1
|
Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast. Int J Mol Sci 2021; 22:ijms22168538. [PMID: 34445244 PMCID: PMC8395189 DOI: 10.3390/ijms22168538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/25/2023] Open
Abstract
Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.
Collapse
|
2
|
Krieger G, Lupo O, Levy AA, Barkai N. Independent evolution of transcript abundance and gene regulatory dynamics. Genome Res 2020; 30:1000-1011. [PMID: 32699020 PMCID: PMC7397873 DOI: 10.1101/gr.261537.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Changes in gene expression drive novel phenotypes, raising interest in how gene expression evolves. In contrast to the static genome, cells modulate gene expression in response to changing environments. Previous comparative studies focused on specific conditions, describing interspecies variation in expression levels, but providing limited information about variation across different conditions. To close this gap, we profiled mRNA levels of two related yeast species in hundreds of conditions and used coexpression analysis to distinguish variation in the dynamic pattern of gene expression from variation in expression levels. The majority of genes whose expression varied between the species maintained a conserved dynamic pattern. Cases of diverged dynamic pattern correspond to genes that were induced under distinct subsets of conditions in the two species. Profiling the interspecific hybrid allowed us to distinguish between genes with predominantly cis- or trans-regulatory variation. We find that trans-varying alleles are dominantly inherited, and that cis-variations are often complemented by variations in trans Based on these results, we suggest that gene expression diverges primarily through changes in expression levels, but does not alter the pattern by which these levels are dynamically regulated.
Collapse
Affiliation(s)
- Gat Krieger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Offir Lupo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Sun ZG, Wang MQ, Wang YP, Xing S, Hong KQ, Chen YF, Guo XW, Xiao DG. Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation. Appl Microbiol Biotechnol 2019; 103:4917-4929. [DOI: 10.1007/s00253-019-09807-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
|
4
|
Becker-Kettern J, Paczia N, Conrotte JF, Zhu C, Fiehn O, Jung PP, Steinmetz LM, Linster CL. NAD(P)HX repair deficiency causes central metabolic perturbations in yeast and human cells. FEBS J 2018; 285:3376-3401. [PMID: 30098110 DOI: 10.1111/febs.14631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
NADHX and NADPHX are hydrated and redox inactive forms of the NADH and NADPH cofactors, known to inhibit several dehydrogenases in vitro. A metabolite repair system that is conserved in all domains of life and that comprises the two enzymes NAD(P)HX dehydratase and NAD(P)HX epimerase, allows reconversion of both the S- and R-epimers of NADHX and NADPHX to the normal cofactors. An inherited deficiency in this system has recently been shown to cause severe neurometabolic disease in children. Although evidence for the presence of NAD(P)HX has been obtained in plant and human cells, little is known about the mechanism of formation of these derivatives in vivo and their potential effects on cell metabolism. Here, we show that NAD(P)HX dehydratase deficiency in yeast leads to an important, temperature-dependent NADHX accumulation in quiescent cells with a concomitant depletion of intracellular NAD+ and serine pools. We demonstrate that NADHX potently inhibits the first step of the serine synthesis pathway in yeast. Human cells deficient in the NAD(P)HX dehydratase also accumulated NADHX and showed decreased viability. In addition, those cells consumed more glucose and produced more lactate, potentially indicating impaired mitochondrial function. Our results provide first insights into how NADHX accumulation affects cellular functions and pave the way for a better understanding of the mechanism(s) underlying the rapid and severe neurodegeneration leading to early death in NADHX repair-deficient children.
Collapse
Affiliation(s)
- Julia Becker-Kettern
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Nicole Paczia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Chenchen Zhu
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, CA, USA
| | - Paul P Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.,Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
5
|
Ernst DC, Downs DM. Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in Saccharomyces cerevisiae. mBio 2018; 9:e00084-18. [PMID: 29487232 PMCID: PMC5829821 DOI: 10.1128/mbio.00084-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
A variety of metabolic deficiencies and human diseases arise from the disruption of mitochondrial enzymes and/or loss of mitochondrial DNA. Mounting evidence shows that eukaryotes have conserved enzymes that prevent the accumulation of reactive metabolites that cause stress inside the mitochondrion. 2-Aminoacrylate is a reactive enamine generated by pyridoxal 5'-phosphate-dependent α,β-eliminases as an obligatory intermediate in the breakdown of serine. In prokaryotes, members of the broadly conserved RidA family (PF14588) prevent metabolic stress by deaminating 2-aminoacrylate to pyruvate. Here, we demonstrate that unmanaged 2-aminoacrylate accumulation in Saccharomyces cerevisiae mitochondria causes transient metabolic stress and the irreversible loss of mitochondrial DNA. The RidA family protein Mmf1p deaminates 2-aminoacrylate, preempting metabolic stress and loss of the mitochondrial genome. Disruption of the mitochondrial pyridoxal 5'-phosphate-dependent serine dehydratases (Ilv1p and Cha1p) prevents 2-aminoacrylate formation, avoiding stress in the absence of Mmf1p. Furthermore, chelation of iron in the growth medium improves maintenance of the mitochondrial genome in yeast challenged with 2-aminoacrylate, suggesting that 2-aminoacrylate-dependent loss of mitochondrial DNA is influenced by disruption of iron homeostasis. Taken together, the data indicate that Mmf1p indirectly contributes to mitochondrial DNA maintenance by preventing 2-aminoacrylate stress derived from mitochondrial amino acid metabolism.IMPORTANCE Deleterious reactive metabolites are produced as a consequence of many intracellular biochemical transformations. Importantly, reactive metabolites that appear short-lived in vitro have the potential to persist within intracellular environments, leading to pervasive cell damage and diminished fitness. To overcome metabolite damage, organisms utilize enzymatic reactive-metabolite defense systems to rid the cell of deleterious metabolites. In this report, we describe the importance of the RidA/YER057c/UK114 enamine/imine deaminase family in preventing 2-aminoacrylate stress in yeast. Saccharomyces cerevisiae lacking the enamine/imine deaminase Mmf1p was shown to experience pleiotropic growth defects and fails to maintain its mitochondrial genome. Our results provide the first line of evidence that uncontrolled 2-aminoacrylate stress derived from mitochondrial serine metabolism can negatively impact mitochondrial DNA maintenance in eukaryotes.
Collapse
Affiliation(s)
- Dustin C Ernst
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Si T, Luo Y, Xiao H, Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng 2014; 22:60-8. [DOI: 10.1016/j.ymben.2014.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/02/2013] [Accepted: 01/02/2014] [Indexed: 01/13/2023]
|
7
|
Lee JCY, Tsoi A, Kornfeld GD, Dawes IW. Cellular responses toL-serine inSaccharomyces cerevisiae: roles of general amino acid control, compartmentalization, and aspartate synthesis. FEMS Yeast Res 2013; 13:618-34. [DOI: 10.1111/1567-1364.12063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Johnny C.-Y. Lee
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Abraham Tsoi
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Geoffrey D. Kornfeld
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Ian W. Dawes
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
8
|
Abstract
In this work, we have studied the effect of amplifying different alleles involved in the threonine biosynthesis on the amino acid production by Saccharomyces cerevisiae. The genes used were wild-type HOM3, HOM2, HOM6, THR1, and THR4, and two mutant alleles of HOM3 (namely HOM3-R2 and HOM3-R6), that code for feedback-insensitive aspartate kinases. The results show that only the amplification of the HOM3 alleles leads to threonine and, in some instances, to homoserine overproduction. In terms of the regulation of the pathway, the data indicate that the main control is exerted by inhibition of the aspartate kinase and that, probably, a second and less important regulation takes place at the level of the homoserine kinase, the THR1 gene product. However, amplification of THR1 in two related Hom3-R2 strains does not increase the amount of threonine but, in one of them, it does induce accumulation of more homoserine. This result probably reflects differences between these strains in some undetermined genetic factor/s related with threonine metabolism. In general, the data indicate that the common laboratory yeast strains are genetically rather heterogeneous and, thus, extrapolation of conclusions must be done carefully. (c) 1996 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- M J Farfán
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Ap. 1095, E-41080 Sevilla, Spain
| | | | | |
Collapse
|
9
|
Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, Schadt EE. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol 2012; 10:e1001301. [PMID: 22509135 PMCID: PMC3317911 DOI: 10.1371/journal.pbio.1001301] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/20/2012] [Indexed: 01/22/2023] Open
Abstract
DNA variation can be used as a systematic source of perturbation in segregating populations as a way to infer regulatory networks via the integration of large-scale, high-dimensional molecular profiling data. Cells employ multiple levels of regulation, including transcriptional and translational regulation, that drive core biological processes and enable cells to respond to genetic and environmental changes. Small-molecule metabolites are one category of critical cellular intermediates that can influence as well as be a target of cellular regulations. Because metabolites represent the direct output of protein-mediated cellular processes, endogenous metabolite concentrations can closely reflect cellular physiological states, especially when integrated with other molecular-profiling data. Here we develop and apply a network reconstruction approach that simultaneously integrates six different types of data: endogenous metabolite concentration, RNA expression, DNA variation, DNA–protein binding, protein–metabolite interaction, and protein–protein interaction data, to construct probabilistic causal networks that elucidate the complexity of cell regulation in a segregating yeast population. Because many of the metabolites are found to be under strong genetic control, we were able to employ a causal regulator detection algorithm to identify causal regulators of the resulting network that elucidated the mechanisms by which variations in their sequence affect gene expression and metabolite concentrations. We examined all four expression quantitative trait loci (eQTL) hot spots with colocalized metabolite QTLs, two of which recapitulated known biological processes, while the other two elucidated novel putative biological mechanisms for the eQTL hot spots. It is now possible to score variations in DNA across whole genomes, RNA levels and alternative isoforms, metabolite levels, protein levels and protein state information, protein–protein interactions, and protein–DNA interactions, in a comprehensive fashion in populations of individuals. Interactions among these molecular entities define the complex web of biological processes that give rise to all higher order phenotypes, including disease. The development of analytical approaches that simultaneously integrate different dimensions of data is essential if we are to extract the meaning from large-scale data to elucidate the complexity of living systems. Here, we use a novel Bayesian network reconstruction algorithm that simultaneously integrates DNA variation, RNA levels, metabolite levels, protein–protein interaction data, protein–DNA binding data, and protein–small-molecule interaction data to construct molecular networks in yeast. We demonstrate that these networks can be used to infer causal relationships among genes, enabling the identification of novel genes that modulate cellular regulation. We show that our network predictions either recapitulate known biology or can be prospectively validated, demonstrating a high degree of accuracy in the predicted network.
Collapse
Affiliation(s)
- Jun Zhu
- Sage Bionetworks, Seattle, Washington, United States of America
- * E-mail: (JZ); (EES)
| | - Pavel Sova
- Department of Microbiology, University of Washington, Seattle Washington, United States of America
| | - Qiuwei Xu
- Safety Assessment, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Kenneth M. Dombek
- Department of Microbiology, University of Washington, Seattle Washington, United States of America
| | - Ethan Y. Xu
- Safety Assessment, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Heather Vu
- Safety Assessment, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Zhidong Tu
- Molecular Profiling, Merck Research Laboratories, Boston, Massachusetts, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Roger E. Bumgarner
- Department of Microbiology, University of Washington, Seattle Washington, United States of America
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City, New York, United States of America
- * E-mail: (JZ); (EES)
| |
Collapse
|
10
|
Pakka VH, Prügel-Bennett A, Dasmahapatra S. Correlated fluctuations carry signatures of gene regulatory network dynamics. J Theor Biol 2010; 266:343-57. [PMID: 20619272 DOI: 10.1016/j.jtbi.2010.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/29/2010] [Accepted: 06/29/2010] [Indexed: 12/29/2022]
Abstract
The dynamics of transcriptional control involve small numbers of molecules and result in significant fluctuations in protein and mRNA concentrations. The correlations between these intrinsic fluctuations then offer, via the fluctuation dissipation relation, the possibility of capturing the system's response to external perturbations, and hence the nature of the regulatory activity itself. We show that for simple regulatory networks of activators and repressors, the correlated fluctuations between molecular species show distinct characteristics for changes in regulatory mechanism and for changes to the topology of causal influence. Here, we do a stochastic analysis and derive time-dependent correlation functions between molecular species of regulatory networks and present analytical and numerical results on peaks and delays in correlations between proteins within networks. Upon using these values of peaks and delays as a two-dimensional feature space, we find that different regulatory mechanisms separate into distinct clusters. This indicates that experimentally observable pairwise correlations can distinguish between gene regulatory networks.
Collapse
Affiliation(s)
- Vijayanarasimha H Pakka
- School of Electronics and Computer Science, University of Southampton, Southampton SO171BJ, UK
| | | | | |
Collapse
|
11
|
He Q, Battistella L, Morse RH. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. J Biol Chem 2007; 283:5276-86. [PMID: 18093974 DOI: 10.1074/jbc.m708266200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator complex is essential for transcription by RNA polymerase II in eukaryotes. Although chromatin remodeling is an integral part of transcriptional activation at many promoters, whether Mediator is required for this function has not been determined. Here we have used the yeast CHA1 gene to study the role of Mediator in chromatin remodeling and recruitment of the transcription machinery. We show by chromatin immunoprecipitation that Mediator subunits are recruited to the induced CHA1 promoter. Inactivation of Mediator at 37 degrees C in yeast harboring the srb4-138 (med17) ts mutation severely reduces CHA1 activation and prevents recruitment to the induced CHA1 promoter of Med18/Srb5, from the head module of Mediator, and Med14/Rgr1, which bridges the middle and tail modules. In contrast, recruitment of Med15/Gal11 from the tail module is unaffected in med17 ts yeast at 37 degrees C. Recruitment of TATA-binding protein (TBP) is severely compromised in the absence of functional Mediator, whereas Kin28 and polymerase II recruitment are reduced but to a lesser extent. Induced levels of histone H3K4me3 at the CHA1 promoter are not diminished by inactivation of Mediator, whereas recruitment of Paf1 and of Ser2- and Ser5-phosphorylated forms of Rbp1 are reduced but not eliminated. Loss of histone H3 from the induced CHA1 promoter is seen in wild type yeast but is greatly reduced by loss of intact Mediator. In contrast, Swi/Snf recruitment and nucleosome remodeling are unaffected by loss of Mediator function. Thus, Mediator is required for recruitment of the transcription machinery subsequent to chromatin remodeling during CHA1 induction.
Collapse
Affiliation(s)
- Qiye He
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
12
|
Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 2006; 43:605-17. [PMID: 16731015 DOI: 10.1016/j.fgb.2006.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/15/2006] [Accepted: 03/24/2006] [Indexed: 01/28/2023]
Abstract
Efficient regulation of nitrogen metabolism likely plays a role in the ability of fungi to exploit ecological niches. To learn about regulation of nitrogen metabolism in the rice blast pathogen Magnaporthe grisea, we undertook a genome-wide analysis of gene expression under nitrogen-limiting conditions. Five hundred and twenty genes showed increased transcript levels at 12 and 48 h after shifting the fungus to media lacking nitrate as a nitrogen source. Thirty-nine of these genes have putative functions in amino acid metabolism and uptake, and include the global nitrogen regulator in M. grisea, NUT1. Evaluation of seven nitrogen starvation-induced genes revealed that all were expressed during rice infection. Targeted gene replacement on one such gene, the vacuolar serine protease, SPM1, resulted in decreased sporulation and appressorial development as well as a greatly attenuated ability to cause disease. Data are discussed in the context of nitrogen metabolism under starvation conditions, as well as conditions potentially encountered during invasive growth in planta.
Collapse
Affiliation(s)
- N M Donofrio
- North Carolina State University, Center for Integrated Fungal Research, Raleigh, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Olesen K, Franke Johannesen P, Hoffmann L, Bech Sorensen S, Gjermansen C, Hansen J. The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection. Yeast 2000; 16:1035-43. [PMID: 10923025 DOI: 10.1002/1097-0061(200008)16:11<1035::aid-yea606>3.0.co;2-p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A series of 24 general-purpose yeast plasmid vectors has been constructed. The plasmid series is composed of inter-replaceable cassettes, allowing for easy interconversion of plasmid types. In addition to the usual replication origins, selectable markers and multiple cloning sites (MCS), cassettes dedicated to counter-selection have been constructed. A pair of unique 8 bp restriction enzyme recognition sites flank each type of cassette, FseI in the case of yeast replication origins, AscI in the case of selectable markers, PacI in the case of counter-selectable markers and NotI in the case of the MCS. Thus, any given cassette can be replaced by another cassette of the same type, facilitating interconversion of any given plasmid from one type to another, even after the insertion of DNA into the MCS. Hence, the plasmids have been named pYC for 'yeast cassettes'. The cassettes consist of either NONE, CEN4/ARS or 2micro as replication origin, either URA3, MET2-CA (Lg-MET2) or the G418 resistance gene (the apt1 gene from bacterial transposon Tn903, encoding aminoglycoside phosphotransferase) as selectable markers, either NONE, PMET25-PKA3 or PCHA1-PKA3 as counter-selectable marker, and the MCS, containing recognition sites for AflII, AvrII, BspEI, PmeI, SacII, SalI, SunI, BamHI, EcoRI, HindIII, KpnI, MluI, NarI and SacI (of which the seven first are unique in all plasmids). The counter-selectable markers consist of the PKA3 gene under control of the conditional MET25 or CHA1 promoters. At activating conditions these promoters express the PKA3 gene at toxic levels, facilitating easy selection for loss of plasmid or 'loop-out' of plasmid DNA sequence after genomic integration.
Collapse
Affiliation(s)
- K Olesen
- Department of Physiology, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
Wang D, Zheng F, Holmberg S, Kohlhaw GB. Yeast transcriptional regulator Leu3p. Self-masking, specificity of masking, and evidence for regulation by the intracellular level of Leu3p. J Biol Chem 1999; 274:19017-24. [PMID: 10383402 DOI: 10.1074/jbc.274.27.19017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent work suggests that the masking of the activation domain (AD) of yeast transactivator Leu3p, observed in the absence of the metabolic signal alpha-isopropylmalate, is an intramolecular event. Much of the evidence came from the construction and analysis of a mutant form of Leu3p (Leu3-dd) whose AD is permanently masked (Wang, D., Hu, Y., Zheng, F., Zhou, K., and Kohlhaw, G. B. (1997) J. Biol. Chem. 272, 19383-19392). In a modified two-hybrid experiment, the ADs of both wild type Leu3p and Leu3-dd were shown to interact with the remainder of the Leu3 protein, in an alpha-isopropylmalate-dependent manner. The finding that masking and unmasking proceed apparently normally when full-length Leu3p is expressed in mammalian cells is also consistent with the notion of intramolecular masking. Here we report on the identification of nine missense mutations (all of them suppressors of the Leu3-dd phenotype) that cause permanent unmasking of Leu3p. The nine mutations map to three short segments located within a 140-residue-long region of the C-terminal part of the middle region of Leu3p. These segments may be part of a spatial trap for the AD. We also performed "domain swaps" between Leu3p and Cha4p, a serine/threonine-responsive activator that, like Leu3p, belongs to the family of Zn(II)2Cys6 proteins. We show that AD masking and response to the appropriate metabolic signal only occur when a given AD remains attached to its own middle region; middle region swapping results in constitutively active proteins. Finally, we show that the extent to which Leu3p regulates reporter gene expression depends on the intracellular concentration of Leu3p. The possible physiological significance of this observation is discussed in light of the known regulation of Leu3p by Gcn4p.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|