1
|
Song Y, Guo Y, Li X, Sun R, Zhu M, Shi J, Tan Z, Zhang L, Huang J. RBM39 Alters Phosphorylation of c-Jun and Binds to Viral RNA to Promote PRRSV Proliferation. Front Immunol 2021; 12:664417. [PMID: 34079549 PMCID: PMC8165236 DOI: 10.3389/fimmu.2021.664417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 01/27/2023] Open
Abstract
As transcriptional co-activator of AP-1/Jun, estrogen receptors and NF-κB, nuclear protein RBM39 also involves precursor mRNA (pre-mRNA) splicing. Porcine reproductive and respiratory syndrome virus (PRRSV) causes sow reproductive disorders and piglet respiratory diseases, which resulted in serious economic losses worldwide. In this study, the up-regulated expression of RBM39 and down-regulated of inflammatory cytokines (IFN-β, TNFα, NF-κB, IL-1β, IL-6) were determined in PRRSV-infected 3D4/21 cells, and accompanied with the PRRSV proliferation. The roles of RBM39 altering phosphorylation of c-Jun to inhibit the AP-1 pathway to promote PRRSV proliferation were further verified. In addition, the nucleocytoplasmic translocation of RBM39 and c-Jun from the nucleus to cytoplasm was enhanced in PRRSV-infected cells. The three RRM domain of RBM39 are crucial to support the proliferation of PRRSV. Several PRRSV RNA (nsp4, nsp5, nsp7, nsp10-12, M and N) binding with RBM39 were determined, which may also contribute to the PRRSV proliferation. Our results revealed a complex mechanism of RBM39 by altering c-Jun phosphorylation and nucleocytoplasmic translocation, and regulating binding of RBM39 with viral RNA to prompt PRRSV proliferation. The results provide new viewpoints to understand the immune escape mechanism of PRRSV infection.
Collapse
Affiliation(s)
- Yinna Song
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoyang Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Epstein-Barr Virus-Encoded RNAs: Key Molecules in Viral Pathogenesis. Cancers (Basel) 2014; 6:1615-30. [PMID: 25101570 PMCID: PMC4190559 DOI: 10.3390/cancers6031615] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) is known as an oncogenic herpesvirus that has been implicated in the pathogenesis of various malignancies. EBV-encoded RNAs (EBERs) are non-coding RNAs expressed abundantly in latently EBV-infected cells. Herein, I summarize the current understanding of the functions of EBERs, including the interactions with cellular factors through which EBERs contribute to EBV-mediated pathogenesis. Previous studies have demonstrated that EBERs are responsible for malignant phenotypes in lymphoid cells, and can induce several cytokines that can promote the growth of various EBV-infected cancer cells. EBERs were also found to bind retinoic acid-inducible gene I (RIG-I) and thus activate its downstream signaling. Furthermore, EBERs induce interleukin-10, an autocrine growth factor for Burkitt’s lymphoma cells, by activating RIG-I/interferon regulatory factor 3 pathway, suggesting that EBER-mediated innate immune signaling modulation contributes to EBV-mediated oncogenesis. Recently, EBV-infected cells were reported to secret EBERs, which were then recognized by toll-like receptor 3 (TLR3), leading to the induction of type I interferon and inflammatory cytokines, and subsequent immune activation. Furthermore, EBER1 was detected in the sera of patients with active EBV-infectious diseases, suggesting that EBER1-meidated TLR3 signaling activation could account for the pathogenesis of active EBV-infectious diseases.
Collapse
|
4
|
Ahmed W, Philip PS, Tariq S, Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS One 2014; 9:e99163. [PMID: 24896633 PMCID: PMC4045842 DOI: 10.1371/journal.pone.0099163] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/12/2014] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with a number of human malignancies of epithelial and lymphoid origin. However, the mechanism of oncogenesis is unclear. A number of viral products, including EBV latent proteins and non-protein coding RNAs have been implicated. Recently it was reported that EBV-encoded small RNAs (EBERs) are released from EBV infected cells and they can induce biological changes in cells via signaling from toll-like receptor 3. Here, we investigated if these abundantly expressed non-protein coding EBV RNAs (EBER-1 and EBER-2) are excreted from infected cells in exosomal fractions. Using differential ultracentrifugation we isolated exosomes from three EBV positive cell lines (B95-8, EBV-LCL, BL30-B95-8), one EBER-1 transfected cell line (293T-pHEBo-E1) and two EBV-negative cell lines (BL30, 293T-pHEBo). The identity of purified exosomes was determined by electron microscopy and western blotting for CD63. The presence of EBERs in cells, culture supernatants and purified exosomal fractions was determined using RT-PCR and confirmed by sequencing. Purified exosomal fractions were also tested for the presence of the EBER-1-binding protein La, using western blotting. Both EBER-1 and EBER-2 were found to be present not only in the culture supernatants, but also in the purified exosome fractions of all EBV-infected cell lines. EBER-1 could also be detected in exosomal fractions from EBER-1 transfected 293T cells whilst the fractions from vector only transfectants were clearly negative. Furthermore, purified exosomal fractions also contained the EBER-binding protein (La), supporting the notion that EBERs are most probably released from EBV infected cells in the form of EBER-La complex in exosomes.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
| | - Pretty S. Philip
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Alin, United Arab Emirates
- * E-mail:
| |
Collapse
|
5
|
O'Leary MN, Schreiber KH, Zhang Y, Duc ACE, Rao S, Hale JS, Academia EC, Shah SR, Morton JF, Holstein CA, Martin DB, Kaeberlein M, Ladiges WC, Fink PJ, MacKay VL, Wiest DL, Kennedy BK. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet 2013; 9:e1003708. [PMID: 23990801 PMCID: PMC3750023 DOI: 10.1371/journal.pgen.1003708] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022] Open
Abstract
Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22−/− mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22−/− mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1) expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog. Translation is the process by which proteins are made within a cell. Ribosomes are the main macromolecular complexes involved in this process. Ribosomes are composed of ribosomal RNA and ribosomal proteins. Ribosomal proteins are generally thought to be structural components of the ribosome but recent findings have suggested that they might have a regulatory function as well. A growing number of human diseases have been linked to mutations in genes encoding factors involved in ribosome biogenesis and translation. These include developmental malformations, inherited bone marrow failure syndromes and cancer in a variety of organisms. Here, we describe the role of one ribosomal protein regulating another. We provide evidence that ribosomal proteins can influence the composition of the ribosome, which we hypothesize, may impact the function of the ribosome.
Collapse
Affiliation(s)
- Monique N. O'Leary
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Katherine H. Schreiber
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Yong Zhang
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Anne-Cécile E. Duc
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Shuyun Rao
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - J. Scott Hale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Emmeline C. Academia
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Shreya R. Shah
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - John F. Morton
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Carly A. Holstein
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Dan B. Martin
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Warren C. Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Vivian L. MacKay
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David L. Wiest
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Cellular gene expression that correlates with EBER expression in Epstein-Barr Virus-infected lymphoblastoid cell lines. J Virol 2011; 85:3535-45. [PMID: 21248031 DOI: 10.1128/jvi.02086-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel Epstein-Barr Virus (EBV) strains with deletion of either EBER1 or EBER2 and corresponding revertant viruses were constructed and used to infect B lymphocytes to make lymphoblastoid cell lines (LCLs). The LCLs were used in microarray expression profiling to identify genes whose expression correlates with the presence of EBER1 or EBER2. Functions of regulated genes identified in the microarray analysis include membrane signaling, regulation of apoptosis, and the interferon/antiviral response. Although most emphasis has previously been given to EBER1 because it is more abundant than EBER2, the differences in cell gene expression were greater with EBER2 deletion. In this system, deletion of EBER1 or EBER2 had little effect on the EBV transformation frequency of primary B cells or the growth of the resulting LCLs. Using the recombinant viruses and novel EBER expression vectors, the nuclear redistribution of rpL22 protein by EBER1 in 293 cells was confirmed, but in LCLs almost all of the cells had a predominantly cytoplasmic expression of this ribosomal protein, which was not detectably changed by EBER1. The changes in LCL gene expression identified here will provide a basis for identifying the mechanisms of action of EBER RNAs.
Collapse
|
7
|
Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. ACTA ACUST UNITED AC 2009; 206:2091-9. [PMID: 19720839 PMCID: PMC2757889 DOI: 10.1084/jem.20081761] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus–encoded small RNA (EBER) is nonpolyadenylated, noncoding RNA that forms stem-loop structure by intermolecular base-pairing, giving rise to double-stranded RNA (dsRNA)–like molecules, and exists abundantly in EBV-infected cells. Here, we report that EBER induces signaling from the Toll-like receptor 3 (TLR3), which is a sensor of viral double-stranded RNA (dsRNA) and induces type I IFN and proinflammatory cytokines. A substantial amount of EBER, which was sufficient to induce signaling from TLR3, was released from EBV-infected cells, and the majority of the released EBER existed as a complex with a cellular EBER-binding protein La, suggesting that EBER was released from the cells by active secretion of La. Sera from patients with infectious mononucleosis (IM), chronic active EBV infection (CAEBV), and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), whose general symptoms are caused by proinflammatory cytokines contained EBER, and addition of RNA purified from the sera into culture medium induced signaling from TLR3 in EBV-transformed lymphocytes and peripheral mononuclear cells. Furthermore, DCs treated with EBER showed mature phenotype and antigen presentation capacity. These findings suggest that EBER, which is released from EBV-infected cells, is responsible for immune activation by EBV, inducing type I IFN and proinflammatory cytokines. EBER-induced activation of innate immunity would account for immunopathologic diseases caused by active EBV infection.
Collapse
Affiliation(s)
- Dai Iwakiri
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol 2009; 83:9844-53. [PMID: 19640998 DOI: 10.1128/jvi.01014-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded RNAs, EBER-1 and EBER-2, are highly abundant noncoding nuclear RNAs expressed during all forms of EBV latency. The EBERs have been shown to impart significant tumorigenic potential upon EBV-negative Burkitt lymphoma (BL) cells and to contribute to the growth potential of other B-cell lymphoma-, gastric carcinoma-, and nasopharyngeal carcinoma-derived cell lines. However, the mechanisms underlying this EBER-dependent enhancement of cell growth potential remain to be elucidated. Here we focused on the known interaction between EBER-1 and the cellular ribosomal protein L22 and the consequences of this interaction with respect to the growth-promoting properties of the EBERs. L22, a component of 60S ribosomal subunits, binds three sites on EBER-1, and a substantial fraction of available L22 is relocalized from nucleoli to the nucleoplasm in EBV-infected cells. To investigate the hypothesis that EBER-1-mediated relocalization of L22 in EBV-infected cells is critical for EBER-dependent functions, we investigated whether EBER-1 expression is necessary and sufficient for nucleoplasmic retention of L22. Following demonstration of this, we utilized RNA-protein binding assays and fluorescence localization studies to demonstrate that mutation of the L22 binding sites on EBER-1 prevents L22 binding and inhibits EBER-1-dependent L22 relocalization. Finally, the in vivo consequence of preventing L22 relocalization in EBER-expressing cells was examined in soft agar colony formation assays. We demonstrate that BL cells expressing mutated EBER-1 RNAs rendered incapable of binding L22 have significantly reduced capacity to enhance cell growth potential relative to BL cells expressing wild-type EBERs.
Collapse
|
9
|
Houmani JL, Ruf IK. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22. PLoS One 2009; 4:e5306. [PMID: 19390581 PMCID: PMC2668802 DOI: 10.1371/journal.pone.0005306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 03/26/2009] [Indexed: 11/19/2022] Open
Abstract
The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.
Collapse
Affiliation(s)
- Jennifer L. Houmani
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Ingrid K. Ruf
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ruf IK, Lackey KA, Warudkar S, Sample JT. Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol 2006; 79:14562-9. [PMID: 16282456 PMCID: PMC1287582 DOI: 10.1128/jvi.79.23.14562-14569.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBER transcripts are small, highly structured RNAs able to bind to and inhibit activation of the double-stranded RNA-dependent protein kinase PKR in cell-free systems, and within latently infected B-cell lines they inhibit alpha interferon-induced apoptosis that is believed to be mediated through PKR. Here, we address the consequences of EBER expression for PKR activation in vivo in response to alpha interferon. In agreement with published findings, either EBV infection or the EBERs alone protected Burkitt lymphoma cells from alpha-interferon-induced apoptosis. However, utilizing multiple phosphorylation state-specific antibodies to monitor PKR activation within cells in response to interferon, we demonstrate that the EBERs are unable to inhibit phosphorylation of either cytoplasmic or nuclear PKR. Concordantly, a direct substrate of PKR, the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha), was equally phosphorylated in EBV-positive and EBV-negative cells following interferon treatment. Therefore, EBER inhibition of alpha-interferon-induced apoptosis, and potentially other PKR-mediated events, is unlikely to be mediated through direct inhibition of PKR, as previously thought.
Collapse
Affiliation(s)
- Ingrid K Ruf
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | |
Collapse
|
11
|
Bornkamm GW, Hammerschmidt W. Molecular virology of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 2001; 356:437-59. [PMID: 11313004 PMCID: PMC1088437 DOI: 10.1098/rstb.2000.0781] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) interacts with its host in three distinct ways in a highly regulated fashion: (i) EBV infects human B lymphocytes and induces proliferation of the infected cells, (ii) it enters into a latent phase in vivo that follows the proliferative phase, and (iii) it can be reactivated giving rise to the production of infectious progeny for reinfection of cells of the same type or transmission of the virus to another individual. In healthy people, these processes take place simultaneously in different anatomical and functional compartments and are linked to each other in a highly dynamic steady-state equilibrium. The development of a genetic system has paved the way for the dissection of those processes at a molecular level that can be studied in vitro, i.e. B-cell immortalization and the lytic cycle leading to production of infectious progeny. Polymerase chain reaction analyses coupled to fluorescent-activated cell sorting has on the other hand allowed a descriptive analysis of the virus-host interaction in peripheral blood cells as well as in tonsillar B cells in vivo. This paper is aimed at compiling our present knowledge on the process of B-cell immortalization in vitro as well as in vivo latency, and attempts to integrate this knowledge into the framework of the viral life cycle in vivo.
Collapse
Affiliation(s)
- G W Bornkamm
- Institut für Klinische Molekularbiologie und Tumorgenetik, Abteilung für Genvektoren, GSF-Forschungszentrum für Umwelt und Gesundheit, Marchioninistrasse 25, D-83177 München, Germany.
| | | |
Collapse
|
12
|
Wood J, Frederickson RM, Fields S, Patel AH. Hepatitis C virus 3'X region interacts with human ribosomal proteins. J Virol 2001; 75:1348-58. [PMID: 11152508 PMCID: PMC114041 DOI: 10.1128/jvi.75.3.1348-1358.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 11/07/2000] [Indexed: 12/28/2022] Open
Abstract
To identify proteins that can bind the 3' untranslated region (UTR) of hepatitis C virus (HCV) we screened human cDNA libraries using the Saccharomyces cerevisiae three-hybrid system. Screening with an RNA sequence derived from the 3'-terminal 98 nucleotides (3'X region) of an infectious clone of HCV (H77c) yielded clones of human ribosomal proteins L22, L3, S3, and mL3, a mitochondrial homologue of L3. We performed preliminary characterization of the binding between the 3'X region and these proteins by a three-hybrid mating assay using mutant 3'X sequences. We have further characterized the interaction between 3'X and L22, since this protein is known to be associated with two small Epstein-Barr virus (EBV)-encoded RNA species (EBERs) which are abundantly produced in cells latently infected with EBV. The EBERs, which have similar predicted secondary structure to the HCV 3'X, assemble into ribonucleoprotein particles that include L22 and La protein. To confirm that L22 binds HCV 3'X we performed in vitro binding assays using recombinant L22 (expressed as a glutathione S-transferase [GST] fusion protein) together with a 3'X riboprobe. The 3'X region binds to the GST-L22 fusion protein (but not to GST alone), and this interaction is subject to competition with unlabeled 3'X RNA. To establish the functional role played by L22 in internal ribosome entry site (IRES)-mediated translation of HCV sequences we performed translational analysis in HuH-7 cells using monocistronic and bicistronic reporter constructs. The relative amount of core-chloramphenicol acetyltransferase reporter protein translated under the control of the HCV IRES was stimulated in the presence of L22 and La when these proteins were supplied in trans.
Collapse
Affiliation(s)
- J Wood
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom
| | | | | | | |
Collapse
|
13
|
Ruf IK, Rhyne PW, Yang C, Cleveland JL, Sample JT. Epstein-Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J Virol 2000; 74:10223-8. [PMID: 11024153 PMCID: PMC102063 DOI: 10.1128/jvi.74.21.10223-10228.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The tumorigenic potential of the Burkitt lymphoma (BL) cell line Akata is dependent on the restricted latency program of Epstein-Barr virus (EBV) that is characteristically maintained in BL tumors. Within these cells, EBV-mediated inhibition of apoptosis correlates with an up-regulation of BCL-2 levels in concert with a down-regulation in c-MYC expression that occurs under growth-limiting conditions. Here we addressed whether EBV's effects on apoptosis and tumorigenicity are mediated by the EBV small RNAs EBER-1 and EBER-2. Stable expression of the EBERs in EBV-negative Akata BL cells, at levels comparable to those in EBV-positive cells, significantly enhanced the tumorigenic potential of EBV-negative BL cells in SCID mice, but did not fully restore tumorigenicity relative to EBV-positive Akata cells. Furthermore, wild-type or greater levels of EBER expression in EBV-negative Akata cells did not promote BL cell survival. These data therefore suggest that EBV can contribute to BL through at least two avenues: an EBER-dependent mechanism that enhances tumorigenic potential independent of a direct effect on apoptosis, and a second mechanism, mediated by an as-yet-unidentified EBV gene(s), that offsets the proapoptotic consequences of deregulated c-MYC in BL.
Collapse
Affiliation(s)
- I K Ruf
- Program in Viral Oncogenesis and Tumor Immunology, Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
14
|
Buckanovich RJ, Darnell RB. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol 1997; 17:3194-201. [PMID: 9154818 PMCID: PMC232172 DOI: 10.1128/mcb.17.6.3194] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nova-1, an autoantigen in paraneoplastic opsoclonus myoclonus ataxia (POMA), a disorder associated with breast cancer and motor dysfunction, is a neuron-specific nuclear RNA binding protein. We have identified in vivo Nova-1 RNA ligands by combining affinity-elution-based RNA selection with protein-RNA immunoprecipitation. Starting with a pool of approximately 10(15) random 52-mer RNAs, we identified long stem-loop RNA ligands that bind to Nova-1 with high affinity (Kd of approximately 2 nM). The loop region of these RNAs harbors a approximately 15-bp pyrimidine-rich element [UCAU(N)(0-2)]3 which is essential for Nova-1 binding. Mutagenesis studies defined the third KH domain of Nova-1 and the [UCAU(N)(0-2)]3 element as necessary for in vitro binding. Consensus [UCAU (N)(0-2)], elements were identified in two neuronal pre-mRNAs, one encoding the inhibitory glycine receptor alpha2 (GlyR alpha2) and a second encoding Nova-1 itself. Nova-1 protein binds these RNAs with high affinity and specificity in vitro, and this binding can be blocked by POMA antisera. Moreover, both Nova-1 and GlyR alpha2 pre-mRNAs specifically coimmunoprecipitated with Nova-1 protein from brain extracts. Thus, Nova-1 functions as a sequence-specific nuclear RNA binding protein in vivo; disruption of the specific interaction between Nova-1 and GlyR alpha2 pre-mRNA may underlie the motor dysfunction seen in POMA.
Collapse
Affiliation(s)
- R J Buckanovich
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
15
|
Siomi MC, Zhang Y, Siomi H, Dreyfuss G. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol Cell Biol 1996; 16:3825-32. [PMID: 8668200 PMCID: PMC231379 DOI: 10.1128/mcb.16.7.3825] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fragile X syndrome, the most common form of hereditary mental retardation, usually results from lack of expression of the FMR1 gene. The FMR1 protein is a cytoplasmic RNA-binding protein. The RNA-binding activity of FMR1 is an essential feature of FMR1, as fragile X syndrome can also result from the expression of mutant FMR1 protein that is impaired in RNA binding. Recently, we described two novel cytoplasmic proteins, FXR1 and FXR2, which are both very similar in amino acid sequence to FMR1 and which also interact strongly with FMR1 and with each other. To understand the function of FMR1 and the FXR proteins, we carried out cell fractionation and sedimentation experiments with monoclonal antibodies to these proteins to characterize the complexes they form. Here, we report that the FMR1 and FXR proteins are associated with ribosomes, predominantly with 60S large ribosomal subunits. The FXR proteins are associated with 60S ribosomal subunits even in cells that lack FMR1 and that are derived from a fragile X syndrome patient, indicating that FMR1 is not required for this association. We delineated the regions of FMR1 that mediate its binding to 60S ribosomal subunits and the interactions among the FMR1-FXR family members. Both regions contain sequences predicted to have a high propensity to form coiled coil interactions, and the sequences are highly evolutionarily conserved in this protein family. The association of the FMR1, FXR1, and FXR2 proteins with ribosomes suggests they have functions in translation or mRNA stability.
Collapse
Affiliation(s)
- M C Siomi
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, 19104-6148, USA
| | | | | | | |
Collapse
|
16
|
Leopardi R, Roizman B. Functional interaction and colocalization of the herpes simplex virus 1 major regulatory protein ICP4 with EAP, a nucleolar-ribosomal protein. Proc Natl Acad Sci U S A 1996; 93:4572-6. [PMID: 8643445 PMCID: PMC39318 DOI: 10.1073/pnas.93.10.4572] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The herpes simplex virus 1 infected cell protein 4 (ICP4) binds to DNA and regulates gene expression both positively and negatively. EAP (Epstein-Barr virus-encoded small nuclear RNA-associated protein) binds to small nonpolyadenylylated nuclear RNAs and is found in nucleoli and in ribosomes, where it is also known as L22. We report that EAP interacts with a domain of ICP4 that is known to bind viral DNA response elements and transcriptional factors. In a gel-shift assay, a glutathione S-transferase (GST)-EAP fusion protein disrupted the binding of ICP4 to its cognate site on DNA in a dose-dependent manner. This effect appeared to be specifically due to EAP binding to ICP4 because (i) GST alone did not alter the binding of ICP4 to DNA, (ii) GST-EAP did not bind to the probe DNA, and (iii) GST-EAP did not influence the binding of the alpha gene trans-inducing factor (alphaTIF or VP16) to its DNA cognate site. Early in infection, ICP4 was dispersed throughout the nucleoplasm, whereas EAP was localized to the nucleoli. Late in infection, EAP was translocated from nucleoli and colocalized with ICP4 in small, dense nuclear structures. The formation of dense structures and the colocalization of EAP and ICP4 did not occur if virus DNA synthesis and late gene expression were prevented by the infection of cells at the nonpermissive temperature with a mutant virus defective in DNA synthesis, or in cells infected and maintained in the presence of phosphonoacetate, which is an inhibitor of viral DNA synthesis. These results suggest that the translocation of EAP from the nucleolus to the nucleoplasm is a viral function and that EAP plays a role in the regulatory functions expressed by ICP4.
Collapse
Affiliation(s)
- R Leopardi
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, IL 60637, USA
| | | |
Collapse
|
17
|
Dobbelstein M, Shenk T. In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J Virol 1995; 69:8027-34. [PMID: 7494316 PMCID: PMC189748 DOI: 10.1128/jvi.69.12.8027-8034.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Epstein-Barr virus (EBV)-expressed RNA 1 (EBER1) associates tightly with the ribosomal protein L22. We determined the general requirements for an RNA to bind L22 in a SELEX experiment, selecting RNA ligands for L22 from a randomized pool of RNA sequences by using an L22-glutathione S-transferase fusion protein. The selected sequences all contained a stem-loop motif similar to that of the region of EBER1 previously shown to interact with L22. The nucleotides were highly conserved at three positions within the stem-loop and identical to the corresponding nucleotides in EBER1. Two independent binding sites for L22 could be identified in EBER1, and mobility shift assays indicated that two L22 molecules can interact with EBER1 simultaneously. To search for a cellular L22 ligand, we constructed a SELEX library from cDNA fragments derived from RNA that was coimmunoprecipitated with L22 from an EBV-negative whole-cell lysate. After four rounds of selection and amplification, most of the clones that were obtained overlapped a sequence corresponding to the stem-loop between nucleotides 302 and 317 in human 28S ribosomal RNA. This stem-loop fulfills the criteria for optimal binding to L22 that were defined by SELEX, suggesting that human 28S ribosomal RNA is likely to be a cellular L22 ligand. Additional L22 binding sites were found in 28S ribosomal RNA, as well as within 18S ribosomal RNA and in RNA segments not present in sequence databases. The methodology described for the conversion of a preselected cellular RNA pool into a SELEX library might be generally applicable to other proteins for the identification of cellular RNA ligands.
Collapse
Affiliation(s)
- M Dobbelstein
- Howard Hughes Medical Institute, Princeton University, Lewis Thomas Laboratory, New Jersey 08544-1014, USA
| | | |
Collapse
|
18
|
Nucifora G, Begy CR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J, Parganas E, Ihle JN, Rowley JD. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci U S A 1994; 91:4004-8. [PMID: 8171026 PMCID: PMC43711 DOI: 10.1073/pnas.91.9.4004] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two genes have been implicated in leukemias of patients with abnormalities of chromosome 3, band q26: EVI1, which can be activated over long distances by chromosomal rearrangements involving 3q26, and EAP, a ribosomal gene that fuses with AML1 in a therapy-related myelodysplasia patient with a t(3;21)(q26.2;q22). AML1 was identified by its involvement in the t(8;21)(q22;q22) of acute myeloid leukemia. Here we report the consistent identification of fusion transcripts between AML1 and EAP or between AML1 and previously unidentified sequences that we named MDS1 (MDS-associated sequences) in the leukemic cells of four patients with therapy-related myelodysplasia/acute myeloid leukemia and in one patient with chronic myelogenous leukemia in blast crisis, all of whom had a t(3;21). In addition, we have identified a third chimeric transcript, AML1/EVI1, in one of the therapy-related acute myeloid leukemia patients. Pulsed-field gel electrophoresis established the order of the genes as EAP, the most telomeric, and EVI1, the most centromeric, gene. The results indicate that translocations could involve multiple genes and affect gene expression over long distances.
Collapse
Affiliation(s)
- G Nucifora
- Department of Medicine, University of Chicago, IL 60637
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Toczyski DP, Matera AG, Ward DC, Steitz JA. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci U S A 1994; 91:3463-7. [PMID: 8159770 PMCID: PMC43597 DOI: 10.1073/pnas.91.8.3463] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic herpesvirus, encodes two small RNAs (EBERs) that are expressed at high levels during latent transformation of human B lymphocytes. Here we report that a 15-kDa cellular protein called EAP (for EBER associated protein), previously shown to bind EBER1, is in fact the ribosomal protein L22. Approximately half of the L22 in EBV-positive cells is contained within the EBER1 ribonucleoprotein (RNP) particle, whereas the other half residues in monoribosomes and polysomes. Immunofluorescence with anti-L22 antibodies demonstrates that L22 is localized in the cytoplasm and the nucleoli of uninfected human cells, as expected, whereas EBV-positive lymphocytes also show strong nucleoplasmic staining. In situ hybridization indicates that the EBER RNPs are predominantly nucleoplasmic, suggesting that L22 relocalization correlates with binding to EBER1 in vivo. Since incubation of uninfected cell extracts with excess EBER1 RNA does not remove L22 from preexisting ribosomes, in vivo binding of L22 by EBER1 may precede ribosome assembly. The gene encoding L22 has recently been identified as the target of a chromosomal translocation in certain patients with leukemia, suggesting that L22 levels may be a determinant in cell transformation.
Collapse
Affiliation(s)
- D P Toczyski
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536-0812
| | | | | | | |
Collapse
|
20
|
Nucifora G, Begy CR, Erickson P, Drabkin HA, Rowley JD. The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1. Proc Natl Acad Sci U S A 1993; 90:7784-8. [PMID: 8395054 PMCID: PMC47227 DOI: 10.1073/pnas.90.16.7784] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the 8;21 translocation, the AML1 gene, located at chromosome band 21q22, is translocated to chromosome 8 (q22), where it is fused to the ETO gene and transcribed as a chimeric gene. AML1 is the human homolog of the recently cloned mouse gene pebp2 alpha B, homologous to the DNA binding alpha subunit of the polyoma enhancer factor pebp2. AML1 is also involved in a translocation with chromosome 3 that is seen in patients with therapy-related acute myeloid leukemia and myelodysplastic syndrome and in chronic myelogenous leukemia in blast crisis. We have isolated a fusion cDNA clone from a t(3;21) library derived from a patient with therapy-related myelodysplastic syndrome; this clone contains sequences from AML1 and from EAP, which we have now localized to band 3q26. EAP has previously been characterized as a highly expressed small nuclear protein of 128 residues (EBER 1) associated with Epstein-Barr virus small RNA. The fusion clone contains the DNA binding 5' part of AML1 that is fused to ETO in the t(8;21) and, in addition, at least one other exon. The translocation replaces the last nine codons of AML1 with the last 96 codons of EAP. The fusion does not maintain the correct reading frame of EAP and may not lead to a functional chimeric protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- CHO Cells
- Cells, Cultured
- Chimera
- Chromosome Banding
- Chromosome Mapping
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 3
- Core Binding Factor Alpha 2 Subunit
- Cricetinae
- DNA-Binding Proteins/genetics
- Herpesvirus 4, Human/genetics
- Humans
- Hybrid Cells
- Molecular Sequence Data
- Myelodysplastic Syndromes/genetics
- Neoplasm Proteins/genetics
- Polymerase Chain Reaction/methods
- Proto-Oncogene Proteins
- RNA, Messenger
- RNA, Viral/genetics
- RNA-Binding Proteins/genetics
- Ribosomal Proteins
- Sequence Homology, Amino Acid
- Transcription Factors
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- G Nucifora
- Department of Medicine, University of Chicago, IL 60637
| | | | | | | | | |
Collapse
|
21
|
O'Brien CA, Margelot K, Wolin SL. Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc Natl Acad Sci U S A 1993; 90:7250-4. [PMID: 7688474 PMCID: PMC47114 DOI: 10.1073/pnas.90.15.7250] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ro small ribonucleoproteins consist of a 60-kDa protein and possibly additional proteins complexed with several small RNA molecules. The RNA components of these particles, designated Y RNAs, are about 100 nt long. Although these small ribonucleoproteins are abundant components of a variety of vertebrate species and cell types, their subcellular location is controversial, and their function is completely unknown. We have identified and characterized the Ro RNPs of Xenopus laevis. Three of the four distinct Xenopus Y RNAs appear to be related to the previously sequenced human hY3, hY4, and hY5 RNAs. The fourth Xenopus Y RNA, xY alpha, does not appear to be a homologue of any of the human Y RNAs. Each of the human and Xenopus Y RNAs possesses a conserved stem that contains the binding site for the 60-kDa Ro protein. Xenopus and human 60-kDa Ro proteins are 78% identical in amino acid sequence, with the conservation extending throughout the entire protein. When human hY3 RNA is mixed with Xenopus egg extracts, the human RNA assembles with the Xenopus Ro protein to form chimeric Ro ribonucleoproteins. By analyzing RNA extracted from manually enucleated oocytes and germinal vesicles, we have determined that Y RNAs are located in the oocyte cytoplasm. By examining the distribution of mouse Ro ribonucleoproteins in cytoplast and karyoplast fractions derived from L-929 cells, we have determined that Ro ribonucleoprotein particles also primarily reside in the cytoplasm of mammalian cells.
Collapse
Affiliation(s)
- C A O'Brien
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|