1
|
Abstract
Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, DNA polymerases, and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during variable (diversity) joining [V(D)J] recombination and class switch recombination (CSR). Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation (IR), but also severely immunodeficient.
Collapse
Affiliation(s)
- Michael R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA.
| |
Collapse
|
2
|
Lieber MR, Raghavan SC, Yu K. Mechanistic Aspects of Lymphoid Chromosomal Translocations. J Natl Cancer Inst Monogr 2008:8-11. [DOI: 10.1093/jncimonographs/lgn012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
3
|
Lieber MR, Yu K, Raghavan SC. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst) 2006; 5:1234-45. [PMID: 16793349 DOI: 10.1016/j.dnarep.2006.05.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
When a single double-strand break arises in the genome, nonhomologous DNA end joining (NHEJ) is a major pathway for its repair. When double-strand breaks arise at two nonhomologous sites in the genome, NHEJ also appears to be a major pathway by which the translocated ends are joined. The mechanism of NHEJ is briefly summarized, and alternative enzymes are also discussed. V(D)J recombination and class switch recombination are specialized processes designed to create double-strand DNA breaks at specific locations in the genomes of lymphoid cells. Sporadic Burkitt's lymphoma and myelomas can arise due to translocation of the c-myc gene into the Ig heavy chain locus during class switch recombination. In other lymphoid neoplasms, the RAG complex can create double-strand breaks that result in a translocation. Such RAG-generated breaks occur at very specific nucleotides that are directly adjacent to sequences that resemble canonical heptamer/nonamer sequences characteristic of normal V(D)J recombination. This occurs in some T cell leukemias and lymphomas. The RAG complex also appears capable of recognizing regions for their altered DNA structure rather than their primary sequence, and this may account for the action by RAGs at some chromosomal translocation sites, such as at the bcl-2 major breakpoint region in the follicular lymphomas that arise in B lymphocytes.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Ctr., Rm. 5428, University of Southern California, Keck School of Medicine 1441 Eastlake Ave, MC 9176 Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
4
|
Zhang X, Paull TT. The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae. DNA Repair (Amst) 2005; 4:1281-94. [PMID: 16043424 DOI: 10.1016/j.dnarep.2005.06.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Revised: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 12/25/2022]
Abstract
In Saccharomyces cerevisiae, the Mre11/Rad50/Xrs2 (MRX) complex plays important roles in both homologous and non-homologous pathways of DNA repair. In this study, we investigated the role of the MRX complex and its enzymatic functions in non-homologous repair of DNA ends containing incompatible end structures. Using a plasmid transformation assay, we found that mre11 and rad50 null strains are extremely deficient in joining of incompatible DNA ends. Expression of the nuclease-deficient Mre11 mutant H125N fully complemented the mre11 strain for joining of mismatched ends in the absence of homology, while a mutant of Rad50 deficient in ATP-dependent activities exhibited levels of end-joining similar to a rad50 deletion strain. Although the majority of non-homologous end-joining (NHEJ) products isolated did not contain microhomologies, introduction of an 8bp microhomology at mismatched ends resulted in microhomology-mediated joining in all of the products recovered, demonstrating that a microhomology exerts a dominant effect on processing events that occur during NHEJ. Nuclease-deficient Mre11p was less efficient in promoting microhomology-mediated end-joining in comparison to its ability to stimulate non-microhomology-mediated events, suggesting that Mre11p influences, but is not essential for, microhomology-mediated repair. When the linearized DNA was transformed in the presence of an intact homologous plasmid to facilitate gap repair, there was no decrease in NHEJ products obtained, suggesting that NHEJ and homologous repair do not compete for DNA ends in vivo. These results suggest that the MRX complex is essential for joining of incompatible ends by NHEJ, and the ATP-dependent activities of Rad50 are critical for this process.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712-0159, USA
| | | |
Collapse
|
5
|
Montalbano A, Ogwaro KM, Tang A, Matthews AGW, Larijani M, Oettinger MA, Feeney AJ. V(D)J Recombination Frequencies Can Be Profoundly Affected by Changes in the Spacer Sequence. THE JOURNAL OF IMMUNOLOGY 2003; 171:5296-304. [PMID: 14607931 DOI: 10.4049/jimmunol.171.10.5296] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Each V, D, and J gene segment is flanked by a recombination signal sequence (RSS), composed of a conserved heptamer and nonamer separated by a 12- or 23-bp spacer. Variations from consensus in the heptamer or nonamer at specific positions can dramatically affect recombination frequency, but until recently, it had been generally held that only the length of the spacer, but not its sequence, affects the efficacy of V(D)J recombination. In this study, we show several examples in which the spacer sequence can significantly affect recombination frequencies. We show that the difference in spacer sequence alone of two V(H)S107 genes affects recombination frequency in recombination substrates to a similar extent as the bias observed in vivo. We show that individual positions in the spacer can affect recombination frequency, and those positions can often be predicted by their frequency in a database of RSS. Importantly, we further show that a spacer sequence that has an infrequently observed nucleotide at each position is essentially unable to support recombination in an extrachromosmal substrate assay, despite being flanked by a consensus heptamer and nonamer. This infrequent spacer sequence RSS shows only a 2-fold reduction of binding of RAG proteins, but the in vitro cleavage of this RSS is approximately 9-fold reduced compared with a good RSS. These data demonstrate that the spacer sequence should be considered to play an important role in the recombination efficacy of an RSS, and that the effect of the spacer occurs primarily subsequent to RAG binding.
Collapse
MESH Headings
- Antibody Diversity/genetics
- Base Composition
- Computer Simulation
- Consensus Sequence
- DNA, Intergenic/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Rearrangement, B-Lymphocyte
- Gene Rearrangement, T-Lymphocyte
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Hydrolysis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Nuclear Proteins
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic/immunology
Collapse
Affiliation(s)
- Alina Montalbano
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Nakajima PB, Bosma MJ. Variable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild-type mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3094-104. [PMID: 12218126 DOI: 10.4049/jimmunol.169.6.3094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this study, we report that not all SCID coding ends are hairpinned. We have detected open Jdelta1 and Ddelta2 coding ends at the TCRdelta locus in SCID thymocytes. Approximately 25% of 5'Ddelta2 coding ends were found to be open. Large deletions and abnormally long P nucleotide additions typical of SCID Ddelta2-Jdelta1 coding joints were not observed. Most Jdelta1 and Ddelta2 coding ends exhibited 3' overhangs, but at least 20% had unique 5' overhangs not previously detected in vivo. We suggest that the SCID DNA-dependent protein kinase deficiency not only reduces the efficiency of hairpin opening, but also may affect the specificity of hairpin nicking, as well as the efficiency of joining open coding ends.
Collapse
Affiliation(s)
- Pamela B Nakajima
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
7
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
8
|
Zhu X, Boonthum A, Zhai SK, Knight KL. B Lymphocyte Selection and Age-Related Changes in VH Gene Usage in Mutant Alicia Rabbits. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Young Alicia rabbits use VHa-negative genes, VHx and VHy, in most VDJ genes, and their serum Ig is VHa negative. However, as Alicia rabbits age, VHa2 allotype Ig is produced at high levels. We investigated which VH gene segments are used in the VDJ genes of a2 Ig-secreting hybridomas and of a2 Ig+ B cells from adult Alicia rabbits. We found that 21 of the 25 VDJ genes used the a2-encoding genes, VH4 or VH7; the other four VDJ genes used four unknown VH gene segments. Because VH4 and VH7 are rarely found in VDJ genes of normal or young Alicia rabbits, we investigated the timing of rearrangement of these genes in Alicia rabbits. During fetal development, VH4 was used in 60–80% of nonproductively rearranged VDJ genes, and VHx and VHy together were used in 10–26%. These data indicate that during B lymphopoiesis VH4 is preferentially rearranged. However, the percentage of productive VHx- and VHy-utilizing VDJ genes increased from 38% at day 21 of gestation to 89% at birth (gestation day 31), whereas the percentage of VH4-utilizing VDJ genes remained at 15%. These data suggest that during fetal development, either VH4-utilizing B-lineage cells are selectively eliminated, or B cells with VHx- and VHy-utilizing VDJ genes are selectively expanded, or both. The accumulation of peripheral VH4-utilizing a2 B cells with age indicates that these B cells might be selectively expanded in the periphery. We discuss the possible selection mechanisms that regulate VH gene segment usage in rabbit B cells during lymphopoiesis and in the periphery.
Collapse
Affiliation(s)
- Xiaocui Zhu
- Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL 60153
| | - Anusorn Boonthum
- Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL 60153
| | - Shi-Kang Zhai
- Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL 60153
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL 60153
| |
Collapse
|
9
|
Sun T, Ezekiel UR, Erskine L, Agulo R, Bozek G, Roth D, Storb U. Signal joint formation is inhibited in murine scid preB cells and fibroblasts in substrates with homopolymeric coding ends. Mol Immunol 1999; 36:551-8. [PMID: 10475610 DOI: 10.1016/s0161-5890(99)00053-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During B and T lymphocyte development, immunoglobulin and T cell receptor genes are assembled from the germline V, (D) and J gene segments (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). These DNA rearrangements, responsible for immune system diversity, are mediated by a site specific recombination machinery via recognition signal sequences (RSSs) composed of conserved heptamers and nonamers separated by spacers of 12 or 23 nucleotides (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). Recombination occurs only between a RSS with a 12mer spacer and a RSS with a 23mer spacer (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). RAG1 and RAG2 proteins cleave precisely at the RSS-coding sequence border leading to flush signal ends and coding ends with a hairpin structure (Eastman, M., Leu, T., Schatz, D., 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380, 85-88; Roth, D.B., Menetski, J.P., Nakajima, P.B., Bosma, M.J., Gellert, M., 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 983-991: Roth, D.B., Zhu, C., Gellert. M., 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90, 10,788-10,792; van Gent, D., McBlane, J.. Sadofsky, M., Hesse, J., Gellert, M., 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81, 925-934). Signal ends join, forming a signal joint. The hairpin coding ends are opened by a yet unknown endonuclease, and are further processed to form the coding joint (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Ad. Immunol. 56, 27-150.) The murine scid mutation has been shown to affect coding joints, but much less signal joint formation. In this study we demonstrate that the murine scid mutation inhibits correct signal joint formation when both coding ends contain homopolymeric sequences. We suggest that this finding may be due to the function of the SCID protein as an assembly component in V(D)J recombination.
Collapse
Affiliation(s)
- T Sun
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Bentolila LA, Olson S, Marshall A, Rougeon F, Paige CJ, Doyen N, Wu GE. Extensive Junctional Diversity in Ig Light Chain Genes from Early B Cell Progenitors of μMT Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Nontemplated (N) nucleotide additions contribute significantly to the junctional diversity of all Ag receptor chains in adult mice except Ig light (L) chains, primarily because terminal deoxynucleotidyl transferase (TdT) expression is turned off at the time of their rearrangement in pre-B cells. However, because some Ig L chain gene rearrangements are detectable earlier during B cell ontogeny when TdT expression is thought to be maximal, we have examined the junctional processing of κ- and λ-chain genes of CD45(B220)+CD43+ pro-B cells from μMT mice. We found that both κ and λ coding junctions formed in these B cell precursors were extensively diversified with N-region additions. Together, these findings demonstrate that Ig L chain genes are equally accessible to TdT in pro-B cells as Ig heavy chain genes. Surprisingly, however, the two L chain isotypes differed in the pattern of N addition, which was more prevalent at the λ-chain locus. We observed the same diversity pattern in pre-B cells from TdT-transgenic mice. These results suggest that some aspects of TdT processing could be influenced by factors intrinsic to the sequence of Ig genes and/or the process of V(D)J recombination itself.
Collapse
Affiliation(s)
- Laurent A. Bentolila
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Stacy Olson
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - Aaron Marshall
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - François Rougeon
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Christopher J. Paige
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - Noëlle Doyen
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Gillian E. Wu
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| |
Collapse
|
11
|
Nadel B, Tang A, Escuro G, Lugo G, Feeney AJ. Sequence of the spacer in the recombination signal sequence affects V(D)J rearrangement frequency and correlates with nonrandom Vkappa usage in vivo. J Exp Med 1998; 187:1495-503. [PMID: 9565641 PMCID: PMC2212273 DOI: 10.1084/jem.187.9.1495] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Revised: 02/27/1998] [Indexed: 11/04/2022] Open
Abstract
Functional variable (V), diversity (D), and joining (J) gene segments contribute unequally to the primary repertoire. One factor contributing to this nonrandom usage is the relative frequency with which the different gene segments rearrange. Variation from the consensus sequence in the heptamer and nonamer of the recombination signal sequence (RSS) is therefore considered a major factor affecting the relative representation of gene segments in the primary repertoire. In this study, we show that the sequence of the spacer is also a determinant factor contributing to the frequency of rearrangement. Moreover, the effect of the spacer on recombination rates of various human Vkappa gene segments in vitro correlates with their frequency of rearrangement in vivo in pre-B cells and with their representation in the peripheral repertoire.
Collapse
Affiliation(s)
- B Nadel
- The Scripps Research Institute, Department of Immunology, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
V(D)J recombination assembles the variable portion of antigen receptor genes in developing lymphocytes and is the only site-specific recombination reaction known in vertebrates. A cell-free system has been established that performs DNA cleavage, end processing, and joining to yield V(D)J coding joints that exhibit structural features similar to those formed in vivo. The reaction has the expected substrate, metal ion, and RAG protein requirements. The efficiency of coding joint formation is reduced dramatically by uncoupling the cleavage and joining portions of the reaction, indicating that a postcleavage coding end complex facilitates joining. By varying the reaction conditions, nucleotide loss from coding ends and heterogeneity of coding joints can be regulated. This cell-free system provides a novel tool for detailed mechanistic analyses of the end processing and joining steps of V(D)J recombination.
Collapse
MESH Headings
- Cell-Free System/immunology
- Codon/chemistry
- Codon/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Gene Rearrangement, B-Lymphocyte/immunology
- Gene Rearrangement, T-Lymphocyte/immunology
- Homeodomain Proteins
- Plasmids/immunology
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Recombination, Genetic/immunology
- Substrate Specificity
Collapse
Affiliation(s)
- T M Leu
- Universität Z ürich-Irchel Veterinärbiochemie, Zürich, Switzerland
| | | | | |
Collapse
|
13
|
Chu G. Role of the Ku autoantigen in V(D)J recombination and double-strand break repair. Curr Top Microbiol Immunol 1996; 217:113-32. [PMID: 8787621 DOI: 10.1007/978-3-642-50140-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- G Chu
- Department of Medicine, Stanford University Medical Center, CA 94305, USA
| |
Collapse
|
14
|
Zhang Y, Cado D, Asarnow DM, Komori T, Alt FW, Raulet DH, Allison JP. The role of short homology repeats and TdT in generation of the invariant gamma delta antigen receptor repertoire in the fetal thymus. Immunity 1995; 3:439-47. [PMID: 7584135 DOI: 10.1016/1074-7613(95)90173-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fetal thymic and adult epithelial V gamma 3+ and V gamma 4+ T cells express gamma delta antigen receptors (TCR) with invariant junctions lacking N nucleotides. Using transgenic recombination substrates, we show that di- or trinucleotide repeats, either in the coding region or in P elements, have strong effects on the site of recombination. In other mice bearing a terminal deoxynucleotidyl transferase (TdT) transgene under the control of the CD2 promoter, we found that the frequency of canonical junctions was markedly reduced with a concomitant increase in in-frame noncanonical junctions with N nucleotides. Together, our results show that short homology repeats direct the site of rearrangement and thus play a critical role in the generation of gamma delta T cell receptor canonical junctions. Increased TdT activity in V gamma 3+ T cells has a inhibitory effect on junctional homogeneity in these cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Nucleotidylexotransferase/genetics
- Embryonic and Fetal Development/immunology
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Thymus Gland/embryology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Y Zhang
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Boudinot P, Rueff-Juy D, Drapier AM, Cazenave PA, Sanchez P. Various V-J rearrangement efficiencies shape the mouse lambda B cell repertoire. Eur J Immunol 1995; 25:2499-505. [PMID: 7589117 DOI: 10.1002/eji.1830250914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The diversity of the B cell repertoire of C kappa knockout mice is limited by the expression of four lambda light chain types. Among the spleen B cells, lambda 1 is expressed by the majority (58%) of cells, and lambda 3 by the minority (8%), while lambda 2 (V2) and lambda 2 (Vx) are expressed in intermediate quantities (18% and 16%, respectively). To assess the influence of mechanistic pressures on the lambda subtype distribution, the proportions of the different lambda rearrangements were determined in various B cell subpopulations divided on the basis of the lambda subtype expressed, and the V lambda J lambda junction sequences were studied at different steps of B cell differentiation (pre-B, immature and mature B cells). The data show that (1) the ratio of productive/non-productive VJ junctions is determined by the nature of the lambda segments that are rearranged as can be observed in the pre-B cells, (2) V1-J1 non-productive rearrangements are often found in the lambda 1-negative B cells in the periphery, and (3) V1J3 junctions are often non-productive regardless of the nature of the cells analyzed. Our results, therefore, suggest that a strong probability of initiating a V1-J1 rearrangement and a weak probability of giving a productive V1J3 junction are responsible for the lambda 1 dominance and the lambda 3 under-expression, respectively. The intermediate proportion of lambda 2(V2) subtype is most likely due to a probability of obtaining a productive joint that is better than that for V1J3 and a probability of initiating a rearrangement that is lower than that for V1J1. However, the lambda 2(Vx) cell proportion cannot be determined only by these parameters.
Collapse
Affiliation(s)
- P Boudinot
- Département d'Immunologie, Institut Pasteur (URA CNRS 1961), Paris, France
| | | | | | | | | |
Collapse
|
16
|
Ezekiel UR, Engler P, Stern D, Storb U. Asymmetric processing of coding ends and the effect of coding end nucleotide composition on V(D)J recombination. Immunity 1995; 2:381-9. [PMID: 7719940 DOI: 10.1016/1074-7613(95)90146-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The products of V(D)J recombination are coding and signal joints. We show that the nucleotide composition of the coding ends affects V(D)J recombination. The presence of Ts at the 5' end of either the 12 mer or the 23 mer recombination signal sequence (RSS) greatly decreases coding and signal joint formation, and Ts at the 5' ends of both RSSs eliminate recombination, suggesting that a step during the initiation phase of the recombination is affected. A 5' T coding end can be rescued it the other end contains 5' G, C, or A, implying that synapsis may be required. Furthermore, the presence of As at the 5' end of the 12 mer, but not the 23 mer, RSS affects coding but not signal joint formation. This observation of asymmetric processing of coding ends suggests that different protein complexes are bound to the two RSSs, and become transferred to the aligned coding ends during processing.
Collapse
Affiliation(s)
- U R Ezekiel
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- D T Weaver
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Banga SS, Hall KT, Sandhu AK, Weaver DT, Athwal RS. Complementation of V(D)J recombination defect and X-ray sensitivity of scid mouse cells by human chromosome 8. Mutat Res 1994; 315:239-47. [PMID: 7526201 DOI: 10.1016/0921-8777(94)90035-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cells derived from mice homozygous for the severe combined immune deficiency (scid) mutation exhibit hypersensitivity to ionizing radiation, and defects in DNA double-strand break repair and V(D)J recombination. Using the technique of microcell-mediated chromosome transfer, we have introduced a number of dominantly marked human chromosomes into scid cells to localize the human homolog of the murine scid gene. Analysis of human-scid hybrid clones revealed that the presence of human chromosome 8 partially restored accurate V(D)J recombination and radioresistance to scid cells. Subsequent loss of the human chromosome 8 from human-scid hybrid clones rendered these cells sensitive to gamma-radiation and impaired their ability to catalyse V(D)J recombination. Introduction of chromosomes 2, 14, 16 and 19 that encode other repair genes did not result in the correction of these two scid defects. These observations demonstrate that the human homolog of the mouse scid gene resides on human chromosome 8.
Collapse
Affiliation(s)
- S S Banga
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103-2757
| | | | | | | | | |
Collapse
|
19
|
Lewis SM. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 1994; 56:27-150. [PMID: 8073949 DOI: 10.1016/s0065-2776(08)60450-2] [Citation(s) in RCA: 446] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S M Lewis
- Division of Biology, California Institute of Technology, Pasadena 91125
| |
Collapse
|