1
|
Ngo KA, Kishimoto K, Davis-Turak J, Pimplaskar A, Cheng Z, Spreafico R, Chen EY, Tam A, Ghosh G, Mitchell S, Hoffmann A. Dissecting the Regulatory Strategies of NF-κB RelA Target Genes in the Inflammatory Response Reveals Differential Transactivation Logics. Cell Rep 2021; 30:2758-2775.e6. [PMID: 32101750 PMCID: PMC7061728 DOI: 10.1016/j.celrep.2020.01.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/23/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
Nuclear factor κB (NF-κB) RelA is the potent transcriptional activator of inflammatory response genes. We stringently defined a list of direct RelA target genes by integrating physical (chromatin immunoprecipitation sequencing [ChIP-seq]) and functional (RNA sequencing [RNA-seq] in knockouts) datasets. We then dissected each gene’s regulatory strategy by testing RelA variants in a primary-cell genetic-complementation assay. All endogenous target genes require RelA to make DNA-base-specific contacts, and none are activatable by the DNA binding domain alone. However, endogenous target genes differ widely in how they employ the two transactivation domains. Through model-aided analysis of the dynamic time-course data, we reveal the gene-specific synergy and redundancy of TA1 and TA2. Given that post-translational modifications control TA1 activity and intrinsic affinity for coactivators determines TA2 activity, the differential TA logics suggests context-dependent versus context-independent control of endogenous RelA-target genes. Although some inflammatory initiators appear to require co-stimulatory TA1 activation, inflammatory resolvers are a part of the NF-κB RelA core response. Ngo et al. developed a genetic complementation system for NF-κB RelA that reveals that NF-κB target-gene selection requires high-affinity RelA binding and transcriptional activation domains for gene induction. The synergistic and redundant functions of two transactivation domains define pro-inflammatory and inflammation-response genes.
Collapse
Affiliation(s)
- Kim A Ngo
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kensei Kishimoto
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy Davis-Turak
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aditya Pimplaskar
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Spreafico
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Y Chen
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Tam
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Simon Mitchell
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Fang H, Xie J, Liao S, Guo T, Xie S, Liu Y, Tian L, Niu J. Effects of Dietary Inclusion of Shrimp Paste on Growth Performance, Digestive Enzymes Activities, Antioxidant and Immunological Status and Intestinal Morphology of Hybrid Snakehead ( Channa maculata ♀ × Channa argus ♂). Front Physiol 2019; 10:1027. [PMID: 31440171 PMCID: PMC6693359 DOI: 10.3389/fphys.2019.01027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
A nutritional feeding experiment was conducted to evaluate the effects of shrimp paste on feeding attractiveness, growth performance, digestive enzyme activities, immune-related genes and intestinal morphology in hybrid snakehead (Channa maculata ♀ × Channa argus ♂). Two diets were formulated with or without shrimp paste supplementation (D1:0% and D2: 3%) to feed fish for 8 weeks. Results showed that growth performance (FBW, WG and SGR) and feed intake (FI) significantly increased with shrimp paste supplemented (P < 0.05), while FCR and SR of hybrid snakehead fed diets supplemented with shrimp paste or not showed no significant difference (P > 0.05). Gut lipase and amylase activities were significantly higher in diet supplemented with shrimp paste than that in control one (P < 0.05). Hepatic antioxidant statuses of hybrid snakehead fed dietary shrimp paste or not showed no significant differences in total antioxidant capacity, malondialdehyde and superoxide dismutase of fish (P > 0.05). Results showed that fish fed diet with shrimp paste supplemented did not show significant difference in expression of GR, IκB, P65 and IL8 than that in control group (P > 0.05). There are significantly more goblet cells in shrimp paste supplemented diet than that in control diet (P < 0.05). However, villi length and muscle thickness showed no significant difference compared to control diet (P > 0.05). The results indicated that dietary 3% shrimp paste supplementation improved the growth performance of hybrid snakehead by enhancing feed intake (FI) while made no difference to antioxidant capacity and immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Souza-Moreira TM, Alves TB, Pinheiro KA, Felippe LG, De Lima GMA, Watanabe TF, Barbosa CC, Santos VAFFM, Lopes NP, Valentini SR, Guido RVC, Furlan M, Zanelli CF. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene. Sci Rep 2016; 6:36858. [PMID: 27874020 PMCID: PMC5118845 DOI: 10.1038/srep36858] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022] Open
Abstract
Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.
Collapse
Affiliation(s)
- Tatiana M. Souza-Moreira
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Thaís B. Alves
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Karina A. Pinheiro
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Lidiane G. Felippe
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Gustavo M. A. De Lima
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13563-120, Brazil
| | - Tatiana F. Watanabe
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Cristina C. Barbosa
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902, Brazil
| | - Vânia A. F. F. M. Santos
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Norberto P. Lopes
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Sandro R. Valentini
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902, Brazil
| | - Rafael V. C. Guido
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13563-120, Brazil
| | - Maysa Furlan
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Cleslei F. Zanelli
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902, Brazil
| |
Collapse
|
4
|
Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators. PLoS One 2015; 10:e0136423. [PMID: 26295471 PMCID: PMC4546503 DOI: 10.1371/journal.pone.0136423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue.
Collapse
|
5
|
Nott SL, Huang Y, Kalkanoglu A, Harper K, Chen M, Paoni SF, Fenton BM, Muyan M. Designer monotransregulators provide a basis for a transcriptional therapy for de novo endocrine-resistant breast cancer. Mol Med 2009; 16:10-8. [PMID: 19946606 DOI: 10.2119/molmed.2009.00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/15/2009] [Indexed: 02/05/2023] Open
Abstract
The main circulating estrogen hormone 17beta-estradiol (E2) contributes to the initiation and progression of breast cancer. Estrogen receptors (ERs), as transcription factors, mediate the effects of E2. Ablation of the circulating E2 and/or prevention of ER functions constitute approaches for ER-positive breast cancer treatments. These modalities are, however, ineffective in de novo endocrine-resistant breast neoplasms that do not express ERs. The interaction of E2-ERs with specific DNA sequences, estrogen responsive elements (EREs), of genes constitutes one genomic pathway necessary for cellular alterations. We herein tested the prediction that specific regulation of ERE-driven genes by an engineered monomeric and constitutively active transcription factor, monotransregulator, provides a basis for the treatment of ER-negative breast cancer. Using adenovirus infected ER-negative MDA-MB-231 cells derived from a breast adenocarcinoma, we found that the monotransregulator, but not the ERE-binding defective counterpart, repressed cellular proliferation and motility, and induced apoptosis through expression of genes that required ERE interactions. Similarly, the monotransregulator suppressed the growth of ER-negative BT-549 cells derived from a breast-ductal carcinoma. Moreover, the ERE-binding monotransregulator repressed xenograft tumor growth in a nude mice model. Thus, specific regulation of genes bearing EREs could offer a therapeutic approach for de novo endocrine-resistant breast cancers.
Collapse
Affiliation(s)
- Stephanie L Nott
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Li X, Huang J, Fluharty BR, Huang Y, Nott SL, Muyan M. What are comparative studies telling us about the mechanism of ERbeta action in the ERE-dependent E2 signaling pathway? J Steroid Biochem Mol Biol 2008; 109:266-72. [PMID: 18403199 PMCID: PMC2577834 DOI: 10.1016/j.jsbmb.2008.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogen hormone (E2) signaling is primarily conveyed by the estrogen receptors (ER) alpha and beta. ERs are encoded by two distinct genes and share varying degrees of domain-specific structural/functional similarities. ERs mediate a complex array of nuclear and non-nuclear events critical for the homeodynamic regulation of various tissue functions. The canonical nuclear signaling involves the interaction of ERalpha and ERbeta with specific DNA sequences, the so-called estrogen responsive elements (EREs). This interaction constitutes the initial step in ERE-dependent signaling in which ERbeta is a weaker transcription factor than ERalpha in response to E2. However, it remains unclear why transactivation potencies of ER subtypes differ. Studies suggest that the amino-terminus, the least conserved structural region, of ERbeta, but not that of ERalpha, impairs the ability of the receptor to bind to ERE independent of E2. Although the impaired ERbeta-ERE interaction contributes, it is not sufficient to explain the weak transactivation potency of the receptor. It appears that the lack of transactivation ability and of the capability of the amino-terminus of ERbeta, as opposed to that of ERalpha, to functionally interact with the carboxyl-terminal hormone-dependent activation domain is also critical for the receptor-specific activity. Thus, the structurally distinct amino-termini of ERs are important determinants in defining the function of ER-subtypes in the ERE-dependent pathway. This could differentially affect the physiology and pathophysiology of E2 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Mesut Muyan
- Correspondence: 601 Elmwood Avenue, Box 712, Rochester, NY 14642, Phone: (585) 275 5613, Fax: (585) 271 2683, E-mail:
| |
Collapse
|
7
|
Griffin B, Moynagh P. In vivo binding of NF-kappaB to the IkappaBbeta promoter is insufficient for transcriptional activation. Biochem J 2006; 400:115-25. [PMID: 16792530 PMCID: PMC1635438 DOI: 10.1042/bj20060786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite certain structural and biochemical similarities, differences exist in the function of the NF-kappaB (nuclear factor kappaB) inhibitory proteins IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. The functional disparity arises in part from variance at the level of gene regulation, and in particular from the substantial induction of IkappaBalpha, but not IkappaBbeta, gene expression post-NF-kappaB activation. In the present study, we probe the differential effects of IL (interleukin)-1beta on induction of IkappaBalpha and perform the first characterization of the human IkappaBbeta promoter. A consensus NF-kappaB-binding site, capable of binding NF-kappaB both in vitro and in vivo, is found in the IkappaBbeta gene 5' flanking region. However, the IkappaBbeta promoter was not substantially activated by pro-inflammatory cytokines, such as IL-1beta and tumour necrosis factor alpha, that are known to cause strong activation of NF-kappaB. Furthermore, in contrast with IkappaBalpha, NF-kappaB activation did not increase expression of endogenous IkappaBbeta as assessed by analysis of mRNA and protein levels. Unlike kappaB-responsive promoters, IkappaBbeta promoter-bound p65 inefficiently recruits RNA polymerase II, which stalls at the promoter. We present evidence that this stalling is likely due to the absence of transcription factor IIH engagement, a prerequisite for RNA polymerase II phosphorylation and transcriptional initiation. Differences in the conformation of promoter-bound NF-kappaB may underlie the variation in the ability to engage the basal transcriptional apparatus at the IkappaBbeta and kappaB-responsive promoters. This accounts for the differential expression of IkappaB family members in response to NF-kappaB activation and furthers our understanding of the mechanisms involved in transcription factor activity and IkappaBbeta gene regulation.
Collapse
Affiliation(s)
- Bryan D. Griffin
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul N. Moynagh
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Majid SM, Liss AS, You M, Bose HR. The suppression of SH3BGRL is important for v-Rel-mediated transformation. Oncogene 2006; 25:756-68. [PMID: 16186799 DOI: 10.1038/sj.onc.1209107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The v-rel oncogene is the most efficient transforming member of the Rel/NF-kappaB family of transcription factors. v-Rel induces avian and mammalian lymphoid cell tumors and transforms chicken embryo fibroblasts in culture by the aberrant regulation of genes under the control of Rel/NF-kappaB proteins. Here we report that the expression of SH3BGRL, a member of the SH3BGR (SH3 domain-binding glutamic acid-rich) family of proteins, is downregulated in v-Rel-expressing fibroblasts, lymphoid cells, and splenic tumor cells. Chromatin immunoprecipitation experiments demonstrated that v-Rel binds to the sh3bgrl promoter in transformed cells. Coexpression of SH3BGRL with v-Rel in primary splenic lymphocytes reduced the number of colonies formed by 76%. Mutations in the predicted SH3-binding domain of SH3BGRL abolished the suppressive effect on v-Rel transformation and resulted in colony numbers comparable to those formed by v-Rel alone. However, mutations in the predicted EVH1-binding domain of SH3BGRL only had a modest effect on suppression of v-Rel transformation. This study provides the first example of a gene that is downregulated in v-Rel-expressing cells that also plays a role in v-Rel transformation.
Collapse
Affiliation(s)
- S M Majid
- Section of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1095, USA
| | | | | | | |
Collapse
|
9
|
Salghetti SE, Muratani M, Wijnen H, Futcher B, Tansey WP. Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A 2000; 97:3118-23. [PMID: 10706616 PMCID: PMC16202 DOI: 10.1073/pnas.97.7.3118] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many transcription factors, particularly those involved in the control of cell growth, are unstable proteins destroyed by ubiquitin-mediated proteolysis. In a previous study of sequences targeting the transcription factor Myc for destruction, we observed that the region in Myc signaling ubiquitin-mediated proteolysis overlaps closely with the region in Myc that activates transcription. Here, we present evidence that the overlap of these two activities is not unique to Myc, but reflects a more general phenomenon. We show that a similar overlap of activation domains and destruction elements occurs in other unstable transcription factors and report a close correlation between the ability of an acidic activation domain to activate transcription and to signal proteolysis. We also show that destruction elements from yeast cyclins, when tethered to a DNA-binding domain, activate transcription. The intimate overlap of activation domains and destruction elements reveals an unexpected convergence of two very different processes and suggests that transcription factors may be destroyed because of their ability to activate transcription.
Collapse
Affiliation(s)
- S E Salghetti
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
10
|
Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A 2000. [PMID: 10706616 PMCID: PMC16202 DOI: 10.1073/pnas.050007597] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Many transcription factors, particularly those involved in the control of cell growth, are unstable proteins destroyed by ubiquitin-mediated proteolysis. In a previous study of sequences targeting the transcription factor Myc for destruction, we observed that the region in Myc signaling ubiquitin-mediated proteolysis overlaps closely with the region in Myc that activates transcription. Here, we present evidence that the overlap of these two activities is not unique to Myc, but reflects a more general phenomenon. We show that a similar overlap of activation domains and destruction elements occurs in other unstable transcription factors and report a close correlation between the ability of an acidic activation domain to activate transcription and to signal proteolysis. We also show that destruction elements from yeast cyclins, when tethered to a DNA-binding domain, activate transcription. The intimate overlap of activation domains and destruction elements reveals an unexpected convergence of two very different processes and suggests that transcription factors may be destroyed because of their ability to activate transcription.
Collapse
|
11
|
Natesan S, Molinari E, Rivera VM, Rickles RJ, Gilman M. A general strategy to enhance the potency of chimeric transcriptional activators. Proc Natl Acad Sci U S A 1999; 96:13898-903. [PMID: 10570170 PMCID: PMC24162 DOI: 10.1073/pnas.96.24.13898] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efforts to increase the potency of transcriptional activators are generally unsuccessful because poor expression of activators in mammalian cells limits their delivery to target promoters. Here we report that the effectiveness of chimeric activators can be dramatically improved by expressing them as noncovalent tetrameric bundles. Bundled activation domains are much more effective at activating a reporter gene than simple monomeric activators, presumably because, at similar expression levels, up to 4 times as many the activation domains are delivered to the target promoter. These bundled activation domains are also more effective than proteins in which activation domains are tandemly reiterated in the same polypeptide chain, because such proteins are very poorly expressed and therefore not delivered effectively. These observations suggest that there is a threshold number of activation domains that must be bound to a promoter for activation, above which promoter activity is simply a function of the number of activators bound. We show that bundling can be exploited practically to enhance the sensitivity of mammalian two-hybrid assays, enabling detection of weak interactions or those between poorly expressed proteins. Bundling also dramatically improves the performance of a small-molecule-regulated gene expression system when the expression level of regulatory protein is limiting, a situation that may be encountered in gene therapy applications.
Collapse
Affiliation(s)
- S Natesan
- ARIAD Gene Therapeutics Incorporated, 26 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
12
|
Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 1999; 19:4798-805. [PMID: 10373529 PMCID: PMC84278 DOI: 10.1128/mcb.19.7.4798] [Citation(s) in RCA: 539] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 receptor accessory protein with the p85 regulatory subunit of PI3K, leading to the activation of the p110 catalytic subunit. Specific PI3K inhibitors strongly inhibit both PI3K activation and NF-kappaB-dependent gene expression but have no effect on the IL-1-stimulated degradation of IkappaBalpha, the nuclear translocation of NF-kappaB, or the ability of NF-kappaB to bind to DNA. In contrast, PI3K inhibitors block the IL-1-stimulated phosphorylation of NF-kappaB itself, especially the p65/RelA subunit. Furthermore, by using a fusion protein containing the p65/RelA transactivation domain, we found that overexpression of the p110 catalytic subunit of PI3K induces p65/RelA-mediated transactivation and that the specific PI3K inhibitor LY294,002 represses this process. Additionally, the expression of a constitutively activated form of either p110 or the PI3K-activated protein kinase Akt also induces p65/RelA-mediated transactivation. Therefore, IL-1 stimulates the PI3K-dependent phosphorylation and transactivation of NF-kappaB, a process quite distinct from the liberation of NF-kappaB from its cytoplasmic inhibitor IkappaB.
Collapse
Affiliation(s)
- N Sizemore
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
13
|
Abstract
The transcription factor NF-kappaB is important for expression of genes involved in immune responses, viral infections, cytokine signaling and stress. In addition NF-kappaB plays a crucial role in protecting cells from TNF-alpha-induced apoptotic stimuli, presumably by activating anti-apoptotic genes. Here we report that the sub-stoichiometric TFIID subunit TAFII105 is essential for activation of anti-apoptotic genes in response to TNF-alpha, serving as a transcriptional coactivator for NF-kappaB. The putative coactivator domain of TAFII105 interacts with the activation domain of the p65/RelA member of the NF-kappaB family, and further stimulates p65-induced transcription in human 293 cells. Moreover, inhibition of TAFII105 activity by overexpression of a dominant negative mutant of TAFII105 decreased NF-kappaB transcriptional activity and severely reduced cell survival in response to TNF-alpha. Similarly, expression of anti-sense TAFII105 RNA sensitized the cells to TNF-alpha cytotoxicity. These results suggest that TAFII105 is involved in activation of anti-apoptotic genes by NF-kappaB.
Collapse
Affiliation(s)
- A Yamit-Hezi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
14
|
Guermah M, Malik S, Roeder RG. Involvement of TFIID and USA components in transcriptional activation of the human immunodeficiency virus promoter by NF-kappaB and Sp1. Mol Cell Biol 1998; 18:3234-44. [PMID: 9584164 PMCID: PMC108905 DOI: 10.1128/mcb.18.6.3234] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purified Rel/NF-kappaB (p50/p65) complex and Sp1 markedly activate transcription from the human immunodeficiency virus type 1 (HIV-1) promoter in a highly purified HeLa reconstituted transcription system. Transcriptional activation by NF-kappaB and Sp1 requires both TFIID and the USA fraction. The USA-derived coactivators PC2 and PC4 fully reconstitute the USA coactivator activity, both by repressing the basal level of transcription and by potentiating activator function to yield large increases in the levels of transcription induction. Under limiting concentrations, PC2 and PC4 also show synergistic effects. The C-terminal portion (amino acids 416 to 550) of the p65 subunit of NF-kappaB is a potent activator when assayed as a Gal fusion in the reconstituted transcription system and interacts both with TATA-binding protein (TBP) and with several human TBP-associated factors (TAFs) that include TAFII250. The p65 activation domain mediates transcription activation in the presence of partially reconstituted TFIID species that include a minimal complex containing only TBP and TAFII250. These studies also show that, like USA components, TAFs can serve both to repress TBP-mediated transcription and, following activator interactions, to reverse the repression and effect a net increase in activity. Taken together, these data underscore the importance of both TAFs and specific USA-derived coactivators for optimal activation of the HIV-1 promoter, as well as certain parallels in their overall mechanisms of action.
Collapse
Affiliation(s)
- M Guermah
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
15
|
Lehming N, McGuire S, Brickman JM, Ptashne M. Interactions of a Rel protein with its inhibitor. Proc Natl Acad Sci U S A 1995; 92:10242-6. [PMID: 7479760 PMCID: PMC40772 DOI: 10.1073/pnas.92.22.10242] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cactus, a Drosophila homologue of I kappa B, binds to and inhibits Dorsal, a homologue of the p50 and p65 components of NF-kappa B. We describe experiments in yeast with various Dorsal and Cactus derivatives showing that Cactus blocks the DNA binding and nuclear localization functions of Dorsal. In contrast, Dorsal's transcriptional activating region is functional in the Dorsal-Cactus complex. We identify two Dorsal mutants, Dorsal C233R and Dorsal S234P, that escape Cactus inhibition in vivo, and we show that these mutants fail to interact with Cactus in vitro. From this and data of others, we identify the likely surface of Dorsal that binds Cactus. We also describe a modified PCR mutagenesis procedure, easier to use than conventional methods, that produces a library of high complexity.
Collapse
Affiliation(s)
- N Lehming
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
16
|
Chang CC, Zhang J, Lombardi L, Neri A, Dalla-Favera R. Rearranged NFKB-2 genes in lymphoid neoplasms code for constitutively active nuclear transactivators. Mol Cell Biol 1995; 15:5180-7. [PMID: 7651435 PMCID: PMC230765 DOI: 10.1128/mcb.15.9.5180] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The NFKB-2 gene codes for an NF-kappa B-related transcription factor containing rel-polyG-ankyrin domains. Chromosomal rearrangements of the NFKB-2 locus have been found in various types of lymphoid neoplasms, suggesting that they may contribute to lymphomagenesis. Rearrangements cluster within the 3'-terminal ankyrin-encoding domain of the NFKB-2 gene and lead to the production of C-terminally truncated proteins which, in some cases, are fused to heterologous protein domains. In order to determine the functional consequences of these alterations, we have analyzed the subcellular localization, DNA binding, and transcriptional activity of two representative tumor-associated mutants in which the ankyrin domain is either terminally truncated (NFKB-2p85) or truncated and joined to an out-of-frame immunoglobulin C alpha domain (lyt-10C alpha). Immunofluorescence studies performed on cells transfected with p85 or lyt-10C alpha expression vectors showed that both the abnormal proteins were constitutively localized in the nucleus. Immunoprecipitation analysis of UV-cross-linked DNA-protein adducts showed that p85 can bind kappa B sites in its unprocessed form. Cotransfection of p85 or lyt-10C alpha expression vectors with kappa B-driven reporter plasmids showed that both p85 and lyt-10C alpha have retained the ability to mediate transcriptional activation via heterodimerization with Rel-Ap65 but have lost the transrepression activity associated with homodimeric DNA binding. Furthermore, both p85 and lyt-10C alpha were capable of independent transactivation of kappa B-reporter genes and this activity could not be further stimulated by Bcl-3. These abnormal proteins may contribute to lumphomagenesis by determining a constitutive activation of the NF-kappa B system and, in particular, of NFKB-2 target genes.
Collapse
Affiliation(s)
- C C Chang
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
17
|
Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J 1995; 14:2580-8. [PMID: 7781611 PMCID: PMC398372 DOI: 10.1002/j.1460-2075.1995.tb07256.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The inducible, higher eukaryotic transcription factor NF-kappa B is activated by a variety of external stimuli including inflammatory cytokines, viral and bacterial infection and UV irradiation. Here we show that internal stress, caused by the accumulation of proteins in the endoplasmic reticulum (ER), also induces NF-kappa B DNA binding as well as kappa B-dependent gene expression. This was observed upon expression of immunoglobulin mu chains in the absence of light chains and by treatment of cells with several agents known to cause ER stress, such as tunicamycin, brefeldin A, 2-deoxyglucose and thapsigsargin. The transcription factor AP-1 was weakly induced under similar conditions. Overexpression of NF-kappa B subunits did not influence expression of the gene encoding grp78/BiP, a protein induced by various forms of ER stress. Likewise, the glucosidase inhibitor castanospermine, which induced grp78/BiP expression, failed to activate NF-kappa B, while the antioxidant dithiothreitol augmented grp78/BiP expression but prevented activation of NF-kappa B. Hence, NF-kappa B participates in a novel ER-nuclear signal transduction pathway distinct from the unfolded-protein-response described previously. We provide evidence that the ER can produce at least two distinct signals in response to a functional impairment. One is emitted by the presence of unfolded proteins, the other in response to overloading of the organelle, for example through the overexpression of secretory proteins.
Collapse
Affiliation(s)
- H L Pahl
- Institute of Biochemistry, Albert Ludwigs University, Freiburg, Germany
| | | |
Collapse
|
18
|
Thanos D, Maniatis T. Identification of the rel family members required for virus induction of the human beta interferon gene. Mol Cell Biol 1995; 15:152-64. [PMID: 7799921 PMCID: PMC231925 DOI: 10.1128/mcb.15.1.152] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have carried out experiments to determine which members of the rel family of transcription factors are involved in virus induction of the beta interferon (IFN-beta) gene. First, we examined the inducibility of artificial DNA binding sites that preferentially interact with different homo- or heterodimeric combinations of rel proteins in vitro. We found that only those sites capable of binding the p50/p65 heterodimer are virus inducible. Second, we analyzed a series of mutant rel DNA-binding sites in the context of the intact IFN-beta promoter. We found a correlation between (i) sites capable of binding both the p50/p65 heterodimer and the high-mobility-group protein HMG I(Y) and (ii) virus inducibility. Third, cotransfection of the IFN-beta gene enhancer/promoter with plasmids capable of expressing several different rel proteins revealed that only the combination of p50 and p65 efficiently activated transcription. Finally, we have used antibodies directed against different rel proteins to show that virus-inducible protein-DNA complexes assembled on the IFN-beta enhancer in vitro contain both p50 and p65. We conclude that the p50/p65 heterodimer is responsible for the NF-kappa B-dependent activation of the IFN-beta gene promoter in response to virus infection.
Collapse
Affiliation(s)
- D Thanos
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
19
|
Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol Cell Biol 1994. [PMID: 7935437 DOI: 10.1128/mcb.14.11.7226] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potent C-terminal activation domain of the RelA (p65) subunit of the cellular transcription factor NF-kappa B is shown to contain several discrete acidic activation modules. These short, approximately 11-amino-acid modules were able to give rise to only a low level of transcription activation when fused to the GAL4 DNA-binding domain as monomers. However, dimers and higher-order multimers activated the transcription of minimal promoter elements as effectively as the full-length RelA or VP16 activation domain. Therefore, this 11-amino-acid RelA-derived acidic module appears to contain all of the sequence information required to fully activate a target promoter element as long as it is presented in a form that permits functional synergy. Critical primary sequence requirements for acidic activation module function included a core phenylalanine residue and flanking bulky hydrophobic residues. Overall negative charge was necessary but not sufficient for function. While dimeric forms of the 11-amino-acid acidic activation module bound to either TFIIB or TATA-binding protein efficiently in vitro, a similarly charged peptide lacking the core phenylalanine residue failed to interact. Overall, these data demonstrate that the biological activity of the RelA activation domain is dependent on acidic activator sequences that are closely comparable to those detected in the activation domain of the viral VP16 regulatory protein. We hypothesize that the ability of these acidic activators to specifically interact with multiple components of the transcription initiation complex likely underlies the dramatic functional synergy exhibited by this class of activation domains in vivo.
Collapse
|
20
|
Blair WS, Bogerd HP, Madore SJ, Cullen BR. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol Cell Biol 1994; 14:7226-34. [PMID: 7935437 PMCID: PMC359257 DOI: 10.1128/mcb.14.11.7226-7234.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The potent C-terminal activation domain of the RelA (p65) subunit of the cellular transcription factor NF-kappa B is shown to contain several discrete acidic activation modules. These short, approximately 11-amino-acid modules were able to give rise to only a low level of transcription activation when fused to the GAL4 DNA-binding domain as monomers. However, dimers and higher-order multimers activated the transcription of minimal promoter elements as effectively as the full-length RelA or VP16 activation domain. Therefore, this 11-amino-acid RelA-derived acidic module appears to contain all of the sequence information required to fully activate a target promoter element as long as it is presented in a form that permits functional synergy. Critical primary sequence requirements for acidic activation module function included a core phenylalanine residue and flanking bulky hydrophobic residues. Overall negative charge was necessary but not sufficient for function. While dimeric forms of the 11-amino-acid acidic activation module bound to either TFIIB or TATA-binding protein efficiently in vitro, a similarly charged peptide lacking the core phenylalanine residue failed to interact. Overall, these data demonstrate that the biological activity of the RelA activation domain is dependent on acidic activator sequences that are closely comparable to those detected in the activation domain of the viral VP16 regulatory protein. We hypothesize that the ability of these acidic activators to specifically interact with multiple components of the transcription initiation complex likely underlies the dramatic functional synergy exhibited by this class of activation domains in vivo.
Collapse
Affiliation(s)
- W S Blair
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
21
|
Miller G, Himmelfarb H, Heston L, Countryman J, Gradoville L, Baumann R, Chi T, Carey M. Comparing regions of the Epstein-Barr virus ZEBRA protein which function as transcriptional activating sequences in Saccharomyces cerevisiae and in B cells. J Virol 1993; 67:7472-81. [PMID: 8230468 PMCID: PMC238213 DOI: 10.1128/jvi.67.12.7472-7481.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ZEBRA protein activates expression of Epstein-Barr virus early-lytic-cycle genes in human B lymphocytes. Here it is shown that ZEBRA also behaves as a sequence-specific transcriptional activator in Saccharomyces cerevisiae. Deletional mutagenesis defined three regions of ZEBRA that participate in activation in S. cerevisiae. These regions are designated YI (amino acids [aa] 1 to 25), YII (aa 51 to 102), and YIII (aa 228 to 245). Two of the three regions of the native ZEBRA protein act together to mediate activation when assayed on ZEBRA binding sites. However, when fused to the DNA binding domain of GAL4 and assayed on GAL4 binding sites, regions YII and YIII were each sufficient to confer activation in S. cerevisiae. Regions of ZEBRA which affected activation in S. cerevisiae were also required in human B lymphocytes. The amino-terminal region of ZEBRA (aa 1 to 98) was required for activation both in S. cerevisiae and in human B cells; deletion of the carboxy-terminal 18 aa also significantly reduced activation in both cell types. Thus, the behavior of ZEBRA in human B cells and S. cerevisiae suggests that the protein contains universal activation motifs that interact with conserved components of the transcription machinery. However, certain deletion mutants of ZEBRA containing mutations in the N-terminal region exhibited discordant behaviors in S. cerevisiae and in B cells. For example, deletion of ZEBRA aa 26 to 51 impaired activation to a great extent in B cells but had little or no effect in S. cerevisiae. The discordant mutants may reflect interactions with a variable domain of a conserved component or unique interactions with specialized components of the basal transcription apparatus in different cells.
Collapse
Affiliation(s)
- G Miller
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510-8064
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Interleukin-8 (IL-8), a chemotactic cytokine for T lymphocytes and neutrophils, is induced in several cell types by a variety of stimuli including the inflammatory cytokines IL-1 and tumor necrosis factor alpha TNF-alpha. Several cis elements, including a binding site for the inducible transcription factor NF-kappa B, have been identified in the regulatory region of the IL-8 gene. We have examined the ability of various NF-kappa B subunits to bind to, and activate transcription from, the IL-8 promoter. A nuclear complex was induced in phorbol myristate acetate-treated Jurkat T cells which bound specifically to the kappa B site of the IL-8 promoter and was inhibited by addition of purified I kappa B alpha to the reaction mixture. Only antibody to RelA (p65), but not to NFKB1 (p50), NFKB2 (p50B), c-Rel, or RelB was able to abolish binding, suggesting that RelA is a major component in these kappa B binding complexes. Gel mobility shift analysis with in vitro-translated and purified proteins indicated that whereas the kappa B element in the human immunodeficiency virus type 1 long terminal repeat bound to all members of the kappa B/Rel family examined, the IL-8 kappa B site bound only to RelA and to c-Rel and NFKB2 homodimers, but not to NFKB1 homodimers or heterodimers of NFKB1-RelA. Transient transfection analysis demonstrated a kappa B-dependent expression of the IL-8 promoter in a human fibrosarcoma cell line (8387) and in Jurkat T lymphocytes. Cotransfection with various NF-kappa B subunits indicated that RelA and c-Rel, but neither NFKB1 nor heterodimeric NFKB1-RelA, was able to activate transcription from the IL-8 promoter. Furthermore, cotransfection of NFKB1 and RelA, although able to support activation from the human immunodeficiency virus type 1 long terminal repeat, failed to activate expression from the IL-8 promoter. Antisense oligonucleotides to RelA, but not NFKB1, inhibited phorbol myristate acetate-induced IL-8 production in Jurkat T lymphocytes. These data demonstrate the differential ability of members of the kappa B/Rel family to bind to, and activate transcription from, the IL-8 promoter. Furthermore, while providing a novel example of a kappa B-regulated promoter in which the classical NF-kappa B complex is unable to activate transcription from the kappa B element, these data provide direct evidence for the role of RelA in regulation of IL-8 gene expression.
Collapse
|
23
|
Abstract
Interleukin-8 (IL-8), a chemotactic cytokine for T lymphocytes and neutrophils, is induced in several cell types by a variety of stimuli including the inflammatory cytokines IL-1 and tumor necrosis factor alpha TNF-alpha. Several cis elements, including a binding site for the inducible transcription factor NF-kappa B, have been identified in the regulatory region of the IL-8 gene. We have examined the ability of various NF-kappa B subunits to bind to, and activate transcription from, the IL-8 promoter. A nuclear complex was induced in phorbol myristate acetate-treated Jurkat T cells which bound specifically to the kappa B site of the IL-8 promoter and was inhibited by addition of purified I kappa B alpha to the reaction mixture. Only antibody to RelA (p65), but not to NFKB1 (p50), NFKB2 (p50B), c-Rel, or RelB was able to abolish binding, suggesting that RelA is a major component in these kappa B binding complexes. Gel mobility shift analysis with in vitro-translated and purified proteins indicated that whereas the kappa B element in the human immunodeficiency virus type 1 long terminal repeat bound to all members of the kappa B/Rel family examined, the IL-8 kappa B site bound only to RelA and to c-Rel and NFKB2 homodimers, but not to NFKB1 homodimers or heterodimers of NFKB1-RelA. Transient transfection analysis demonstrated a kappa B-dependent expression of the IL-8 promoter in a human fibrosarcoma cell line (8387) and in Jurkat T lymphocytes. Cotransfection with various NF-kappa B subunits indicated that RelA and c-Rel, but neither NFKB1 nor heterodimeric NFKB1-RelA, was able to activate transcription from the IL-8 promoter. Furthermore, cotransfection of NFKB1 and RelA, although able to support activation from the human immunodeficiency virus type 1 long terminal repeat, failed to activate expression from the IL-8 promoter. Antisense oligonucleotides to RelA, but not NFKB1, inhibited phorbol myristate acetate-induced IL-8 production in Jurkat T lymphocytes. These data demonstrate the differential ability of members of the kappa B/Rel family to bind to, and activate transcription from, the IL-8 promoter. Furthermore, while providing a novel example of a kappa B-regulated promoter in which the classical NF-kappa B complex is unable to activate transcription from the kappa B element, these data provide direct evidence for the role of RelA in regulation of IL-8 gene expression.
Collapse
Affiliation(s)
- C Kunsch
- Human Genome Sciences, Rockville, Maryland 20850
| | | |
Collapse
|
24
|
Acquisition of NFKB1-selective DNA binding by substitution of four amino acid residues from NFKB1 into RelA. Mol Cell Biol 1993. [PMID: 8321192 DOI: 10.1128/mcb.13.7.3850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subunits of NF-kappa B, NFKB1 (formerly p50) and RelA (formerly p65), belong to a growing family of transcription factors that share extensive similarity to the c-rel proto-oncogene product. The homology extends over a highly conserved stretch of approximately 300 amino acids termed the Rel homology domain (RHD). This region has been shown to be involved in both multimerization (homo- and heterodimerization) and DNA binding. It is now generally accepted that homodimers of either subunit are capable of binding DNA that contains a kappa B site originally identified in the immunoglobulin enhancer. Recent studies have demonstrated that the individual subunits of the NF-kappa B transcription factor complex can be distinguished by their ability to bind distinct DNA sequence motifs. By using NFKB1 and RelA subunit fusion proteins, different regions within the RHD were found to confer DNA-binding and multimerization functions. A fusion protein that contains 34 N-terminal amino acids of NFKB1 and 264 amino acids of RelA displayed preferential binding to an NFKB1-selective DNA motif while dimerizing with the characteristics of RelA. Within the NFKB1 portion of this fusion protein, a single amino acid change of His to Arg altered the DNA-binding specificity to favor interaction with the RelA-selective DNA motif. Furthermore, substitution of four amino acids from NFKB1 into RelA was able to alter the DNA-binding specificity of the RelA protein to favor interaction with the NFKB1-selective site. Taken together, these findings demonstrate the presence of a distinct subdomain within the RHD involved in conferring the DNA-binding specificity of the Rel family of proteins.
Collapse
|
25
|
Coleman TA, Kunsch C, Maher M, Ruben SM, Rosen CA. Acquisition of NFKB1-selective DNA binding by substitution of four amino acid residues from NFKB1 into RelA. Mol Cell Biol 1993; 13:3850-9. [PMID: 8321192 PMCID: PMC359913 DOI: 10.1128/mcb.13.7.3850-3859.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The subunits of NF-kappa B, NFKB1 (formerly p50) and RelA (formerly p65), belong to a growing family of transcription factors that share extensive similarity to the c-rel proto-oncogene product. The homology extends over a highly conserved stretch of approximately 300 amino acids termed the Rel homology domain (RHD). This region has been shown to be involved in both multimerization (homo- and heterodimerization) and DNA binding. It is now generally accepted that homodimers of either subunit are capable of binding DNA that contains a kappa B site originally identified in the immunoglobulin enhancer. Recent studies have demonstrated that the individual subunits of the NF-kappa B transcription factor complex can be distinguished by their ability to bind distinct DNA sequence motifs. By using NFKB1 and RelA subunit fusion proteins, different regions within the RHD were found to confer DNA-binding and multimerization functions. A fusion protein that contains 34 N-terminal amino acids of NFKB1 and 264 amino acids of RelA displayed preferential binding to an NFKB1-selective DNA motif while dimerizing with the characteristics of RelA. Within the NFKB1 portion of this fusion protein, a single amino acid change of His to Arg altered the DNA-binding specificity to favor interaction with the RelA-selective DNA motif. Furthermore, substitution of four amino acids from NFKB1 into RelA was able to alter the DNA-binding specificity of the RelA protein to favor interaction with the NFKB1-selective site. Taken together, these findings demonstrate the presence of a distinct subdomain within the RHD involved in conferring the DNA-binding specificity of the Rel family of proteins.
Collapse
Affiliation(s)
- T A Coleman
- Department of Gene Regulation, Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | | | | | | | |
Collapse
|