1
|
Zhou L, Lu R, Huang C, Lin D. Taurine Protects C2C12 Myoblasts From Impaired Cell Proliferation and Myotube Differentiation Under Cisplatin-Induced ROS Exposure. Front Mol Biosci 2021; 8:685362. [PMID: 34124164 PMCID: PMC8189557 DOI: 10.3389/fmolb.2021.685362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
In cancer patients, chemotherapeutic medication induces aberrant ROS (reactive oxygen species) accumulation in skeletal muscles, resulting in myofiber degradation, muscle weakness, and even cachexia, which further leads to poor therapeutic outcomes. Acting as an antioxidant, taurine is extensively used to accelerate postexercise muscle recovery in athletes. The antioxidant effects of taurine have been shown in mature myotubes and myofibers but not yet in myoblasts, the myotube precursor. The proliferation and differentiation ability of myoblasts play a very important role in myofiber repair and regeneration, which is usually impaired during chemotherapeutics in cancer patients as well. Here, we explored the effects of taurine supplementation on C2C12 myoblasts exposed to cisplatin-induced ROS. We found that cisplatin treatment led to dramatically decreased cell viability; accumulated ROS level; down-regulated expressions of MyoD1 (myoblast determination protein 1), myogenin, and MHC (myosin heavy chain); and impaired myotube differentiation in myoblasts. Significantly, taurine supplementation protected myoblasts against cisplatin-induced cell viability decrease, promoted cellular ROS clearance, and, most importantly, preserved the expressions of MyoD1, myogenin, and MHC as well as myotube differentiation ability. We further conducted NMR-based metabolomic analysis to clarify the underlying molecular mechanisms. We identified 14 characteristic metabolites primarily responsible for the discrimination of metabolic profiles between cisplatin-treated cells and normal counterparts, including increased levels of BCAAs (branched-chain amino acids: leucine and isoleucine), alanine, glycine, threonine, glucose, ADP (adenosine diphosphate), phenylalanine, and PC (O-phosphocholine), and decreased levels of lysine, β-alanine, choline, GPC (sn-glycero-3-phosphocholine), and myo-inositol. Evidently, taurine supplementation partially reversed the changing trends of several metabolites (isoleucine, threonine, glycine, PC, β-alanine, lysine, and myo-inositol). Furthermore, taurine supplementation promoted the proliferation and myotube differentiation of myoblasts by alleviating cellular catabolism, facilitating GSH (reduced glutathione) biosynthesis, improving glucose utilization and TCA (tricarboxylic acid) cycle anaplerosis, and stabilizing cellular membranes. Our results demonstrated the protective effects of taurine on cisplatin-impaired myoblasts and elucidated the mechanistic rationale for the use of taurine to ameliorate muscle toxicity in clinical chemotherapy cancer patients.
Collapse
Affiliation(s)
- Lin Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Transient Shifts of Incubation Temperature Reveal Immediate and Long-Term Transcriptional Response in Chicken Breast Muscle Underpinning Resilience and Phenotypic Plasticity. PLoS One 2016; 11:e0162485. [PMID: 27611643 PMCID: PMC5017601 DOI: 10.1371/journal.pone.0162485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/23/2016] [Indexed: 12/24/2022] Open
Abstract
Variations in egg incubation temperatures can have acute or long-term effects on gene transcription in avian species. Altered gene expression may, in turn, affect muscle traits in poultry and indirectly influence commercial production. To determine how changes in eggshell temperature affect gene expression, incubation temperatures were varied [36.8°C (low), 37.8°C (control), 38.8°C (high)] at specific time periods reflecting two stages of myogenesis [embryonic days (ED) 7-10 and 10-13]. Gene expression was compared between interventions and matching controls by microarrays in broiler breast muscle at ED10 or ED13 and post-hatch at day 35. Early (ED7-10) high incubation temperature (H10ΔC) resulted in 1370 differentially expressed genes (DEGs) in embryos. Ingenuity pathway analysis revealed temporary activation of cell maintenance, organismal development, and survival ability genes, but these effects were not maintained in adults. Late high incubation temperature (ED10-13) (H13ΔC) had slightly negative impacts on development of cellular components in embryos, but a cumulative effect was observed in adults, in which tissue development and nutrition metabolism were affected. Early low incubation temperature (L10ΔC) produced 368 DEGs, most of which were down-regulated and involved in differentiation and formation of muscle cells. In adults, this treatment down-regulated pathways of transcriptional processes, but up-regulated cell proliferation. Late low temperature incubation (L13ΔC) produced 795 DEGs in embryos, and activated organismal survival and post-transcriptional regulation pathways. In adults this treatment activated cellular and organ development, nutrition and small molecule activity, and survival rate, but deactivated size of body and muscle cells. Thermal interventions during incubation initiate immediate and delayed transcriptional responses that are specific for timing and direction of treatment. Interestingly, the transcriptional response to transiently decreased incubation temperature, which did not affect the phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype. These mechanisms of considerable phenotypic plasticity contribute to the biodiversity and broaden the basis for managing poultry populations.
Collapse
|
3
|
Świerczek B, Ciemerych MA, Archacka K. From pluripotency to myogenesis: a multistep process in the dish. J Muscle Res Cell Motil 2015; 36:363-75. [PMID: 26715014 PMCID: PMC4762919 DOI: 10.1007/s10974-015-9436-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells or induced pluripotent stem cells are a promising source of cells for regenerative medicine as they can differentiate into all cell types building a mammalian body. However, protocols leading to efficient and safe in vitro generation of desired cell types must be perfected before PSCs can be used in cell therapies or tissue engineering. In vivo, i.e. in developing mouse embryo or teratoma, PSCs can differentiate into skeletal muscle, but in vitro their spontaneous differentiation into myogenic cells is inefficient. Numerous attempts have been undertaken to enhance this process. Many of them involved mimicking the interactions occurring during embryonic myogenesis. The key regulators of embryonic myogenesis, such as Wnts proteins, fibroblast growth factor 2, and retinoic acid, have been tested to improve the frequency of in vitro myogenic differentiation of PSCs. This review summarizes the current state of the art, comparing spontaneous and directed myogenic differentiation of PSCs as well as the protocols developed this far to facilitate this process.
Collapse
Affiliation(s)
- Barbara Świerczek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
4
|
Du C, Jin YQ, Qi JJ, Ji ZX, Li SY, An GS, Jia HT, Ni JH. Effects of myogenin on expression of late muscle genes through MyoD-dependent chromatin remodeling ability of myogenin. Mol Cells 2012; 34:133-42. [PMID: 22814845 PMCID: PMC3887822 DOI: 10.1007/s10059-012-2286-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/26/2012] [Accepted: 06/07/2012] [Indexed: 01/09/2023] Open
Abstract
MyoD and myogenin (Myog) recognize sets of distinct but overlapping target genes and play different roles in skeletal muscle differentiation. MyoD is sufficient for near-full expression of early targets, while Myog can only partially enhance expression of MyoD-initiated late muscle genes. However, the way in which Myog enhances the expression of MyoD-initiated late muscle genes remains unclear. Here, we examine the effects of Myog on chromatin remodeling at late muscle gene promoters and their activation within chromatin environment. Chromatin immunoprecipitation (ChIP) assay showed that Myog selectively bound to the regulatory sequences of late muscle genes. Overexpression of Myog was found to overcome sodium butyrateinhibited chromatin at late muscle genes in differentiating C2C12 myoblasts, shifting the transcriptional activation of these genes to an earlier time period. Furthermore, overexpression of Myog led to increased hyperacetylation of core histone H4 in differentiating C2C12 myoblasts but not NIH3T3 fibroblasts, and hyperacetylated H4 was associated directly with the late muscle genes in differentiating C2C12, indicating that Myog can induce chromatin remodeling in the presence of MyoD. In addition, co-immunoprecipitation (CoIP) revealed that Myog was associated with the nuclear protein Brd4 in differentiating C2C12 myoblasts. Together, these results suggest that Myog enhances the expression of MyoD-initiated late muscle genes through MyoD-dependent ability of Myog to induce chromatin remodeling, in which Myog-Brd4 interaction may be involved.
Collapse
Affiliation(s)
- Chao Du
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
| | - Ya-Qiong Jin
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
| | - Jun-Juan Qi
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
| | - Zhen-Xing Ji
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
| | - Shu-Yan Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
| | - Guo-Shun An
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
| | - Hong-Ti Jia
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
- Department of Biochemistry and Molecular Biology, Capital University of Medical Sciences, Beijing 100069,
People’s Republic of China
| | - Ju-Hua Ni
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191,
People’s Republic of China
| |
Collapse
|
5
|
Noh OJ, Park YH, Chung YW, Kim IY. Transcriptional regulation of selenoprotein W by MyoD during early skeletal muscle differentiation. J Biol Chem 2010; 285:40496-507. [PMID: 20956524 DOI: 10.1074/jbc.m110.152934] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenoprotein W (SelW) is expressed in various tissues, but it is especially high in the skeletal muscle of mammals. Such tissue-specific protein expression implies regulation by a tissue-specific factor. In this study, we investigated SelW expression during myogenic C2C12 cell differentiation using RT-PCR, quantitative PCR, and Western blot analysis. Both the protein and mRNA levels of SelW were increased during C2C12 cell differentiation, particularly during the early stage. Sequence analysis of the SelW promoter revealed four putative E-boxes, E1, E2, E3, and E4, which are known binding sites for MyoD, a myogenic transcriptional factor. Luciferase reporter assay showed that E1 and E4 were crucial for MyoD-dependent promoter activity. Using EMSA analysis, we observed that MyoD bound directly to E1 but not to E4, even though E4 mutation reduced SelW promoter activity in the luciferase reporter assay. Binding of MyoD to E1 was further investigated by ChIP assay. These results suggest that the SelW gene was activated by the binding of MyoD to a specific E-box during early skeletal muscle differentiation.
Collapse
Affiliation(s)
- Ok Jeong Noh
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
6
|
Ounzain S, Dacwag CS, Samani NJ, Imbalzano AN, Chong NW. Comparative in silico analysis identifies bona fide MyoD binding sites within the Myocyte stress 1 gene promoter. BMC Mol Biol 2008; 9:50. [PMID: 18489770 PMCID: PMC2408591 DOI: 10.1186/1471-2199-9-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 05/19/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Myocyte stress 1 (MS1) is a striated muscle actin binding protein required for the muscle specific activity of the evolutionary ancient myocardin related transcription factor (MRTF)/serum response factor (SRF) transcriptional pathway. To date, little is known about the molecular mechanisms that govern skeletal muscle specific expression of MS1. Such mechanisms are likely to play a major role in modulating SRF activity and therefore muscle determination, differentiation and regeneration. In this study we employed a comparative in silico analysis coupled with an experimental promoter characterisation to delineate these mechanisms. RESULTS Analysis of MS1 expression in differentiating C2C12 muscle cells demonstrated a temporal differentiation dependent up-regulation in ms1 mRNA. An in silico comparative sequence analysis identified two conserved putative myogenic regulatory domains within the proximal 1.5 kbp of 5' upstream sequence. Co-transfecting C2C12 myoblasts with ms1 promoter/luciferase reporters and myogenic regulatory factor (MRF) over-expression plasmids revealed specific sensitivity of the ms1 promoter to MyoD. Subsequent mutagenesis and EMSA analysis demonstrated specific targeting of MyoD at two distinct E-Boxes (E1 and E2) within identified evolutionary conserved regions (ECRs, alpha and beta). Chromatin immunoprecipitation (ChIP) analysis indicates that co-ordinated binding of MyoD at E-Boxes located within ECRs alpha and beta correlates with the temporal induction in ms1 mRNA. CONCLUSION These findings suggest that the tissue specific and differentiation dependent up-regulation in ms1 mRNA is mediated by temporal binding of MyoD at distinct evolutionary conserved E-Boxes within the ms1 5' upstream sequence. We believe, through its activation of ms1, this is the first study to demonstrate a direct link between MyoD activity and SRF transcriptional signalling, with clear implications for the understanding of muscle determination, differentiation and regeneration.
Collapse
Affiliation(s)
- Samir Ounzain
- Cardiology Group, Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK.
| | | | | | | | | |
Collapse
|
7
|
Ekmark M, Rana ZA, Stewart G, Hardie DG, Gundersen K. De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. J Physiol 2007; 584:637-50. [PMID: 17761773 PMCID: PMC2277165 DOI: 10.1113/jphysiol.2007.141457] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Elucidating the molecular pathways linking electrical activity to gene expression is necessary for understanding the effects of exercise on muscle. Fast muscles express higher levels of MyoD and lower levels of myogenin than slow muscles, and we have previously linked myogenin to expression of oxidative enzymes. We here report that in slow muscles, compared with fast, 6 times as much of the MyoD is in an inactive form phosphorylated at T115. In fast muscles, 10 h of slow electrical stimulation had no effect on the total MyoD protein level, but the fraction of phosphorylated MyoD was increased 4-fold. Longer stimulation also decreased the total level of MyoD mRNA and protein, while the level of myogenin protein was increased. Fast patterned stimulation did not have any of these effects. Overexpression of wild type MyoD had variable effects in active slow muscles, but increased expression of fast myosin heavy chain in denervated muscles. In normally active soleus muscles, MyoD mutated at T115 (but not at S200) increased the number of fibres containing fast myosin from 50% to 85% in mice and from 13% to 62% in rats. These data establish de-phosphorylated active MyoD as a link between the pattern of electrical activity and fast fibre type in adult muscles.
Collapse
Affiliation(s)
- Merete Ekmark
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, Blindern, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
8
|
Parker MH, Perry RLS, Fauteux MC, Berkes CA, Rudnicki MA. MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation. Mol Cell Biol 2006; 26:5771-83. [PMID: 16847330 PMCID: PMC1592768 DOI: 10.1128/mcb.02404-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 02/08/2006] [Accepted: 05/08/2006] [Indexed: 01/12/2023] Open
Abstract
The MyoD family of basic helix-loop-helix transcription factors function as heterodimers with members of the E-protein family to induce myogenic gene activation. The E-protein HEB is alternatively spliced to generate alpha and beta isoforms. While the function of these molecules has been studied in other cell types, questions persist regarding the molecular functions of HEB proteins in skeletal muscle. Our data demonstrate that HEB alpha expression remains unchanged in both myoblasts and myotubes, whereas HEB beta is upregulated during the early phases of terminal differentiation. Upon induction of differentiation, a MyoD-HEB beta complex bound the E1 E-box of the myogenin promoter leading to transcriptional activation. Importantly, forced expression of HEB beta with MyoD synergistically lead to precocious myogenin expression in proliferating myoblasts. However, after differentiation, HEB alpha and HEB beta synergized with myogenin, but not MyoD, to activate the myogenin promoter. Specific knockdown of HEB beta by small interfering RNA in myoblasts blocked differentiation and inhibited induction of myogenin transcription. Therefore, HEB alpha and HEB beta play novel and central roles in orchestrating the regulation of myogenic factor activity through myogenic differentiation.
Collapse
Affiliation(s)
- Maura H Parker
- Ottawa Health Research Institute, Molecular Medicine Program, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | | | |
Collapse
|
9
|
Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, Young RA, Tapscott SJ. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 2006; 25:502-11. [PMID: 16437161 PMCID: PMC1383539 DOI: 10.1038/sj.emboj.7600958] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 12/21/2005] [Indexed: 02/07/2023] Open
Abstract
We used a combination of genome-wide and promoter-specific DNA binding and expression analyses to assess the functional roles of Myod and Myog in regulating the program of skeletal muscle gene expression. Our findings indicate that Myod and Myog have distinct regulatory roles at a similar set of target genes. At genes expressed throughout the program of myogenic differentiation, Myod can bind and recruit histone acetyltransferases. At early targets, Myod is sufficient for near full expression, whereas, at late expressed genes, Myod initiates regional histone modification but is not sufficient for gene expression. At these late genes, Myog does not bind efficiently without Myod; however, transcriptional activation requires the combined activity of Myod and Myog. Therefore, the role of Myog in mediating terminal differentiation is, in part, to enhance expression of a subset of genes previously initiated by Myod.
Collapse
Affiliation(s)
- Yi Cao
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roshan M Kumar
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Bennett H Penn
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Laurie A Boyer
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, MA 02493, USA. E-mail:
| | - Stephen J Tapscott
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Mailstop C3-168, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA. Tel.: +1 206 667 4499; Fax: +1 206 667 6524; E-mail:
| |
Collapse
|
10
|
McCormick MB, Tamimi RM, Snider L, Asakura A, Bergstrom D, Tapscott SJ. NeuroD2 and neuroD3: distinct expression patterns and transcriptional activation potentials within the neuroD gene family. Mol Cell Biol 1996; 16:5792-800. [PMID: 8816493 PMCID: PMC231580 DOI: 10.1128/mcb.16.10.5792] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have identified two new genes, neuroD2 and neuroD3, on the basis of their similarity to the neurogenic basic-helix-loop-helix (bHLH) gene neuroD. The predicted amino acid sequence of neuroD2 shows a high degree of homology to neuroD and MATH-2/NEX-1 in the bHLH region, whereas neuroD3 is a more distantly related family member. neuroD3 is expressed transiently during embryonic development, with the highest levels of expression between days 10 and 12. neuroD2 is initially expressed at embryonic day 11, with persistent expression in the adult nervous system. In situ and Northern (RNA) analyses demonstrate that different regions of the adult nervous system have different relative amounts of neuroD and neuroD2 RNA. Similar to neuroD, expression of neuroD2 in developing Xenopus laevis embryos results in ectopic neurogenesis, indicating that neuroD2 mediates neuronal differentiation. Transfection of vectors expressing neuroD and neuroD2 into P19 cells shows that both can activate expression through simple E-box-driven reporter constructs and can activate a reporter driven by the neuroD2 promoter region, but the GAP-43 promoter is preferentially activated by neuroD2. The noncongruent expression pattern and target gene specificity of these highly related neurogenic bHLH proteins make them candidates for conferring specific aspects of the neuronal phenotype.
Collapse
Affiliation(s)
- M B McCormick
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | | | | | |
Collapse
|
11
|
Rao MV, Donoghue MJ, Merlie JP, Sanes JR. Distinct regulatory elements control muscle-specific, fiber-type-selective, and axially graded expression of a myosin light-chain gene in transgenic mice. Mol Cell Biol 1996; 16:3909-22. [PMID: 8668209 PMCID: PMC231388 DOI: 10.1128/mcb.16.7.3909] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fast alkali myosin light chain 1f/3f (MLC1f/3f) gene is developmentally regulated, muscle specific, and preferentially expressed in fast-twitch fibers. A transgene containing an MLC1f promoter plus a downstream enhancer replicates this pattern of expression in transgenic mice. Unexpectedly, this transgene is also expressed in a striking (approximately 100-fold) rostrocaudal gradient in axial muscles (reviewed by J. R. Sanes, M. J. Donoghue, M. C. Wallace, and J. P. Merlie, Cold Spring Harbor Symp. Quant. Biol. 57:451-460, 1992). Here, we analyzed the expression of mutated transgenes to map sites necessary for muscle-specific, fiber-type-selective, and axially graded expression. We show that two E boxes (myogenic factor binding sites), a homeodomain (hox) protein binding site, and an MEF2 site, which are clustered in an approximately 170-bp core enhancer, are all necessary for maximal transgene activity in muscle but not for fiber-type- or position-dependent expression. A distinct region within the core enhancer promotes selective expression of the transgene in fast-twitch muscles. Sequences that flank the core enhancer are also necessary for high-level activity in transgenic mice but have little influence on activity in transfected cells, suggesting the presence of regions resembling matrix attachment sites. Truncations of the MLC1f promoter affected position-dependent expression of the transgene, revealing distinct regions that repress transgene activity in neck muscles and promote differential expression among intercostal muscles. Thus, the whole-body gradient of expression displayed by the complete transgene may reflect the integrated activities of discrete elements that regulate expression in subsets of muscles. Finally, we show that transgene activity is not significantly affected by deletion or overexpression of the myoD gene, suggesting that intermuscular differences in myogenic factor levels do not affect patterns of transgene expression. Together, our results provide evidence for at least nine distinct sites that exert major effects on the levels and patterns of MLC1f expression in adult muscles.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chloramphenicol O-Acetyltransferase/biosynthesis
- Crosses, Genetic
- DNA Footprinting
- DNA Primers
- Deoxyribonuclease I
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Embryonic and Fetal Development
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Mutagenesis, Site-Directed
- Myosin Light Chains/biosynthesis
- Myosin Light Chains/genetics
- Organ Specificity
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Recombinant Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Transfection
Collapse
Affiliation(s)
- M V Rao
- Department of Molecular Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
12
|
Salminen M, López S, Maire P, Kahn A, Daegelen D. Fast-muscle-specific DNA-protein interactions occurring in vivo at the human aldolase A M promoter are necessary for correct promoter activity in transgenic mice. Mol Cell Biol 1996; 16:76-85. [PMID: 8524331 PMCID: PMC230980 DOI: 10.1128/mcb.16.1.76] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The human aldolase A tissue-specific M promoter (pM) has served as a model system for identifying pathways that lead to fast-muscle-specialized expression. The current study has delimited the sequences necessary and sufficient for fast-muscle-specific expression in transgenic mice to a short 209-bp fragment extending from bp -164 to +45 relative to the pM transcription start site. Genomic footprinting methods showed that in this proximal region, the same elements that bind muscle nuclear proteins in vitro are involved in DNA-protein interactions in intact muscle nuclei of transgenic mice. Furthermore, these experiments provided the first evidence that different DNA-binding activities exist between slow and fast muscles in vivo. Fast-muscle-specific interactions occur at an element named M1 and at a muscle-specific DNase I-hypersensitive site that was previously detected by in vitro methods. The formation of the muscle-specific DNase I-hypersensitive site reflects binding of proteins to a close element, named M2, which contains a binding site for nuclear factors of the NF1 family. Mutational analysis performed with transgenic mice confirmed the importance of the M1 element for high-level fast-muscle-specific pM activity and suggested that the M2/NF1 element is differently required for correct pM expression in distinct fast muscles. In addition, two other protein binding sites, the MEF3 motif and the USF site, seem to act as stage-specific activators and/or as participants in the establishment of an active chromatin configuration at pM.
Collapse
Affiliation(s)
- M Salminen
- Institut Cochin de Génétique Moléculaire, Institut National de la Santé et de la Recherche Médicale U129, Université René Descartes, Paris, France
| | | | | | | | | |
Collapse
|
13
|
E-box- and MEF-2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken MyoD (CMD1) promoter reveal an indirect regulatory pathway. Mol Cell Biol 1994. [PMID: 8035824 DOI: 10.1128/mcb.14.8.5474] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the MyoD family of gene-regulatory proteins (MyoD, myogenin, myf5, and MRF4) have all been shown not only to regulate the transcription of numerous muscle-specific genes but also to positively autoregulate and cross activate each other's transcription. In the case of muscle-specific genes, this transcriptional regulation can often be correlated with the presence of a DNA consensus in the regulatory region CANNTG, known as an E box. Little is known about the regulatory interactions of the myogenic factors themselves; however, these interactions are thought to be important for the activation and maintenance of the muscle phenotype. We have identified the minimal region in the chicken MyoD (CMD1) promoter necessary for muscle-specific transcription in primary cultures of embryonic chicken skeletal muscle. The CMD1 promoter is silent in primary chick fibroblast cultures and in muscle cell cultures treated with the thymidine analog bromodeoxyuridine. However, CMD1 and chicken myogenin, as well as, to a lesser degree, chicken Myf5 and MRF4, expressed in trans can activate transcription from the minimal CMD1 promoter in these primary fibroblast cultures. Here we show that the CMD1 promoter contains numerous E-box binding sites for CMD1 and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific expression, autoregulation, or cross activation depends upon the presence of of these E-box or MEF-2 binding sites in the CMD1 promoter. These results demonstrate that the autoregulation and cross activation of the chicken MyoD promoter through the putative direct binding of the myogenic basic helix-loop-helix regulatory factors is mediated through an indirect pathway that involves unidentified regulatory elements and/or ancillary factors.
Collapse
|
14
|
Dechesne CA, Wei Q, Eldridge J, Gannoun-Zaki L, Millasseau P, Bougueleret L, Caterina D, Paterson BM. E-box- and MEF-2-independent muscle-specific expression, positive autoregulation, and cross-activation of the chicken MyoD (CMD1) promoter reveal an indirect regulatory pathway. Mol Cell Biol 1994; 14:5474-86. [PMID: 8035824 PMCID: PMC359067 DOI: 10.1128/mcb.14.8.5474-5486.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Members of the MyoD family of gene-regulatory proteins (MyoD, myogenin, myf5, and MRF4) have all been shown not only to regulate the transcription of numerous muscle-specific genes but also to positively autoregulate and cross activate each other's transcription. In the case of muscle-specific genes, this transcriptional regulation can often be correlated with the presence of a DNA consensus in the regulatory region CANNTG, known as an E box. Little is known about the regulatory interactions of the myogenic factors themselves; however, these interactions are thought to be important for the activation and maintenance of the muscle phenotype. We have identified the minimal region in the chicken MyoD (CMD1) promoter necessary for muscle-specific transcription in primary cultures of embryonic chicken skeletal muscle. The CMD1 promoter is silent in primary chick fibroblast cultures and in muscle cell cultures treated with the thymidine analog bromodeoxyuridine. However, CMD1 and chicken myogenin, as well as, to a lesser degree, chicken Myf5 and MRF4, expressed in trans can activate transcription from the minimal CMD1 promoter in these primary fibroblast cultures. Here we show that the CMD1 promoter contains numerous E-box binding sites for CMD1 and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific and the other myogenic factors, as well as a MEF-2 binding site. Surprisingly, neither muscle-specific expression, autoregulation, or cross activation depends upon the presence of of these E-box or MEF-2 binding sites in the CMD1 promoter. These results demonstrate that the autoregulation and cross activation of the chicken MyoD promoter through the putative direct binding of the myogenic basic helix-loop-helix regulatory factors is mediated through an indirect pathway that involves unidentified regulatory elements and/or ancillary factors.
Collapse
Affiliation(s)
- C A Dechesne
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|