1
|
Adams RL, Wente SR. Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability. PLoS Genet 2020; 16:e1009033. [PMID: 33002012 PMCID: PMC7553267 DOI: 10.1371/journal.pgen.1009033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/13/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the mRNA export receptor Mex67 is recruited to mature nuclear transcripts to mediate mRNA export through the nuclear pore complex (NPC) to the cytoplasm. Mex67 binds transcripts through adaptor proteins such as the poly(A) binding protein Nab2. When a transcript reaches the cytoplasmic face of the NPC, the DEAD-box protein Dbp5 acts to induce a local structural change to release Nab2 and Mex67 in an essential process termed mRNP remodeling. It is unknown how certain proteins (Nab2, Mex67) are released during Dbp5-mediated mRNP remodeling, whereas others remain associated. Here, we demonstrate that Dbp5 associates in close proximity with Mex67 and Nab2 in a cellular complex. Further, fusion of Dbp5 to Nup159 anchors Dbp5 at the cytoplasmic face of the NPC and is sufficient for cell viability. Thus, we speculate that the essential role of Dbp5 in remodeling exporting mRNPs requires its localization to the NPC and is separable from other subcellular functions of Dbp5. This work supports a model where the diverse nuclear, cytoplasmic and NPC functions of Dbp5 in the mRNA lifecycle are not interdependent and that Dbp5 is locally recruited through complex protein-protein interactions to select regions of transcripts for specific removal of transport proteins at the NPC.
Collapse
Affiliation(s)
- Rebecca L. Adams
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Susan R. Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Su WC, Harrison PM. Deep conservation of prion-like composition in the eukaryotic prion-former Pub1/Tia1 family and its relatives. PeerJ 2020; 8:e9023. [PMID: 32337108 PMCID: PMC7169965 DOI: 10.7717/peerj.9023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pub1 protein is an important RNA-binding protein functional in stress granule assembly in budding yeast Saccharomyces cerevisiae and, as its co-ortholog Tia1, in humans. It is unique among proteins in evidencing prion-like aggregation in both its yeast and human forms. Previously, we noted that Pub1/Tia1 was the only protein linked to human disease that has prion-like character and and has demonstrated such aggregation in both species. Thus, we were motivated to probe further into the evolution of the Pub1/Tia1 family (and its close relative Nam8 and its orthologs) to gain a picture of how such a protein has evolved over deep evolutionary time since the last common ancestor of eukaryotes. Here, we discover that the prion-like composition of this protein family is deeply conserved across eukaryotes, as is the prion-like composition of its close relative Nam8/Ngr1. A sizeable minority of protein orthologs have multiple prion-like domains within their sequences (6-20% depending on criteria). The number of RNA-binding RRM domains is conserved at three copies over >86% of the Pub1 family (>71% of the Nam8 family), but proteins with just one or two RRM domains occur frequently in some clades, indicating that these are not due to annotation errors. Overall, our results indicate that a basic scaffold comprising three RNA-binding domains and at least one prion-like region has been largely conserved since the last common ancestor of eukaryotes, providing further evidence that prion-like aggregation may be a very ancient and conserved phenomenon for certain specific proteins.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Kozlova NV, Pichon C, Rahmouni AR. mRNA with Mammalian Codon Bias Accumulates in Yeast Mutants with Constitutive Stress Granules. Int J Mol Sci 2020; 21:ijms21041234. [PMID: 32059599 PMCID: PMC7072924 DOI: 10.3390/ijms21041234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Stress granules and P bodies are cytoplasmic structures assembled in response to various stress factors and represent sites of temporary storage or decay of mRNAs. Depending on the source of stress, the formation of these structures may be driven by distinct mechanisms, but several stresses have been shown to stabilize mRNAs via inhibition of deadenylation. A recent study identified yeast gene deletion mutants with constitutive stress granules and elevated P bodies; however, the mechanisms which trigger its formation remain poorly understood. Here, we investigate the possibility of accumulating mRNA with mammalian codon bias, which we termed the model RNA, in these mutants. We found that the model RNA accumulates in dcp2 and xrn1 mutants and in four mutants with constitutive stress granules overlapping with P bodies. However, in eight other mutants with constitutive stress granules, the model RNA is downregulated, or its steady state levels vary. We further suggest that the accumulation of the model RNA is linked to its protection from the main mRNA surveillance path. However, there is no obvious targeting of the model RNA to stress granules or P bodies. Thus, accumulation of the model RNA and formation of constitutive stress granules occur independently and only some paths inducing formation of constitutive stress granules will stabilize mRNA as well.
Collapse
Affiliation(s)
- Natalia V. Kozlova
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Colléguim Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France;
- Correspondence: (N.V.K.); (A.R.R.)
| |
Collapse
|
4
|
Urakov VN, Mitkevich OV, Safenkova IV, Ter‐Avanesyan MD. Ribosome‐bound Pub1 modulates stop codon decoding during translation termination in yeast. FEBS J 2017; 284:1914-1930. [DOI: 10.1111/febs.14099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Valery N. Urakov
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Olga V. Mitkevich
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Irina V. Safenkova
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Michael D. Ter‐Avanesyan
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| |
Collapse
|
5
|
Soukup AA, Fischer GJ, Luo J, Keller NP. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genet Biol 2017; 100:13-21. [PMID: 28089630 PMCID: PMC5337145 DOI: 10.1016/j.fgb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 01/18/2023]
Abstract
P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.
Collapse
Affiliation(s)
- Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Jerry Luo
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, WI, United States.
| |
Collapse
|
6
|
Oliveira C, Faoro H, Alves LR, Goldenberg S. RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Genet Mol Biol 2017; 40:22-30. [PMID: 28463381 PMCID: PMC5409782 DOI: 10.1590/1678-4685-gmb-2016-0258] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) have important functions in the regulation of gene
expression. RBPs play key roles in post-transcriptional processes in all eukaryotes,
such as splicing regulation, mRNA transport and modulation of mRNA translation and
decay. RBPs assemble into different mRNA-protein complexes, which form messenger
ribonucleoprotein complexes (mRNPs). Gene expression regulation in trypanosomatids
occurs mainly at the post-transcriptional level and RBPs play a key role in all
processes. However, the functional characterization of RBPs in Trypanosoma
cruzi has been impaired due to the lack of reliable reverse genetic
manipulation tools. The comparison of RBPs from Saccharomyces
cerevisiae and T. cruzi might allow inferring on the
function of these proteins based on the information available for the orthologous
RNA-binding proteins from the S. cerevisiae model organism. In this
review, we discuss the role of some RBPs from T. cruzi and their
homologues in regulating gene expression in yeast.
Collapse
Affiliation(s)
- Camila Oliveira
- Instituto Carlos Chagas, Fiocruz-Paraná, Curitiba, PR, Brazil
| | - Helisson Faoro
- Instituto Carlos Chagas, Fiocruz-Paraná, Curitiba, PR, Brazil
| | | | | |
Collapse
|
7
|
Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast. G3-GENES GENOMES GENETICS 2014; 4:1539-53. [PMID: 24938291 PMCID: PMC4132183 DOI: 10.1534/g3.114.012039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding how genomic variation influences phenotypic variation through the molecular networks of the cell is one of the central challenges of biology. Transcriptional regulation has received much attention, but equally important is the posttranscriptional regulation of mRNA stability. Here we applied a systems genetics approach to dissect posttranscriptional regulatory networks in the budding yeast Saccharomyces cerevisiae. Quantitative sequence-to-affinity models were built from high-throughput in vivo RNA binding protein (RBP) binding data for 15 yeast RBPs. Integration of these models with genome-wide mRNA expression data allowed us to estimate protein-level RBP regulatory activity for individual segregants from a genetic cross between two yeast strains. Treating these activities as a quantitative trait, we mapped trans-acting loci (activity quantitative trait loci, or aQTLs) that act via posttranscriptional regulation of transcript stability. We predicted and experimentally confirmed that a coding polymorphism at the IRA2 locus modulates Puf4p activity. Our results also indicate that Puf3p activity is modulated by distinct loci, depending on whether it acts via the 5′ or the 3′ untranslated region of its target mRNAs. Together, our results validate a general strategy for dissecting the connectivity between posttranscriptional regulators and their upstream signaling pathways.
Collapse
|
8
|
Merret R, Martino L, Bousquet-Antonelli C, Fneich S, Descombin J, Billey É, Conte MR, Deragon JM. The association of a La module with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led to the neofunctionalization of La-related proteins. RNA (NEW YORK, N.Y.) 2013; 19:36-50. [PMID: 23148093 PMCID: PMC3527725 DOI: 10.1261/rna.035469.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/12/2012] [Indexed: 05/27/2023]
Abstract
La-related proteins (LARPs) are largely uncharacterized factors, well conserved throughout evolution. Recent reports on the function of human LARP4 and LARP6 suggest that these proteins fulfill key functions in mRNA metabolism and/or translation. We report here a detailed evolutionary history of the LARP4 and 6 families in eukaryotes. Genes coding for LARP4 and 6 were duplicated in the common ancestor of the vertebrate lineage, but one LARP6 gene was subsequently lost in the common ancestor of the eutherian lineage. The LARP6 gene was also independently duplicated several times in the vascular plant lineage. We observed that vertebrate LARP4 and plant LARP6 duplication events were correlated with the acquisition of a PABP-interacting motif 2 (PAM2) and with a significant reorganization of their RNA-binding modules. Using isothermal titration calorimetry (ITC) and immunoprecipitation methods, we show that the two plant PAM2-containing LARP6s (LARP6b and c) can, indeed, interact with the major plant poly(A)-binding protein (PAB2), while the third plant LARP6 (LARP6a) is unable to do so. We also analyzed the RNA-binding properties and the subcellular localizations of the two types of plant LARP6 proteins and found that they display nonredundant characteristics. As a whole, our results support a model in which the acquisition by LARP4 and LARP6 of a PAM2 allowed their targeting to mRNA 3' UTRs and led to their neofunctionalization.
Collapse
Affiliation(s)
- Rémy Merret
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Cécile Bousquet-Antonelli
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Sara Fneich
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Julie Descombin
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Élodie Billey
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| |
Collapse
|
9
|
Rojas M, Farr GW, Fernandez CF, Lauden L, McCormack JC, Wolin SL. Yeast Gis2 and its human ortholog CNBP are novel components of stress-induced RNP granules. PLoS One 2012; 7:e52824. [PMID: 23285195 PMCID: PMC3528734 DOI: 10.1371/journal.pone.0052824] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
Although a CCTG expansion in the gene encoding the zinc knuckle protein CNBP causes a common form of muscular dystrophy, the function of both human CNBP and its putative budding yeast ortholog Gis2 remain poorly understood. Here we report the protein interactions of Gis2 and the subcellular locations of both Gis2 and CNBP. We found that Gis2 exhibits RNA-dependent interactions with two proteins involved in mRNA recognition, the poly(A) binding protein and the translation initiation factor eIF4G. We show that Gis2 is a component of two large RNA-protein granules, processing bodies and stress granules, which contain translationally repressed mRNAs. Consistent with a functional ortholog, CNBP also associates with the poly(A) binding protein and accumulates in stress granules during arsenite treatment of human cells. These results implicate both Gis2 and CNBP in mRNA handling during stress.
Collapse
Affiliation(s)
- Marta Rojas
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George W. Farr
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Cesar F. Fernandez
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Lauden
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - John C. McCormack
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sandra L. Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
10
|
|
11
|
Santiveri CM, Mirassou Y, Rico-Lastres P, Martínez-Lumbreras S, Pérez-Cañadillas JM. Pub1p C-terminal RRM domain interacts with Tif4631p through a conserved region neighbouring the Pab1p binding site. PLoS One 2011; 6:e24481. [PMID: 21931728 PMCID: PMC3169606 DOI: 10.1371/journal.pone.0024481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
Abstract
Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1-402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role.
Collapse
Affiliation(s)
- Clara M. Santiveri
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Yasmina Mirassou
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Palma Rico-Lastres
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | | | | |
Collapse
|
12
|
Mittal N, Scherrer T, Gerber AP, Janga SC. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins. J Mol Biol 2011; 409:466-79. [PMID: 21501624 DOI: 10.1016/j.jmb.2011.03.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/02/2011] [Accepted: 03/29/2011] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in the posttranscriptional control of gene expression. However, our understanding of how RBPs interact with each other at different regulatory levels to coordinate the RNA metabolism of the cell is rather limited. Here, we construct the posttranscriptional regulatory network among 69 experimentally studied RBPs in yeast to show that more than one-third of the RBPs autoregulate their expression at the posttranscriptional level and demonstrate that autoregulatory RBPs show reduced protein noise with a tendency to encode for hubs in this network. We note that in- and outdegrees in the posttranscriptional RBP-RBP regulatory network exhibit gaussian and scale-free distributions, respectively. This network was also densely interconnected with extensive cross-talk between RBPs belonging to different posttranscriptional steps, regulating varying numbers of cellular RNA targets. We show that feed-forward loops and superposed feed-forward/feedback loops are the most significant three-node subgraphs in this network. Analysis of the corresponding protein-protein interaction (posttranslational) network revealed that it is more modular than the posttranscriptional regulatory network. There is significant overlap between the regulatory and protein-protein interaction networks, with RBPs that potentially control each other at the posttranscriptional level tending to physically interact and being part of the same ribonucleoprotein (RNP) complex. Our observations put forward a model wherein RBPs could be classified into those that can stably interact with a limited number of protein partners, forming stable RNP complexes, and others that form transient hubs, having the ability to interact with multiple RBPs forming many RNPs in the cell.
Collapse
Affiliation(s)
- Nitish Mittal
- Biozentrum, University of Basel, Klingelbergstrasse, Switzerland
| | | | | | | |
Collapse
|
13
|
Cridge AG, Castelli LM, Smirnova JB, Selley JN, Rowe W, Hubbard SJ, McCarthy JE, Ashe MP, Grant CM, Pavitt GD. Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Res 2010; 38:8039-50. [PMID: 20705650 PMCID: PMC3001062 DOI: 10.1093/nar/gkq686] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 07/12/2010] [Accepted: 07/20/2010] [Indexed: 12/18/2022] Open
Abstract
eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison of 4E-BP target mRNAs. We find that yeast 4E-BPs modulate the translation of >1000 genes. Most target mRNAs differ between the 4E-BPs revealing mRNA specificity for translational control by each 4E-BP. This is supported by observations that eap1Δ and caf20Δ cells have different nitrogen source utilization defects, implying different mRNA targets. To account for the mRNA specificity shown by each 4E-BP, we found correlations between our data sets and previously determined targets of yeast mRNA-binding proteins. We used affinity chromatography experiments to uncover specific RNA-stabilized complexes formed between Caf20p and Puf4p/Puf5p and between Eap1p and Puf1p/Puf2p. Thus the combined action of each 4E-BP with specific 3'-UTR-binding proteins mediates mRNA-specific translational control in yeast, showing that this form of translational control is more widely employed than previously thought.
Collapse
Affiliation(s)
- Andrew G. Cridge
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Lydia M. Castelli
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Julia B. Smirnova
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Julian N. Selley
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - William Rowe
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Simon J. Hubbard
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - John E.G. McCarthy
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Mark P. Ashe
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Christopher M. Grant
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Graham D. Pavitt
- The Michael Smith Building and Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Li H, Shi H, Wang H, Zhu Z, Li X, Gao Y, Cui Y, Niu L, Teng M. Crystal structure of the two N-terminal RRM domains of Pub1 and the poly(U)-binding properties of Pub1. J Struct Biol 2010; 171:291-7. [PMID: 20438847 DOI: 10.1016/j.jsb.2010.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022]
Abstract
Yeast poly(U)-binding protein (Pub1) is a major nuclear and cytoplasmic protein that contains three RNA recognition motif (RRM) domains (termed Pub1RRM1, Pub1RRM2 and Pub1RRM3). Pub1 has been implicated as a regulator of cellular mRNA decay. Nearly 10% of all yeast mRNA decay occurs in a Pub1-dependent manner. Pub1 binds to and stabilizes AU-rich element (ARE) and ARE-like sequence-containing transcripts by protecting them from degradation through the deadenylation-dependent pathway, and also binds to and stabilizes stabilizer element (STE)-containing transcripts by preventing their degradation via the nonsense-mediated decay (NMD) pathway. RNA-binding analyses showed that Pub1 binds to poly(U) in vitro. Here we show the crystal structures of Pub1RRM2 and the first two tandem RRM domains (Pub1RRM12). Crystallography showed that the structure of Pub1RRM12 is a domain-swapped dimer. Size exclusion chromatography assay and analytical ultracentrifugation (AUC) showed that Pub1RRM12 is a monomer in solution. Kinetic analysis showed that all three individual RRM domains can bind to poly(U) with similar affinities and Pub1RRM12 binds to a long poly(U) segment with higher affinity. Mutagenesis analysis revealed that residues on the beta-sheets of Pub1RRM1 and Pub1RRM2 are critical for poly(U) binding.
Collapse
Affiliation(s)
- Heng Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gal-Mark N, Schwartz S, Ram O, Eyras E, Ast G. The pivotal roles of TIA proteins in 5' splice-site selection of alu exons and across evolution. PLoS Genet 2009; 5:e1000717. [PMID: 19911040 PMCID: PMC2766253 DOI: 10.1371/journal.pgen.1000717] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 10/13/2009] [Indexed: 01/04/2023] Open
Abstract
More than 5% of alternatively spliced internal exons in the human genome are derived from Alu elements in a process termed exonization. Alus are comprised of two homologous arms separated by an internal polypyrimidine tract (PPT). In most exonizations, splice sites are selected from within the same arm. We hypothesized that the internal PPT may prevent selection of a splice site further downstream. Here, we demonstrate that this PPT enhanced the selection of an upstream 5′ splice site (5′ss), even in the presence of a stronger 5′ss downstream. Deletion of this PPT shifted selection to the stronger downstream 5′ss. This enhancing effect depended on the strength of the downstream 5′ss, on the efficiency of base-pairing to U1 snRNA, and on the length of the PPT. This effect of the PPT was mediated by the binding of TIA proteins and was dependent on the distance between the PPT and the upstream 5′ss. A wide-scale evolutionary analysis of introns across 22 eukaryotes revealed an enrichment in PPTs within ∼20 nt downstream of the 5′ss. For most metazoans, the strength of the 5′ss inversely correlated with the presence of a downstream PPT, indicative of the functional role of the PPT. Finally, we found that the proteins that mediate this effect, TIA and U1C, and in particular their functional domains, are highly conserved across evolution. Overall, these findings expand our understanding of the role of TIA1/TIAR proteins in enhancing recognition of exons, in general, and Alu exons, in particular. Human genes are composed of functional regions, termed exons, separated by non-functional regions, termed introns. Intronic sequences may gradually accumulate mutations and subsequently become recognized by the splicing machinery as exons, a process termed exonization. Alu elements are prone to undergo exonization: more than 5% of alternatively spliced internal exons in the human genome originate from Alu elements. A typical Alu element is ∼300 nucleotides long, consisting of two arms separated by a polypyrimdine tract (PPT). Interestingly, in most cases, exonization occurs almost exclusively within either the right arm or the left, not both. Here we found that the PPT between the two arms serves as a binding site for TIA proteins and prevents the exon selection process from expanding into downstream regions. To obtain a wider overview of TIA function, we performed a cross-evolutionary analysis within 22 eukaryotes of this protein and of U1C, a protein known to interact with it, and found that functional regions of both these proteins were highly conserved. These findings highlight the pivotal role of TIA proteins in 5′ splice-site selection of Alu exons and exon recognition in general.
Collapse
Affiliation(s)
- Nurit Gal-Mark
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Oren Ram
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eduardo Eyras
- Computational Genomics, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- * E-mail: (EE); (GA)
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- * E-mail: (EE); (GA)
| |
Collapse
|
16
|
Lemieux C, Bachand F. Cotranscriptional recruitment of the nuclear poly(A)-binding protein Pab2 to nascent transcripts and association with translating mRNPs. Nucleic Acids Res 2009; 37:3418-30. [PMID: 19336419 PMCID: PMC2691841 DOI: 10.1093/nar/gkp207] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synthesis of the pre-mRNA poly(A) tail in the nucleus has important consequences on the translational activity of the mature mRNA in the cytoplasm. In most eukaryotes, nuclear polyadenylation of pre-mRNAs is thought to require the nuclear poly(A)-binding protein (PABP2/PABPN1) for poly(A) tail synthesis and ultimate length control. As yet, however, the extent of the association between PABP2 and the exported mRNA remains poorly understood. Here, we used chromatin immunoprecipitation (ChIP) assays to show that the fission yeast ortholog of mammalian PABP2 (Pab2) is cotranscriptionally recruited to active genes. Notably, the association of Pab2 to genes precedes that of a typical 3'-processing/polyadenylation factor, suggesting that Pab2 recruitment during the transcription cycle precedes polyadenylation. The inclusion of an RNase step in our ChIP and immunoprecipitation assays suggests that Pab2 is cotranscriptionally recruited via nascent mRNA ribonucleoprotein (mRNPs). Tandem affinity purification coupled with mass spectrometry also revealed that Pab2 associates with several ribosomal proteins as well as general translation factors. Importantly, whereas previous results suggest that the nuclear poly(A)-binding protein is not present on cytoplasmic mRNAs, we show that fission yeast Pab2 is associated with polysomes. Our findings suggest that Pab2 is recruited to nascent mRNPs during transcription and remains associated with translated mRNPs after nuclear export.
Collapse
Affiliation(s)
- Caroline Lemieux
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Québec, Canada
| | | |
Collapse
|
17
|
Gaillard H, Aguilera A. A novel class of mRNA-containing cytoplasmic granules are produced in response to UV-irradiation. Mol Biol Cell 2008; 19:4980-92. [PMID: 18768757 DOI: 10.1091/mbc.e08-02-0193] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleic acids are substrates for different types of damage, but little is known about the fate of damaged RNAs. We addressed the existence of an RNA-damage response in yeast. The decay kinetics of GAL1p-driven mRNAs revealed a dose-dependent mRNA stabilization upon UV-irradiation that was not observed after heat or saline shocks, or during nitrogen starvation. UV-induced mRNA stabilization did not depend on DNA repair, damage checkpoint or mRNA degradation machineries. Notably, fluorescent in situ hybridization revealed that after UV-irradiation, polyadenylated mRNA accumulated in cytoplasmic foci that increased in size with time. In situ colocalization showed that these foci are not processing-bodies, eIF4E-, eIF4G-, and Pab1-containing bodies, stress granules, autophagy vesicles, or part of the secretory or endocytic pathways. These results point to the existence of a specific eukaryotic RNA-damage response, which leads to new polyadenylated mRNA-containing granules (UV-induced mRNA granules; UVGs). We propose that potentially damaged mRNAs, which may be deleterious to the cell, are temporarily stored in UVG granules to safeguard cell viability.
Collapse
Affiliation(s)
- Hélène Gaillard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Centro Andaluz de Biología Molecular and Medicina Regenativa CABIMER, 41092 Sevilla, Spain
| | | |
Collapse
|
18
|
Ozanick S, Krecic A, Andersland J, Anderson JT. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. RNA (NEW YORK, N.Y.) 2005; 11:1281-90. [PMID: 16043508 PMCID: PMC1370811 DOI: 10.1261/rna.5040605] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among all types of RNA, tRNA is unique given that it possesses the largest assortment and abundance of modified nucleosides. The methylation at N(1) of adenosine 58 is a conserved modification, occurring in bacterial, archaeal, and eukaryotic tRNAs. In the yeast Saccharomyces cerevisiae, the tRNA 1-methyladenosine 58 (m(1)A58) methyltransferase (Mtase) is a two-subunit enzyme encoded by the essential genes TRM6 (GCD10) and TRM61 (GCD14). While the significance of many tRNA modifications is poorly understood, methylation of A58 is known to be critical for maintaining the stability of initiator tRNA(Met) in yeast. Furthermore, all retroviruses utilize m(1)A58-containing tRNAs to prime reverse transcription, and it has been shown that the presence of m(1)A58 in human tRNA(3) (Lys) is needed for accurate termination of plus-strand strong-stop DNA synthesis during HIV-1 replication. In this study we have identified the human homologs of the yeast m(1)A Mtase through amino acid sequence identity and complementation of trm6 and trm61 mutant phenotypes. When coexpressed in yeast, human Trm6p and Trm61p restored the formation of m(1)A in tRNA, modifying both yeast initiator tRNA(Met) and human tRNA(3) (Lys). Stable hTrm6p/hTrm61p complexes purified from yeast maintained tRNA m(1)A Mtase activity in vitro. The human m(1)A Mtase complex also exhibited substrate specificity--modifying wild-type yeast tRNA(i) (Met) but not an A58U mutant. Therefore, the human tRNA m(1)A Mtase shares both functional and structural homology with the yeast tRNA m(1)A Mtase, possessing similar enzymatic activity as well as a conserved binary composition.
Collapse
Affiliation(s)
- Sarah Ozanick
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
19
|
Brune C, Munchel SE, Fischer N, Podtelejnikov AV, Weis K. Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export. RNA (NEW YORK, N.Y.) 2005; 11:517-31. [PMID: 15769879 PMCID: PMC1370741 DOI: 10.1261/rna.7291205] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/08/2005] [Indexed: 05/22/2023]
Abstract
Pab1 is the major poly(A)-binding protein in yeast. It is a multifunctional protein that mediates many cellular functions associated with the 3'-poly(A)-tail of messenger RNAs. Here, we characterize Pab1 as an export cargo of the protein export factor Xpo1/Crm1. Pab1 is a major Xpo1/Crm1-interacting protein in yeast extracts and binds directly to Xpo1/Crm1 in a RanGTP-dependent manner. Pab1 shuttles rapidly between the nucleus and the cytoplasm and partially accumulates in the nucleus when the function of Xpo1/Crm1 is inhibited. However, Pab1 can also be exported by an alternative pathway, which is dependent on the MEX67-mRNA export pathway. Import of Pab1 is mediated by the import receptor Kap108/Sxm1 through a nuclear localization signal in its fourth RNA-binding domain. Interestingly, inhibition of Pab1's nuclear import causes a kinetic delay in the export of mRNA. Furthermore, the inviability of a pab1 deletion strain is suppressed by a mutation in the 5'-3' exoribonuclease RRP6, a component of the nuclear exosome. Therefore, nuclear Pab1 may be required for efficient mRNA export and may function in the quality control of mRNA in the nucleus.
Collapse
Affiliation(s)
- Christiane Brune
- Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
20
|
Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, Hinnebusch AG. The Essential ATP-binding Cassette Protein RLI1 Functions in Translation by Promoting Preinitiation Complex Assembly. J Biol Chem 2004; 279:42157-68. [PMID: 15277527 DOI: 10.1074/jbc.m404502200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RLI1 is an essential yeast protein closely related in sequence to two soluble members of the ATP-binding cassette family of proteins that interact with ribosomes and function in translation elongation (YEF3) or translational control (GCN20). We show that affinity-tagged RLI1 co-purifies with eukaryotic translation initiation factor 3 (eIF3), eIF5, and eIF2, but not with other translation initiation factors or with translation elongation or termination factors. RLI1 is associated with 40 S ribosomal subunits in vivo, but it can interact with eIF3 and -5 independently of ribosomes. Depletion of RLI1 in vivo leads to cessation of growth, a lower polysome content, and decreased average polysome size. There was also a marked reduction in 40 S-bound eIF2 and eIF1, consistent with an important role for RLI1 in assembly of 43 S preinitiation complexes in vivo. Mutations of conserved residues in RLI1 expected to function in ATP hydrolysis were lethal. A mutation in the second ATP-binding cassette domain of RLI1 had a dominant negative phenotype, decreasing the rate of translation initiation in vivo, and the mutant protein inhibited translation of a luciferase mRNA reporter in wild-type cell extracts. These findings are consistent with a direct role for the ATP-binding cassettes of RLI1 in translation initiation. RLI1-depleted cells exhibit a deficit in free 60 S ribosomal subunits, and RLI1-green fluorescent protein was found in both the nucleus and cytoplasm of living cells. Thus, RLI1 may have dual functions in translation initiation and ribosome biogenesis.
Collapse
Affiliation(s)
- Jinsheng Dong
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
21
|
Trautwein M, Dengjel J, Schirle M, Spang A. Arf1p provides an unexpected link between COPI vesicles and mRNA in Saccharomyces cerevisiae. Mol Biol Cell 2004; 15:5021-37. [PMID: 15356266 PMCID: PMC524765 DOI: 10.1091/mbc.e04-05-0411] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small GTPase Arf1p is involved in different cellular processes that require its accumulation at specific cellular locations. The recruitment of Arf1p to distinct points of action might be achieved by association of Arf1p with different proteins. To identify new interactors of Arf1p, we performed an affinity chromatography with GTP- or GDP-bound Arf1p proteins. A new interactor of Arf1p-GTP was identified as Pab1p, which binds to the polyA-tail of mRNAs. Pab1p was found to associate with purified COPI-coated vesicles generated from Golgi membranes in vitro. The stability of the Pab1p-Arf1p complex depends on the presence of mRNA. Both symmetrically distributed mRNAs as well as the asymmetrically localized ASH1 mRNA are found in association with Arf1p. Remarkably, Arf1p and Pab1p are both required to restrict ASH1 mRNA to the bud tip. Arf1p and coatomer play an unexpected role in localizing mRNA independent and downstream of the SHE machinery. Hereby acts the SHE machinery in long-range mRNA transport, whereas COPI vesicles could act as short-range and localization vehicles. The endoplasmic reticulum (ER)-Golgi shuttle might be involved in concentrating mRNA at the ER.
Collapse
Affiliation(s)
- Mark Trautwein
- Friedrich Miescher Laboratorium, Max Planck Gesellschaft, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
22
|
Lorković ZJ, Wieczorek Kirk DA, Klahre U, Hemmings-Mieszczak M, Filipowicz W. RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells. RNA (NEW YORK, N.Y.) 2000; 6:1610-24. [PMID: 11105760 PMCID: PMC1370030 DOI: 10.1017/s1355838200001163] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Introns in plant nuclear pre-mRNAs are highly enriched in U or U + A residues and this property is essential for efficient splicing. Moreover, 3'-untranslated regions (3'-UTRs) in plant pre-mRNAs are generally UA-rich and contain sequences that are important for the polyadenylation reaction. Here, we characterize two structurally related RNA-binding proteins (RBPs) from Nicotiana plumbaginifolia, referred to as RBP45 and RBP47, having specificity for oligouridylates. Both proteins contain three RBD-type RNA-binding domains and a glutamine-rich N-terminus, and share similarity with Nam8p, a protein associated with U1 snRNP in the yeast Saccharomyces cerevisiae. Deletion analysis of RBP45 and RBP47 indicated that the presence of at least two RBD are required for interaction with RNA and that domains other than RBD do not significantly contribute to binding. mRNAs for RBP45 and RBP47 and mRNAs encoding six related proteins in Arabidopsis thaliana are constitutively expressed in different plant organs. Indirect immunofluorescence and fractionation of cell extracts showed that RBP45 and RBP47 are localized in the nucleus. In vivo UV crosslinking experiments demonstrated their association with the nuclear poly(A)+ RNA. In contrast to UBP1, another oligouridylate-binding nuclear three-RBD protein of N. plumbaginifolia (Lambermon et al., EMBO J, 2000, 19:1638-1649), RBP45 and RBP47 do not stimulate mRNA splicing and accumulation when transiently overexpressed in protoplasts. Properties of RBP45 and RBP47 suggest they represent hnRNP-proteins participating in still undefined steps of pre-mRNA maturation in plant cell nuclei.
Collapse
|
23
|
Kafasla P, Patrinou-Georgoula M, Guialis A. The 72/74-kDa polypeptides of the 70-110 S large heterogeneous nuclear ribonucleoprotein complex (LH-nRNP) represent a discrete subset of the hnRNP M protein family. Biochem J 2000; 350 Pt 2:495-503. [PMID: 10947964 PMCID: PMC1221277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pre-mRNA processing in eukaryotes is thought to take place on a multitude of nuclear ribonucleoprotein (RNP) complexes, the most abundant of them being the heterogeneous nuclear (hn) RNP complexes. The identification in mammalian nuclear extracts of a novel, less-abundant 70-110 S heterogeneous RNP, named large heterogeneous nuclear RNP (LH-nRNP), has previously been reported by Aidinis, Sekeris and Guialis (1995) Nucleic Acids Res. 23, 2742-2753. The structural composition of the LH-nRNP complex has been determined following the production of polyclonal antibodies against the major protein constituents of the complex, the pair of the 72/74-kDa polypeptides. In the present study evidence is shown to prove that the 72/74-kDa proteins are members of the hnRNP M protein family, hereafter referred to as 72/74(M) polypeptides. The extensive application of two-dimensional gel electrophoresis, combined with specific immunoprecipitation and immunoblotting assays, has allowed the assignment of the 72/74(M) proteins to a subset of the hnRNP M family, characteristic of the presence of the LH-nRNP complex and distinct from the hnRNP-associated M1-M4 components. Moreover, the immunoselection of the LH-nRNP complex from [(32)P]orthophosphate-labelled HeLa cells, with the parallel application of UV irradiation, has permitted the identification of the 72/74(M) polypeptides as the sole protein constituents of the complex in direct contact with the RNA. It is proposed that LH-nRNP constitutes a discrete subset of hnRNP complexes, having a possible role in establishing specific interactions between hnRNP and nuclear-matrix protein components.
Collapse
Affiliation(s)
- P Kafasla
- Laboratory of Molecular Biology, Institute of Biological Research and Biotechnology, The National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece
| | | | | |
Collapse
|
24
|
Ruiz-Echevarría MJ, Peltz SW. The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 2000; 101:741-51. [PMID: 10892745 DOI: 10.1016/s0092-8674(00)80886-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway functions to degrade transcripts containing nonsense codons. Transcripts containing mutations that insert an upstream open reading frame (uORF) in the 5'-UTR are degraded through NMD. However, several naturally occurring uORF-containing transcripts are resistant to NMD. Here we demonstrate that the GCN4 and YAP1 mRNAs, which contain uORFs, harbor a stabilizer element (STE) that prevents rapid NMD by interacting with the RNA binding protein Pub1. Conversely, a uORF-containing mRNA that lacks an STE, such as CPA1, is degraded by the NMD pathway. These results indicate that uORFs can play a pivotal role regulating both translation and turnover and that the Pub1p is a critical factor that modulates the stability of uORF-containing transcripts.
Collapse
Affiliation(s)
- M J Ruiz-Echevarría
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA.
| | | |
Collapse
|
25
|
Tirupati HK, Shaw LC, Lewin AS. An RNA binding motif in the Cbp2 protein required for protein-stimulated RNA catalysis. J Biol Chem 1999; 274:30393-401. [PMID: 10521416 DOI: 10.1074/jbc.274.43.30393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fifth and terminal intron of yeast cytochrome b pre-mRNA (a group I intron) requires a protein encoded by the nuclear gene CBP2 for splicing. Because catalysis is intrinsic to the RNA, the protein is believed to promote formation of secondary and tertiary structure of the RNA, resulting in a catalytically competent intron. In vitro, this mitochondrial intron can be made to self-splice or undergo protein-facilitated splicing by varying the Mg(2+) and monovalent salt concentrations. This two-component system, therefore, provides a good model for understanding the role of proteins in RNA folding. A UV cross-linking experiment was initiated to identify RNA binding sites on Cbp2 and gain insights into Cbp2-intron interactions. A 12-amino acid region containing a presumptive contact site near the amino terminus was targeted for mutagenesis, and mutant proteins were characterized for RNA binding and stimulation of splicing. Mutations in this region resulted in partial or complete loss of function, demonstrating the importance of this determinant for stimulation of RNA splicing. Several of the mutations that severely reduced splicing did not significantly shift the overall binding isotherm of Cbp2 for the precursor RNA, suggesting that contacts critical for activity are not necessarily reflected in the dissociation constant. This analysis has identified a unique RNA binding motif of alternating basic and aromatic residues that is essential for protein facilitated splicing.
Collapse
Affiliation(s)
- H K Tirupati
- Department of Molecular Genetics, University of Florida College of Medicine, Gainesville, Florida 32605, USA
| | | | | |
Collapse
|
26
|
Triana L, Ferreras AC, Cayama E, Correia H, Fraile G, Chakraburtty K, Herrera F. Involvement of a 50-kDa mRNP protein from Saccharomyces cerevisiae in mRNA binding to ribosomes. Arch Biochem Biophys 1997; 344:1-10. [PMID: 9244375 DOI: 10.1006/abbi.1997.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A yeast 50-kDa mRNA-binding protein (50mRNP) is found selectively associated with the 48S and 80S initiation complexes. This protein is structurally related to the translational elongation factor EF-1alpha. The protein reacts with antibodies directed against EF-1alpha and, similarly, EF-1alpha recognizes antibodies against the 50mRNP protein. This is evidence that they share at least one epitope which allows a similar antigenic behavior. In addition, both proteins show similar cleavage patterns upon treatment with the endoproteinase Lys-C. A murine antibody raised against 50mRNP inhibits both 48S and 80S initiation complex formation. The inhibitory effect is relieved by preincubating anti-50mRNP with EF-1alpha. Antibody to EF-1alpha manifests a similar inhibitory pattern for the formation of 48S and 80S complexes. These data strongly suggest that 50mRNP is an EF-1alpha-like polypeptide essential for the formation of the above complexes.
Collapse
Affiliation(s)
- L Triana
- Centro de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias dela Salud, Universidad de Carabobo, Maracay, Venezuela
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The SSD1 gene has been isolated as a single copy suppressor of many mutants, such as sit4, slk1/bck1, pde2, and rpc31, in the yeast Saccharomyces cerevisiae. Ssd1p has domains showing weak but significant homology with RNase II-related proteins, Cyt4p, Dss1p, VacB, and RNase II, which are involved in the modification of RNA. We found that Ssd1p had the ability to bind RNA, preferably poly(rA), as well as single-stranded DNA. Interestingly, the most conserved domain among the RNase II-related proteins was not necessary for interaction with RNA. Indirect immunofluorescence staining with anti-Ssd1p antibody revealed that Ssd1p was detected mainly in the cytoplasm. Furthermore, sucrose gradient sedimentation analysis demonstrated that Ssd1p was not cofractionated with polyribosomes, suggesting that Ssd1p is not particularly bound to a translationally active subpopulation of mRNA in the cytoplasm.
Collapse
Affiliation(s)
- Y Uesono
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | |
Collapse
|
28
|
Yurkova MS, Murray MT. A translation regulatory particle containing the Xenopus oocyte Y box protein mRNP3+4. J Biol Chem 1997; 272:10870-6. [PMID: 9099743 DOI: 10.1074/jbc.272.16.10870] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In oocytes, nontranslated maternal mRNAs are packaged by protein into messenger ribonucleoprotein particles (mRNPs) that are masked from translation by protein-RNA interactions. Proteins associated with such masked states of mRNAs are particularly abundant in amphibian oocytes. One of these mRNP proteins from Xenopus oocytes, mRNP3+4 (also called FRG Y2a/b or p54/p56), binds to diverse mRNAs independent of their sequence and is the germ line member of the evolutionarily conserved Y box protein multigene family. Xenopus oocytes contain soluble pools of mRNP3+4 6 S oligomers, probably dimers, and larger approximately 15 S particles containing mRNP3+4 and additional proteins. Here we report the purification of this larger form as an approximately 320-kDa particle that contains mRNP3+4 and nine additional polypeptides, including mRNA-binding polypeptides of 34 and 36 kDa and a doublet of 110/105 kDa that proved to be nucleolin. The particle has a protein kinase activity that phosphorylates its own mRNP3+4, nucleolin, and a 31-kDa polypeptide component and exhibits translational inhibition in both the wheat germ extract and rabbit reticulocyte lysate systems. The presence of mRNP3+4 and nucleolin in this large translation regulatory particle suggests that it participates in an early step of mRNP assembly and masking.
Collapse
Affiliation(s)
- M S Yurkova
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48202, USA
| | | |
Collapse
|
29
|
Abstract
Jurkat cells, a human T lymphocyte line that can be induced to synthesize and secrete interleukin 2, contain a factor that binds interleukin 2 mRNA. Binding can be demonstrated by formation of a complex detectable by gel electrophoresis. The binding is sequence specific and occurs in the 3'-non-coding region, within 160 nt of the end of the coding region, at or near a site on the mRNA that is rich in A and U residues. However, it appears not to be due to known AU binding factors. The factor is protease sensitive and binds non-covalently to interleukin 2 mRNA. It behaves like a protein of molecular weight 50 000-60 000 after UV-induced cross-linking to the mRNA. Preparations of the binding factor also protect interleukin 2 mRNA against degradation by a recently described RNasin-resistant endoribonuclease activity in Jurkat cells. Protection occurs under the same conditions required to generate the gel-retarded complex.
Collapse
Affiliation(s)
- J Hua
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
30
|
Visa N, Alzhanova-Ericsson AT, Sun X, Kiseleva E, Björkroth B, Wurtz T, Daneholt B. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 1996; 84:253-64. [PMID: 8565071 DOI: 10.1016/s0092-8674(00)80980-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the larval salivary glands of C. tentans, it is possible to visualize by electron microscopy how Balbiani ring (BR) pre-mRNA associates with proteins to form pre-mRNP particles, how these particles move to and through the nuclear pore, and how the BR RNA is engaged in the formation of giant polysomes in the cytoplasm. Here, we study C. tentans hrp36, an abundant protein in the BR particles, and establish that it is similar to the mammalian hnRNP A1. By immuno-electron microscopy it is demonstrated that hrp36 is added to BR RNA concomitant with transcription, remains in nucleoplasmic BR particles, and is translocated through the nuclear pore still associated with BR RNA. It appears in the giant BR RNA-containing polysomes, where it remains as an abundant protein in spite of ongoing translation.
Collapse
Affiliation(s)
- N Visa
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Anderson P. TIA-1: structural and functional studies on a new class of cytolytic effector molecule. Curr Top Microbiol Immunol 1995; 198:131-43. [PMID: 7774278 DOI: 10.1007/978-3-642-79414-8_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Anderson
- Division of Tumor Immunology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
32
|
|
33
|
Abstract
A striking property of nuclear pore complexes is their ability to mediate bi-directional nucleocytoplasmic traffic of proteins and RNAs. In the past year, several new nuclear pore proteins have been identified, but their precise functions remain to be established. Cytosolic factors responsible for the recognition and docking of substrates for nuclear transport are also being characterized. It appears that different factors are required for the import of karyophilic proteins versus small nuclear ribonucleoprotein particles. Furthermore, the GTPase Ran/TC4 has been shown to play a key role in translocation across the nuclear pore complex. Specific RNAs require different sets of factors for their export from the nucleus, although a common export route appears to be utilized by different RNA species. In contrast, nuclear retention has been found to have an influence in controlling the rate of protein exit from the nucleus.
Collapse
|
34
|
Abstract
The export of mRNA from the nucleus to the cytoplasm is an essential step in the expression of genetic information in eukaryotes. It is an energy-dependent process and involves transport across the nuclear pores. It requires both cis-acting ribonucleoprotein particle signals and specific trans-acting factors. Although much remains to be learned, recent information has begun to define this pathway at both the cellular and biochemical levels and indicates that it is used as a key regulatory step by several viruses.
Collapse
Affiliation(s)
- D J Elliott
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | | | | | | |
Collapse
|
35
|
Qiu Y, Krug RM. The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A). J Virol 1994; 68:2425-32. [PMID: 7908060 PMCID: PMC236720 DOI: 10.1128/jvi.68.4.2425-2432.1994] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The influenza virus NS1 protein inhibits the nuclear export of a spliced viral mRNA, NS2 mRNA (F. V. Alonso-Caplen, M. E. Nemeroff, Y. Qiu, and R. M. Krug, Genes Dev. 6:255-267, 1992). To identify the sequence in NS2 mRNA that is recognized by the NS1 protein, we developed a gel shift assay for the formation of specific RNA-protein complexes. With this assay, it was established that the NS1 protein binds to the poly(A) sequence at the 3' end of NS2 mRNA and of other mRNAs. In addition, the NS1 protein was shown to bind to poly(A) itself. This specificity was also observed in vivo. The NS1 protein inhibited the nuclear export of every poly(A)-containing mRNA that was tested. In contrast, the NS1 protein failed to inhibit the nuclear export of an mRNA whose 3' end was generated by cleavage without subsequent addition of poly(A). Addition of poly(A) to this mRNA enabled the NS1 protein to inhibit mRNA export. The implications of these results for the role of the NS1 protein during virus infection are discussed.
Collapse
Affiliation(s)
- Y Qiu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855-1179
| | | |
Collapse
|