. FEMS Yeast Res 2013; 13:618-34. [DOI: 10.1111/1567-1364.12063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Johnny C.-Y. Lee
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Abraham Tsoi
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Geoffrey D. Kornfeld
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Ian W. Dawes
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
26
|
Martinez-Vazquez A, Gonzalez-Hernandez A, Domínguez Á, Rachubinski R, Riquelme M, Cuellar-Mata P, Guzman JCT. Identification of the transcription factor Znc1p, which regulates the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. PLoS One 2013; 8:e66790. [PMID: 23826133 PMCID: PMC3691278 DOI: 10.1371/journal.pone.0066790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/12/2013] [Indexed: 11/18/2022] Open
Abstract
The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica.
Collapse
Affiliation(s)
- Azul Martinez-Vazquez
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
| | - Angelica Gonzalez-Hernandez
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
| | - Ángel Domínguez
- Departamento de Microbiologia y Genetica, CIETUS/IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Richard Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Meritxell Riquelme
- Departamento de Microbiologia, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Patricia Cuellar-Mata
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
| | - Juan Carlos Torres Guzman
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Guanajuato, Mexico
- * E-mail:
| |
Collapse
|
27
|
Abubaker KS, Sjaarda C, Castle AJ. Regulation of three genes encoding cell-wall-degrading enzymes of Trichoderma aggressivum during interaction with Agaricus bisporus. Can J Microbiol 2013; 59:417-24. [PMID: 23750957 DOI: 10.1139/cjm-2013-0173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the genus Trichoderma are very effective competitors of a variety of fungi. Cell-wall-degrading enzymes, including proteinases, glucanases, and chitinases, are commonly secreted as part of the competitive process. Trichoderma aggressivum is the causative agent of green mould disease of the button mushroom, Agaricus bisporus. The structures of 3 T. aggressivum genes, prb1 encoding a proteinase, ech42 encoding an endochitinase, and a β-glucanase gene, were determined. Promoter elements in the prb1 and ech42 genes suggested that transcription is regulated by carbon and nitrogen levels and by stress. Both genes had mycoparasitism-related elements indicating potential roles for the protein products in competition. The promoter of the β-glucanase gene contained CreA and AreA binding sites indicative of catabolite regulation but contained no mycoparasitism elements. Transcription of the 3 genes was measured in mixed cultures of T. aggressivum and A. bisporus. Two A. bisporus strains, U1, which is sensitive to green mould disease, and SB65, which shows some resistance, were used in co-cultivation tests to assess possible roles of the genes in disease production and severity. prb1 and ech42 were coordinately upregulated after 5 days, whereas β-glucanase transcription was upregulated from day 0 with both Agaricus strains. Upregulation was much less pronounced in mixed cultures of T. aggressivum with the resistant strain, SB65, than with the sensitive strain, U1. These observations suggested that the proteins encoded by these genes have roles in both nutrition and in severity of green mould disease.
Collapse
Affiliation(s)
- Kamal S Abubaker
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | | |
Collapse
|
28
|
The changes in Tps1 activity, trehalose content and expression of TPS1 gene in the psychrotolerant yeast Guehomyces pullulans 17-1 grown at different temperatures. Extremophiles 2013; 17:241-9. [DOI: 10.1007/s00792-013-0511-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022]
|
29
|
de Thonel A, Le Mouël A, Mezger V. Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 2012; 44:1593-612. [PMID: 22750029 DOI: 10.1016/j.biocel.2012.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/16/2022]
Abstract
The members of the small heat shock protein (sHSP) family are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy, particularly in cancer. The molecular mechanisms that regulate their transcription, in normal, stress, or pathological conditions, are characterized by extreme complexity and subtlety. Although historically linked to the heat shock transcription factors (HSFs), the stress-induced or developmental expression of the diverse members, including HSPB1/Hsp27/Hsp25, αA-crystallin/HSPB4, and αB-crystallin/HSPB5, relies on the combinatory effects of many transcription factors. Coupled with remarkably different cis-element architectures in the sHsp regulatory regions, they confer to each member its developmental expression or stress-inducibility. For example, multiple regulatory pathways coordinate the spatio-temporal expression of mouse αA-, αB-crystallin, and Hsp25 genes during lens development, through the action of master genes, like the large Maf family proteins and Pax6, but also HSF4. The inducibility of Hsp27 and αB-crystallin transcription by various stresses is exerted by HSF-dependent mechanisms, by which concomitant induction of Hsp27 and αB-crystallin expression is observed. In contrast, HSF-independent pathways can lead to αB-crystallin expression, but not to Hsp27 induction. Not surprisingly, deregulation of the expression of sHSP is associated with various pathologies, including cancer, neurodegenerative, or cardiac diseases. However, many questions remain to be addressed, and further elucidation of the developmental mechanisms of sHsp gene transcription might help to unravel the tissue- and stage-specific functions of this fascinating class of proteins, which might prove to be crucial for future therapeutic strategies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
30
|
Prasad R, Devaux F, Dhamgaye S, Banerjee D. Response of pathogenic and non-pathogenic yeasts to steroids. J Steroid Biochem Mol Biol 2012; 129:61-9. [PMID: 21115115 DOI: 10.1016/j.jsbmb.2010.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 11/10/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Steroids are known to induce pleiotropic drug resistance states in hemiascomycetes, with tremendous potential consequences on human fungal infections. The proteins capable of binding to steroids such as progesterone binding protein (PBP), estradiol binding proteins (ESP) are found in yeasts, however, the well known receptor mediated signaling present in higher eukaryotic cells is absent in yeasts and fungi. Steroids are perceived as stress by yeast cells which triggers general stress response leading to activation of heat shock proteins, cell cycle regulators, MDR transporters, etc. In this article, we review the response of yeast to human steroid hormones which affects its cell growth, morphology and virulence. We discuss that a fairly conserved response to steroids at the level of transcription and translation exists between pathogenic and non-pathogenic yeasts. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | |
Collapse
|
31
|
Ahn J, Won M, Choi JH, Kyun ML, Cho HS, Park HM, Kang CM, Chung KS. Small heat-shock protein Hsp9 has dual functions in stress adaptation and stress-induced G2-M checkpoint regulation via Cdc25 inactivation in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2012; 417:613-8. [DOI: 10.1016/j.bbrc.2011.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
32
|
Properties of a high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. Biosci Biotechnol Biochem 2011; 75:2025-9. [PMID: 21979083 DOI: 10.1271/bbb.110262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We characterized high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. We compared the gene expression of these strains with those of the parental strain by DNA microarray, and found that stress response genes, such as HSP12, were commonly upregulated in the high malate-producing strains, whereas thiamine synthesis genes, such as THI4 and SNZ2, were downregulated in these strains.
Collapse
|
33
|
Disruption of Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase does not affect growth in glucose but impairs growth at high temperature. PLoS One 2011; 6:e23695. [PMID: 21931609 PMCID: PMC3171402 DOI: 10.1371/journal.pone.0023695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/22/2011] [Indexed: 11/18/2022] Open
Abstract
We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3' half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1 promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression.
Collapse
|
34
|
Wang D, Chi Z, Zhao S, Chi ZM. Disruption of the acid protease gene in Saccharomycopsis fibuligera A11 enhances amylolytic activity and stability as well as trehalose accumulation. Enzyme Microb Technol 2011; 49:88-93. [DOI: 10.1016/j.enzmictec.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/21/2010] [Accepted: 03/09/2011] [Indexed: 11/24/2022]
|
35
|
Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 87:829-45. [DOI: 10.1007/s00253-010-2594-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 12/18/2022]
|
36
|
Alonso-Monge R, Román E, Arana DM, Prieto D, Urrialde V, Nombela C, Pla J. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet Biol 2010; 47:587-601. [PMID: 20388546 DOI: 10.1016/j.fgb.2010.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 01/29/2023]
Abstract
Cells respond to environmental changes triggering adaptive responses which are, in part, mediated by a transcriptional response. These responses are complex and are dependent on different transcription factors. The present work reports the implication of the Sko1 protein in several processes relevant to the physiology of Candida albicans. First, Sko1 acts as transcriptional repressor of genes involved in pathogenesis and hyphal formation, which results in increased expression of the hyphal related genes ECE1 and HWP1 without significant changes in the virulence using a mouse model of systemic infection. Second Sko1 is involved in the response to oxidative stress and sko1 mutants increase the sensitivity of hog1 to the myelomonocytic cell line HL-60. Genome-wide transcriptional analysis after hydrogen peroxide treatment revealed that sko1 mutants were able to generate an adaptive response similar to wild type strains, although important differences were detected in the magnitude of the transcriptional response. Collectively, these results implicate Sko1 as an important mediator of the oxidative stress response in C. albicans.
Collapse
Affiliation(s)
- Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Madeira SC, Teixeira MC, Sá-Correia I, Oliveira AL. Identification of regulatory modules in time series gene expression data using a linear time biclustering algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2010; 7:153-165. [PMID: 20150677 DOI: 10.1109/tcbb.2008.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although most biclustering formulations are NP-hard, in time series expression data analysis, it is reasonable to restrict the problem to the identification of maximal biclusters with contiguous columns, which correspond to coherent expression patterns shared by a group of genes in consecutive time points. This restriction leads to a tractable problem. We propose an algorithm that finds and reports all maximal contiguous column coherent biclusters in time linear in the size of the expression matrix. The linear time complexity of CCC-Biclustering relies on the use of a discretized matrix and efficient string processing techniques based on suffix trees. We also propose a method for ranking biclusters based on their statistical significance and a methodology for filtering highly overlapping and, therefore, redundant biclusters. We report results in synthetic and real data showing the effectiveness of the approach and its relevance in the discovery of regulatory modules. Results obtained using the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress show not only the ability of the proposed methodology to extract relevant information compatible with documented biological knowledge but also the utility of using this algorithm in the study of other environmental stresses and of regulatory modules in general.
Collapse
Affiliation(s)
- Sara C Madeira
- Universidade da Beira Interior, Covilhã, KDBIO Group, INESC-ID, Lisbon, Portugal.
| | | | | | | |
Collapse
|
38
|
Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2009; 85:253-63. [PMID: 19756577 DOI: 10.1007/s00253-009-2223-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/23/2009] [Accepted: 08/24/2009] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells have developed diverse strategies to combat the harmful effects of a variety of stress conditions. In the model yeast Saccharomyces cerevisiae, the increased concentration of ethanol, as the primary fermentation product, will influence the membrane fluidity and be toxic to membrane proteins, leading to cell growth inhibition and even death. Though little is known about the complex signal network responsible for alcohol stress responses in yeast cells, several mechanisms have been reported to be associated with this process, including changes in gene expression, in membrane composition, and increases in chaperone proteins that help stabilize other denatured proteins. Here, we review the recent progresses in our understanding of ethanol resistance and stress responses in yeast.
Collapse
Affiliation(s)
- Junmei Ding
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, China
| | | | | | | | | | | |
Collapse
|
39
|
Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 2009; 27:423-31. [DOI: 10.1016/j.biotechadv.2009.03.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 11/23/2022]
|
40
|
Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng 2009; 107:516-8. [DOI: 10.1016/j.jbiosc.2009.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 11/23/2022]
|
41
|
Yoshikawa K, Furusawa C, Hirasawa T, Shimizu H. Genome-wide analysis of the effects of location and number of stress response elements on gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 2009; 106:507-10. [PMID: 19111649 DOI: 10.1263/jbb.106.507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 07/17/2008] [Indexed: 11/17/2022]
Abstract
We analyzed the effects of the location and number of stress response elements (STREs) on gene expression in Saccharomyces cerevisiae. Genes containing STRE between 51 and 300 bp upstream from translational start codon tended to be up-regulated and genes with multiple STREs exhibited higher up-regulation under stress conditions.
Collapse
Affiliation(s)
- Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
42
|
Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 2007. [PMID: 17953483 DOI: 10.1131/journal.pgen.0030172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation.
Collapse
Affiliation(s)
- Justin W Walley
- Section of Plant Biology, University of California Davis, Davis, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA. Yeast responses to stresses associated with industrial brewery handling: Figure 1. FEMS Microbiol Rev 2007; 31:535-69. [PMID: 17645521 DOI: 10.1111/j.1574-6976.2007.00076.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.
Collapse
Affiliation(s)
- Brian R Gibson
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | | | | | | | |
Collapse
|
44
|
Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. J Biosci Bioeng 2007; 104:163-70. [DOI: 10.1263/jbb.104.163] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/26/2007] [Indexed: 11/17/2022]
|
45
|
Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 2007; 3:1800-12. [PMID: 17953483 PMCID: PMC2039767 DOI: 10.1371/journal.pgen.0030172] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/25/2022] Open
Abstract
Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. Plants are sessile organisms constantly challenged by a wide spectrum of biotic and abiotic stresses. These stresses cause considerable losses in crop yields worldwide, while the demand for food and energy is on the rise. Understanding the molecular mechanisms driving stress responses is crucial to devising targeted strategies to engineer stress-tolerant plants. To identify primary stress-responsive genes we examined the transcriptional profile of plants after mechanical wounding, which was used as a brief, inductive stimulus. Comparison of the ensemble of rapid wound response transcripts with published transcript profiles revealed a notable overlap with biotic and abiotic stress-responsive genes. Additional quantitative analyses of selected genes over a wounding time-course enabled classification into two groups: transient and stably expressed. Bioinformatic analysis of rapid wound response gene promoter sequences enabled us to identify a novel DNA motif, designated the Rapid Stress Response Element. This motif is sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby confirming the functional involvement of this motif in the primary transcriptional stress response. The genes we identified may represent initial components of the general stress-response network and may be useful in engineering multi-stress tolerant plants.
Collapse
Affiliation(s)
- Justin W Walley
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Sean Coughlan
- Agilent Technologies, Wilmington, Delaware, United States of America
| | - Matthew E Hudson
- Department of Crop Sciences, University Of Illinois, Urbana, Illinois, United States of America
| | - Michael F Covington
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Roy Kaspi
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Gopalan Banu
- Genomic Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Stacey L Harmer
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Katayoon Dehesh
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Bisson LF, Karpel JE, Ramakrishnan V, Joseph L. Functional genomics of wine yeast Saccharomyces cerevisiae. ADVANCES IN FOOD AND NUTRITION RESEARCH 2007; 53:65-121. [PMID: 17900497 DOI: 10.1016/s1043-4526(07)53003-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The application of genomic technologies to the analysis of wine strains of Saccharomyces cerevisiae has greatly enhanced our understanding of both native and laboratory strains of this important model eukaryote. Not only are differences in transcript, protein, and metabolite profiles being uncovered, but the heritable basis of these differences is also being elucidated. Although some challenges remain in the application of functional genomic technologies to commercial and native strains of S. cerevisiae, recent improvements, particularly in data analysis, have greatly extended the utility of these tools. Comparative analysis of laboratory and wine isolates is refining our understanding of the mechanisms of genome evolution. Genomic analysis of Saccharomyces in native environments is providing evidence of gene function to previously uncharacterized open reading frames and delineating the physiological parameters of ecological niche specialization and stress adaptation. The wealth of information being generated will soon be utilized to construct commercial stains with more desirable phenotypes, traits that will be designed to be genetically stable under commercial production conditions.
Collapse
Affiliation(s)
- Linda F Bisson
- Department of Viticulture and Enology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
47
|
Smart KA. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 2007; 24:993-1013. [PMID: 17879324 DOI: 10.1002/yea.1553] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.
Collapse
Affiliation(s)
- Katherine A Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
48
|
Zhang W, Culley DE, Hogan M, Vitiritti L, Brockman FJ. Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie van Leeuwenhoek 2006; 90:41-55. [PMID: 16680520 DOI: 10.1007/s10482-006-9059-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
Sulfate-reducing bacteria such as Desulfovibrio vulgaris have developed a set of responses that allow them to survive in hostile environments. To obtain further knowledge of the protective mechanisms employed by D. vulgaris in response to oxidative stress and heat shock, we performed a genome-wide transcriptomic analysis to determine the cellular responses to both stimuli. The results showed that 130 genes were responsive to oxidative stress, while 427 genes were responsive to heat-shock. Functional analyses suggested that the genes regulated were involved in a variety of cellular functions. Amino acid biosynthetic pathways were induced by both oxidative stress and heat shock treatments, while fatty acid metabolism, purine and cofactor biosynthesis were induced by heat shock only. The rubrerythrin gene (rbr) was up-regulated in response to oxidative stress, suggesting an important role for this protein in the oxidative damage resistance response in D. vulgaris. In addition, thioredoxin reductase (trxB) was also responsive to oxidative stress, suggesting that the thiol-specific redox system might also be involved in oxidative protection in this organism. In contrast, the expression of rubredoxin oxidoreductase (rbo), superoxide dismutase (sodB) and catalase (katA) genes were not regulated in response to oxidative stress. Comparison of cellular responses to oxidative stress and heat-shock allowed the identification of 66 genes that showed a similar drastic response to both environmental perturbations, implying that these genes might be part of the general stress response (GSR) network in D. vulgaris. This hypothesis was further supported by the identification of a conserved motif upstream of these stress-responsive genes.
Collapse
Affiliation(s)
- Weiwen Zhang
- Microbiology Department, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352, USA.
| | | | | | | | | |
Collapse
|
49
|
Durchschlag E, Reiter W, Ammerer G, Schüller C. Nuclear localization destabilizes the stress-regulated transcription factor Msn2. J Biol Chem 2004; 279:55425-32. [PMID: 15502160 DOI: 10.1074/jbc.m407264200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional program of yeast cells undergoes dramatic changes during the shift from fermentative growth to respiratory growth. A large part of this response is mediated by the stress responsive transcription factor Msn2. During glucose exhaustion, Msn2 is activated and concentrated in the nucleus. Simultaneously, Msn2 protein levels also drop significantly under this condition. Here we show that the decrease in Msn2 concentration is due to its increased degradation. Moreover, Msn2 levels are also reduced under chronic stress or low protein kinase A (PKA) activity, both conditions that cause a predominant nuclear localization of Msn2. Similar effects were found in msn5 mutant cells that block Msn2 nuclear export. To approximate the effect of low PKA activity on Msn2, we generated a mutant form with alanine substitutions in PKA phosphorylation sites. High expression of this Msn2 mutant is detrimental for growth, suggesting that the increased degradation of nuclear Msn2 might be necessary to adapt cells to low PKA conditions after the diauxic shift or to allow growth under chronic stress conditions.
Collapse
Affiliation(s)
- Erich Durchschlag
- Institute of Biochemistry and Molecular Cell Biology and Ludwig Boltzmann Forschungsstelle for Biochemistry, Max F. Perutz Laboratories, University and BioCenter of Vienna, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
50
|
Vilfan T, ÄreÅ¡nar B, Fournier D, Stojan J, Breskvar K. Characterisation and expression of a gene encoding a mutarotase from the fungus Rhizopus nigricans. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09573.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|