1
|
Dwyer K, Essak MA, Awada A, Dhoondia Z, Ansari A. Protein-interaction network analysis reveals a role of Prp19 splicing factor in transcription of both intron-containing and intron-lacking genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646471. [PMID: 40236183 PMCID: PMC11996550 DOI: 10.1101/2025.03.31.646471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
We have previously demonstrated that the transcription-dependent interaction of the promoter and terminator ends of a gene, which results in the formation of a gene loop, is facilitated by the interaction of the general transcription factor TFIIB with the CF1, CPF and Rat1 termination complexes. To further elucidate the protein-protein interactions that stabilize gene loop, we performed mass spectrometry of affinity purified termination complexes from chromatin fraction. Quantitative proteomic analysis revealed additional interactions of termination factors with TFIID and SAGA complex. Since gene looping of intron-containing genes involves additional contacts of the promoter and terminator with the intron, we examined if termination factors interact with the splicing factors as well. All three termination complexes displayed statistically significant interactions with Prp19, Prp43, Sub2, Snu114, Brr2 and Smb1 splicing factors. Since Prp43 and Prp19 consistently emerged as the interactor of both initiation and termination factors, we affinity-purified both and performed mass spectrometry. Prp19 exhibited interactions with subunits of TFIID, CPF complex, and the RSC chromatin remodeling complex. These interactions were observed exclusively in the chromatin context, thereby implicating the factor in transcription of protein coding genes. Since fewer than 4% of yeast genes contain introns, we hypothesized that Prp19 might have a broader role in RNAPII transcription cycle. Auxin-mediated depletion of Prp19 resulted in about two-fold decrease in transcription of a subset of both intron-containing and intron-lacking genes. Specifically, the promoter recruitment of TBP registered a significant decline in the absence of Prp19. Chromatin immunoprecipitation (ChIP) analysis revealed crosslinking of Prp19 to the promoter proximal as well as downstream regions of both intronic and non-intronic genes. These findings demonstrate that Prp19 has a novel role in the initiation step of transcription in yeast.
Collapse
|
2
|
Tseng CK, Cheng SC. Arresting Spliceosome Intermediates at Various Stages of the Splicing Pathway. Methods Mol Biol 2023; 2666:193-211. [PMID: 37166667 DOI: 10.1007/978-1-0716-3191-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The spliceosome is a dynamic ribonucleoprotein particle and is assembled via sequential binding of five snRNAs and numerous protein factors. To understand the molecular mechanism of the splicing reaction, it is necessary to dissect the spliceosome pathway and isolate spliceosome intermediates in various stages of the pathway for biochemical and structural analysis. Here, we describe protocols for preparing intron-containing transcripts, cell-free splicing extracts, and in vitro splicing reactions, as well as procedures to arrest the spliceosome at different stages of the pathway for characterization of specific splicing complexes from the budding yeast Saccharomyces cerevisiae. Methods for arresting spliceosomes at specific stages include depletion with antibodies against factors required for specific steps of the pathway, use of extracts prepared from temperature-sensitive mutants, use of dominant negative mutants of DExD/H-box proteins, and use of mutant substrates.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Graduate Institute of Microbiology, National Taiwan University, College of Medicine, Taipei, Taiwan, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
3
|
Luo Q, Zhu H, Wang C, Li Y, Zou X, Hu Z. A U-Box Type E3 Ubiquitin Ligase Prp19-Like Protein Negatively Regulates Lipid Accumulation and Cell Size in Chlamydomonas reinhardtii. Front Microbiol 2022; 13:860024. [PMID: 35464935 PMCID: PMC9019728 DOI: 10.3389/fmicb.2022.860024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae lipid triacylglycerol is considered as a promising feedstock for national production of biofuels. A hotspot issue in the biodiesel study is to increase TAG content and productivity of microalgae. Precursor RNA processing protein (Prp19), which is the core component of eukaryotic RNA splice NTC (nineteen associated complex), plays important roles in the mRNA maturation process in eukaryotic cells, has a variety of functions in cell development, and is even directly involved in the biosynthesis of oil bodies in mouse. Nevertheless, its function in Chlamydomonas reinhardtii remains unknown. Here, transcriptional level of CrPrp19 under nutrition deprivation was analyzed, and both its RNA interference and overexpressed transformants were constructed. The expression level of CrPrp19 was suppressed by nitrogen or sulfur deficiency. Cell densities of CrPrp19 RNAi lines decreased, and their neutral lipid contents increased 1.33 and 1.34 times over those of controls. The cells of CrPrp19 RNAi lines were larger and more resistant to sodium acetate than control. Considerably none of the alterations in growth or neutral lipid contents was found in the CrPrp19 overexpression transformants than wild type. Fatty acids were also significantly increased in CrPrp19 RNAi transformants. Subcellular localization and yeast two-hybrid analysis showed that CrPrp19 was a nuclear protein, which might be involved in cell cycle regulation. In conclusion, CrPrp19 protein was necessary for negatively regulating lipid enrichment and cell size, but not stimulatory for lipid storage.
Collapse
Affiliation(s)
- Qiulan Luo
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Chaogang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China
| | - Yajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xianghui Zou
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018; 19:E2909. [PMID: 30257459 PMCID: PMC6213728 DOI: 10.3390/ijms19102909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.
Collapse
Affiliation(s)
- Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
5
|
Exploring the Human-Nipah Virus Protein-Protein Interactome. J Virol 2017; 91:JVI.01461-17. [PMID: 28904190 DOI: 10.1128/jvi.01461-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 11/20/2022] Open
Abstract
Nipah virus is an emerging, highly pathogenic, zoonotic virus of the Paramyxoviridae family. Human transmission occurs by close contact with infected animals, the consumption of contaminated food, or, occasionally, via other infected individuals. Currently, we lack therapeutic or prophylactic treatments for Nipah virus. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. This aim led us to perform the present work, in which we identified 101 human-Nipah virus protein-protein interactions (PPIs), most of which (88) are novel. This data set provides a comprehensive view of the host complexes that are manipulated by viral proteins. Host targets include the PRP19 complex and the microRNA (miRNA) processing machinery. Furthermore, we explored the biologic consequences of the interaction with the PRP19 complex and found that the Nipah virus W protein is capable of altering p53 control and gene expression. We anticipate that these data will help in guiding the development of novel interventional strategies to counter this emerging viral threat.IMPORTANCE Nipah virus is a recently discovered virus that infects a wide range of mammals, including humans. Since its discovery there have been yearly outbreaks, and in some of them the mortality rate has reached 100% of the confirmed cases. However, the study of Nipah virus has been largely neglected, and currently we lack treatments for this infection. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. In the present work, we identified 101 human-Nipah virus protein-protein interactions using an affinity purification approach coupled with mass spectrometry. Additionally, we explored the cellular consequences of some of these interactions. Globally, this data set offers a comprehensive and detailed view of the host machinery's contribution to the Nipah virus's life cycle. Furthermore, our data present a large number of putative drug targets that could be exploited for the treatment of this infection.
Collapse
|
6
|
Kuo RL, Li ZH, Li LH, Lee KM, Tam EH, Liu HM, Liu HP, Shih SR, Wu CC. Interactome Analysis of the NS1 Protein Encoded by Influenza A H1N1 Virus Reveals a Positive Regulatory Role of Host Protein PRP19 in Viral Replication. J Proteome Res 2016; 15:1639-48. [PMID: 27096427 DOI: 10.1021/acs.jproteome.6b00103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A virus, which can cause severe respiratory illnesses in infected individuals, is responsible for worldwide human pandemics. The NS1 protein encoded by this virus plays a crucial role in regulating the host antiviral response through various mechanisms. In addition, it has been reported that NS1 can modulate cellular pre-mRNA splicing events. To investigate the biological processes potentially affected by the NS1 protein in host cells, NS1-associated protein complexes in human cells were identified using coimmunoprecipitation combined with GeLC-MS/MS. By employing software to build biological process and protein-protein interaction networks, NS1-interacting cellular proteins were found to be related to RNA splicing/processing, cell cycle, and protein folding/targeting cellular processes. By monitoring spliced and unspliced RNAs of a reporter plasmid, we further validated that NS1 can interfere with cellular pre-mRNA splicing. One of the identified proteins, pre-mRNA-processing factor 19 (PRP19), was confirmed to interact with the NS1 protein in influenza A virus-infected cells. Importantly, depletion of PRP19 in host cells reduced replication of influenza A virus. In summary, the interactome of influenza A virus NS1 in host cells was comprehensively profiled, and our findings reveal a novel regulatory role for PRP19 in viral replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Helene M Liu
- Department of Clinical Laboratory Sciences and Medical Technology, College of Medicine, National Taiwan University , Taipei 10617, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University , Taichung 40227, Taiwan
| | | | | |
Collapse
|
7
|
Kai M. Roles of RNA-Binding Proteins in DNA Damage Response. Int J Mol Sci 2016; 17:310. [PMID: 26927092 PMCID: PMC4813173 DOI: 10.3390/ijms17030310] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as “liquid-demixing”). Among the PAR-associated IDPs are FUS/TLS (fused in sarcoma/translocated in sarcoma), EWS (Ewing sarcoma), TARF15 (TATA box-binding protein-associated factor 68 kDa) (also called FET proteins), a number of heterogeneous nuclear ribonucleoproteins (hnRNPs), and RBM14. Importantly, various point mutations within the FET genes have been implicated in pathological protein aggregation in neurodegenerative diseases, specifically with amyotrophic lateral sclerosis (ALS), and frontotemporal lobe degeneration (FTLD). The FET proteins also frequently exhibit gene translocation in human cancers, and emerging evidence shows their physical interactions with DDR proteins and thus implies their involvement in the maintenance of genome stability.
Collapse
Affiliation(s)
- Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
8
|
CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr Opin Struct Biol 2016; 36:48-57. [PMID: 26803803 PMCID: PMC4830896 DOI: 10.1016/j.sbi.2015.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in cryoEM are revolutionizing our understanding of how molecular machines function. The structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP has been revealed. The structure of Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex has been revealed. These structures greatly advanced our understanding of the mechanism of pre-mRNA splicing.
The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing.
Collapse
|
9
|
Hudson AJ, Stark MR, Fast NM, Russell AG, Rader SD. Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms. RNA Biol 2015; 12:1-8. [PMID: 26400738 PMCID: PMC4829280 DOI: 10.1080/15476286.2015.1094602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing has been considered one of the hallmarks of eukaryotes, yet its diversity is astonishing: the number of substrate introns for splicing ranges from hundreds of thousands in humans to a mere handful in certain parasites. The catalytic machinery that carries out splicing, the spliceosome, is similarly diverse, with over 300 associated proteins in humans to a few tens in other organisms. In this Point of View, we discuss recent work characterizing the reduced spliceosome of the acidophilic red alga Cyanidioschyzon merolae, which further highlights the diversity of splicing in that it does not possess the U1 snRNP that is characteristically responsible for 5′ splice site recognition. Comparisons to other organisms with reduced spliceosomes, such as microsporidia, trypanosomes, and Giardia, help to identify the most highly conserved splicing factors, pointing to the essential core of this complex machine. These observations argue for increased exploration of important biochemical processes through study of a wider ranger of organisms.
Collapse
Affiliation(s)
- Andrew J Hudson
- a Alberta RNA Research and Training Institute and Department of Biological Sciences ; University of Lethbridge ; Lethbridge , Alberta , Canada
| | - Martha R Stark
- b Department of Chemistry ; University of Northern British Columbia ; Prince George , British Columbia , Canada
| | - Naomi M Fast
- c Biodiversity Research Center and Department of Botany ; University of British Columbia ; Vancouver , British Columbia , Canada
| | - Anthony G Russell
- a Alberta RNA Research and Training Institute and Department of Biological Sciences ; University of Lethbridge ; Lethbridge , Alberta , Canada
| | - Stephen D Rader
- b Department of Chemistry ; University of Northern British Columbia ; Prince George , British Columbia , Canada
| |
Collapse
|
10
|
Martinho RG, Guilgur LG, Prudêncio P. How gene expression in fast-proliferating cells keeps pace. Bioessays 2015; 37:514-24. [PMID: 25823409 DOI: 10.1002/bies.201400195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of living organisms requires a precise coordination of all basic cellular processes, in space and time. Early embryogenesis of most species with externally deposited eggs starts with a series of extremely fast cleavage cycles. These divisions have a strong influence on gene expression as mitosis represses transcription and pre-mRNA processing. In this review, we will describe the distinct adaptations for efficient gene expression and discuss the emerging role of the multifunctional NineTeen Complex (NTC) in gene expression and genomic stability during fast proliferation.
Collapse
Affiliation(s)
- Rui G Martinho
- Departamento de Ciências Biomédicas e Medicina, Regenerative Medicine Program, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
11
|
Wolniak SM, Boothby TC, van der Weele CM. Posttranscriptional control over rapid development and ciliogenesis in Marsilea. Methods Cell Biol 2015; 127:403-44. [PMID: 25837402 DOI: 10.1016/bs.mcb.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Thomas C Boothby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Corine M van der Weele
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| |
Collapse
|
12
|
Watrin E, Demidova M, Watrin T, Hu Z, Prigent C. Sororin pre-mRNA splicing is required for proper sister chromatid cohesion in human cells. EMBO Rep 2014; 15:948-55. [PMID: 25092791 DOI: 10.15252/embr.201438640] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sister chromatid cohesion, which depends on cohesin, is essential for the faithful segregation of replicated chromosomes. Here, we report that splicing complex Prp19 is essential for cohesion in both G2 and mitosis, and consequently for the proper progression of the cell through mitosis. Inactivation of splicing factors SF3a120 and U2AF65 induces similar cohesion defects to Prp19 complex inactivation. Our data indicate that these splicing factors are all required for the accumulation of cohesion factor Sororin, by facilitating the proper splicing of its pre-mRNA. Finally, we show that ectopic expression of Sororin corrects defective cohesion caused by Prp19 complex inactivation. We propose that the Prp19 complex and the splicing machinery contribute to the establishment of cohesion by promoting Sororin accumulation during S phase, and are, therefore, essential to the maintenance of genome stability.
Collapse
Affiliation(s)
- Erwan Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Maria Demidova
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Tanguy Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Zheng Hu
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| | - Claude Prigent
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France Institut de Génétique et Développement de Rennes Université de Rennes 1, Rennes, France
| |
Collapse
|
13
|
Benjamin AB, Zhou X, Isaac O, Zhao H, Song Y, Chi X, Sun B, Hao L, Zhang L, Liu L, Guan H, Shao S. PRP19 upregulation inhibits cell proliferation in lung adenocarcinomas by p21-mediated induction of cell cycle arrest. Biomed Pharmacother 2014; 68:463-70. [DOI: 10.1016/j.biopha.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 11/25/2022] Open
|
14
|
The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis. PLoS Genet 2014; 10:e1004046. [PMID: 24391515 PMCID: PMC3879195 DOI: 10.1371/journal.pgen.1004046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022] Open
Abstract
The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking. In eukaryotic cells, nascent mRNA is processed by splicing to remove introns and to join the exon sequences. The processed mRNA is then transported out of the nucleus and employed by ribosomes to synthesize proteins. Splicing is achieved by the spliceosome and associated protein complexes, among them the so-called NineTeen complex (NTC). We have identified the Num1 protein as one of the core components of the NTC in the fungus Ustilago maydis, and could show that it is required for polarized growth of the filamentous fungal cells. Consistent with the NTC function, cells with a num1-deletion show reduced splicing of mRNA. Moreover, we uncover a novel cytoplasmic function of the Num1 protein: It physically interacts with the microtubule-associated Kinesin 1 motor protein, and phenotypic analyses corroborate that both proteins are functionally connected. Our findings reveal a yet unidentified role of a global splicing factor during intracellular trafficking processes. A possible connection between these disparate mechanisms presumably resides in mRNA-export out of the nucleus and/or the transport of mRNA within the cytoplasm.
Collapse
|
15
|
Maréchal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, Liu S, Jiménez AE, Jin J, Zou L. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell 2013; 53:235-246. [PMID: 24332808 DOI: 10.1016/j.molcel.2013.11.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/11/2013] [Accepted: 10/29/2013] [Indexed: 12/23/2022]
Abstract
PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129
| | - Ju-Mei Li
- Department of Biochemistry and Molecular Biology The University of Texas Health Science Center at Houston Houston, TX 77030
| | - Xiao Ye Ji
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129
| | - Ching-Shyi Wu
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129
| | - Stephanie A Yazinski
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129
| | - Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129
| | - Shizhou Liu
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129
| | - Amanda E Jiménez
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology The University of Texas Health Science Center at Houston Houston, TX 77030
| | - Lee Zou
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown, MA 02129.,Department of Pathology Massachusetts General Hospital Harvard Medical School Boston, MA 02114
| |
Collapse
|
16
|
Chanarat S, Sträßer K. Splicing and beyond: the many faces of the Prp19 complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2126-34. [PMID: 23742842 DOI: 10.1016/j.bbamcr.2013.05.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/18/2022]
Abstract
The conserved Prp19 complex (Prp19C) - also known as NineTeen Complex (NTC) - functions in several processes of paramount importance for cellular homeostasis. NTC/Prp19C was discovered as a complex that functions in splicing and more specifically during the catalytic activation of the spliceosome. More recent work revealed that NTC/Prp19C plays a role in transcription elongation in Saccharomyces cerevisiae and in genome maintenance in higher eukaryotes. In addition, mouse PRP19 might ubiquity late proteins targeted for degradation and guide them to the proteasome. Furthermore, NTC/Prp19C has been implicated in lipid droplet biogenesis. In the future, the molecular function of NTC/Prp19C in all of these processes needs to be refined or elucidated. Most of NTC/Prp19C's functions have been shown in only one or few organisms. However, since this complex is highly conserved it is likely that it has the same functions across all species. Moreover, one NTC/Prp19C or different subcomplexes could function in the above-mentioned processes. Intriguingly, NTC/Prp19C might link these different processes to ensure an optimal coordination of cellular processes. Thus, many important questions about the functions of this interesting complex remain to be investigated. In this review we discuss the different functions of NTC/Prp19C focusing on the novel and emerging ones as well as open questions.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
17
|
Yin J, Zhu JM, Shen XZ. New insights into pre-mRNA processing factor 19: A multi-faceted protein in humans. Biol Cell 2012; 104:695-705. [DOI: 10.1111/boc.201200011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 09/06/2012] [Indexed: 11/27/2022]
|
18
|
Weihmann T, Palma K, Nitta Y, Li X. Pleiotropic regulatory locus 2 exhibits unequal genetic redundancy with its homolog PRL1. PLANT & CELL PHYSIOLOGY 2012; 53:1617-1626. [PMID: 22813545 DOI: 10.1093/pcp/pcs103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In plants, signaling leading to resistance against biotrophic pathogens is complex. Perception of pathogenic microbes by resistance (R) proteins is relayed though successive activities of downstream components, in a network that is not well understood. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) and >20 other proteins are members of the MOS4-associated complex (MAC), a regulatory node in defense signaling. Of all characterized MAC members, mutations in PRL1 cause the most severe susceptibility towards both virulent and avirulent microbial pathogens. Genetic suppressors of prl1 represent new signaling elements and may aid in further unraveling of defense mechanisms. Our identification and characterization of a dominant suppressor of prl1 revealed a regulatory, gain-of-function mutation in PLEIOTROPIC REGULATORY LOCUS 2 (PRL2), a close homolog of PRL1. Loss-of-function mutants of PRL2 do not exhibit altered phenotypes; however, prl1 prl2 double mutants exhibit enhanced morphological defects consistent with unequal genetic redundancy between the homologs. Up-regulated gene expression mediated by the dominant prl2-1D allele completely suppresses disease susceptibility in the prl1 mutant background and also restores wild-type appearance, further supporting functional equivalence between the two PRL proteins.
Collapse
Affiliation(s)
- Tabea Weihmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | |
Collapse
|
19
|
Abstract
AbstractRecent work in plant immunity has shown that MOS4, a known intermediate in R protein mediated resistance, is a core member of the nuclear MOS4-associated complex (MAC). This complex is highly conserved in eukaryotes, as orthologous complexes known as the CDC5L-SNEVPrp19-Pso4 complex and the Nineteen complex (NTC) were previously identified in human and yeast, respectively. The involvement of these complexes in pre-mRNA splicing and spliceosome assembly suggests that the MAC probably has a similar function in plants. Double mutants of any two MAC components are lethal, whereas single mutants of the MAC core components mos4, Atcdc5, mac3, and prl1 are all viable and display pleiotropic defects. This suggests that while the MAC is required for some essential biological function such as splicing, individual MAC components are not crucial for complex functionality and likely have regulatory roles in other biological processes such as plant immunity and flowering time control. Future studies on MAC components in Arabidopsis will provide further insight into the regulatory mechanisms of the MAC on specific biological processes.
Collapse
|
20
|
Wolniak SM, van der Weele CM, Deeb F, Boothby T, Klink VP. Extremes in rapid cellular morphogenesis: post-transcriptional regulation of spermatogenesis in Marsilea vestita. PROTOPLASMA 2011; 248:457-73. [PMID: 21487804 DOI: 10.1007/s00709-011-0276-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 05/07/2023]
Abstract
The endosporic male gametophyte of the water fern, Marsilea vestita, provides a unique opportunity to study the mechanisms that control cell fate determination during a burst of rapid development. In this review, we show how the spatial and temporal control of development in this simple gametophyte involves several distinct modes of RNA processing that allow the translation of specific mRNAs at distinct stages during gametogenesis. During the early part of development, nine successive cell division cycles occur in precise planes within a closed volume to produce seven sterile cells and 32 spermatids. There is no cell movement in the gametophyte; so, cell position and size within the spore wall define cell fate. After the division cycles have been completed, the spermatids become sites for the de novo formation of basal bodies, for the assembly of a complex cytoskeleton, for nuclear and cell elongation, and for ciliogenesis. In contrast, the adjacent sterile cells exhibit none of these changes. The spermatids differentiate into multiciliated, corkscrew-shaped gametes that resemble no other cells in the entire plant. Development is controlled post-transcriptionally. The transcripts stored in the microspore are released (unmasked) in the gametophyte at different times during development. At the start of these studies, we identified several key mRNAs that undergo translation at specific stages of gametophyte development. We developed RNA silencing protocols that enabled us to block the translation of these proteins and thereby establish their necessity and sufficiency for the completion of specific stages of gametogenesis. In addition, RNAi enabled us to identify additional proteins that are essential for other phases of development. Since the distributions of mRNAs and the proteins they encode are not identical in the gametophyte, transcript processing is apparently important in allowing translation to occur under strict temporal and spatial control. Transcript polyadenylation occurs in the spermatogenous cells in ways that match the translation of specific mRNAs. We have found that the exon junction complex plays key roles in transcript regulation and modifications that underlie cell specification in the gametophyte. We have recently become interested in the mechanisms that control the unmasking of the stored transcripts and have linked the synthesis and redistribution of spermidine in the gametophyte to the control of mRNA release from storage during early development and later to basal body formation, cytoskeletal assembly, and nuclear and cell elongation in the differentiating spermatids.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
21
|
Legerski RJ. Repair of DNA interstrand cross-links during S phase of the mammalian cell cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:540-51. [PMID: 20658646 PMCID: PMC2911997 DOI: 10.1002/em.20566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand cross-linking (ICL) agents are widely used in anticancer chemotherapy regimens, yet our understanding of the DNA repair mechanisms by which these lesions are removed from the genome remains incomplete. This is at least in part due to the enormously complicated nature and variety of the biochemical pathways that operate on these complex lesions. In this review, we have focused specifically on the S-phase pathway of ICL repair in mammalian cells, which appears to be the major mechanism by which these lesions are removed in cycling cells. The various stages and components of this pathway are discussed, and a putative molecular model is presented. In addition, we propose an explanation as to how this pathway can lead to the observed high levels of sister chromatid exchanges known to be induced by ICLs.
Collapse
Affiliation(s)
- Randy J Legerski
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
22
|
Grillari J, Löscher M, Denegri M, Lee K, Fortschegger K, Eisenhaber F, Ajuh P, Lamond AI, Katinger H, Grillari-Voglauer R. Blom7alpha is a novel heterogeneous nuclear ribonucleoprotein K homology domain protein involved in pre-mRNA splicing that interacts with SNEVPrp19-Pso4. J Biol Chem 2009; 284:29193-204. [PMID: 19641227 PMCID: PMC2781463 DOI: 10.1074/jbc.m109.036632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Indexed: 02/05/2023] Open
Abstract
The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.
Collapse
Affiliation(s)
- Johannes Grillari
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna A-1190, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang N, Kaur R, Akhter S, Legerski RJ. Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint. EMBO Rep 2009; 10:1029-35. [PMID: 19633697 DOI: 10.1038/embor.2009.122] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 11/09/2022] Open
Abstract
Cell division cycle 5-like protein (Cdc5L) is a core component of the putative E3 ubiquitin ligase complex containing Prp19/Pso4, Plrg1 and Spf27. This complex has been shown to have a role in pre-messenger RNA splicing from yeast to humans; however, more recent studies have described a function for this complex in the cellular response to DNA damage. Here, we show that Cdc5L interacts physically with the cell-cycle checkpoint kinase ataxia-telangiectasia and Rad3-related (ATR). Depletion of Cdc5L by RNA-mediated interference methods results in a defective S-phase cell-cycle checkpoint and cellular sensitivity in response to replication-fork blocking agents. Furthermore, we show that Cdc5L is required for the activation of downstream effectors or mediators of ATR checkpoint function such as checkpoint kinase 1 (Chk1), cell cycle checkpoint protein Rad 17 (Rad17) and Fanconi anaemia complementation group D2 protein (FancD2). In addition, we have mapped the ATR-binding region in Cdc5L and show that a deletion mutant that is unable to interact with ATR is defective in the rescue of the checkpoint deficiency in Cdc5L-depleted cells. These findings show a new function for Cdc5L in the regulation of the ATR-mediated cell-cycle checkpoint in response to genotoxic agents.
Collapse
Affiliation(s)
- Nianxiang Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, Li X. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 2009; 5:e1000526. [PMID: 19629177 PMCID: PMC2709443 DOI: 10.1371/journal.ppat.1000526] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/30/2009] [Indexed: 01/01/2023] Open
Abstract
Plant Resistance (R) proteins play an integral role in defense against pathogen infection. A unique gain-of-function mutation in the R gene SNC1, snc1, results in constitutive activation of plant immune pathways and enhanced resistance against pathogen infection. We previously found that mutations in MOS4 suppress the autoimmune phenotypes of snc1, and that MOS4 is part of a nuclear complex called the MOS4-Associated Complex (MAC) along with the transcription factor AtCDC5 and the WD-40 protein PRL1. Here we report the immuno-affinity purification of the MAC using HA-tagged MOS4 followed by protein sequence analysis by mass spectrometry. A total of 24 MAC proteins were identified, 19 of which have predicted roles in RNA processing based on their homology to proteins in the Prp19-Complex, an evolutionarily conserved spliceosome-associated complex containing homologs of MOS4, AtCDC5, and PRL1. Among these were two highly similar U-box proteins with homology to the yeast and human E3 ubiquitin ligase Prp19, which we named MAC3A and MAC3B. MAC3B was recently shown to exhibit E3 ligase activity in vitro. Through reverse genetics analysis we show that MAC3A and MAC3B are functionally redundant and are required for basal and R protein-mediated resistance in Arabidopsis. Like mos4-1 and Atcdc5-1, mac3a mac3b suppresses snc1-mediated autoimmunity. MAC3 localizes to the nucleus and interacts with AtCDC5 in planta. Our results suggest that MAC3A and MAC3B are members of the MAC that function redundantly in the regulation of plant innate immunity.
Collapse
Affiliation(s)
- Jacqueline Monaghan
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Minghui Gao
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Qingguo Zhao
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Kristoffer Palma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chengzu Long
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Yuelin Zhang
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
25
|
Allelism of Saccharomyces cerevisiae gene PSO10, involved in error-prone repair of psoralen-induced DNA damage, with SUMO ligase-encoding MMS21. Curr Genet 2008; 53:361-71. [PMID: 18437386 DOI: 10.1007/s00294-008-0192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/10/2008] [Accepted: 04/13/2008] [Indexed: 01/09/2023]
Abstract
In order to extend the understanding of the genetical and biochemical basis of photo-activated psoralen-induced DNA repair in the yeast Saccharomyces cerevisiae we have identified and cloned 10 pso mutants. Here, we describe the phenotypic characterization and molecular cloning of the pso10-1 mutant which is highly sensitive to photoactivated psoralens, UV(254) (nm) radiation and the alkylating agent methylmethane sulphonate. The pso10-1 mutant allele also confers a block in the mutagenic response to photoactivated psoralens and UV(254) (nm) radiation, and homoallelic diploids do not sporulate. Molecular cloning using a yeast genomic library, sequence analysis and genetic complementation experiments proved pso10-1 to be a mutant allele of gene MMS21 that encodes a SUMO ligase involved in the sumoylation of several DNA repair proteins. The ORF of pso10-1 contains a single nucleotide C-->T transition at position 758, which leads to a change in amino acid sequence from serine to phenylalanine [S253F]. Pso10-1p defines a leaky mutant phenotype of the essential MMS21 gene, and as member of the Smc5-Smc6 complex, still has some essential functions that allow survival of the mutant. DNA repair via translesion synthesis is severely impaired as the pso10-1 mutant allele confers severely blocked induced forward and reverse mutagenesis and shows epistatic interaction with a rev3Delta mutant allele. By identifying the allelism of PSO10 and MMS21 we demonstrate the need of a fully functional Smc5-Smc6 complex for a WT-like adequate repair of photoactivated psoralen-induced DNA damage in yeast.
Collapse
|
26
|
Chen YIG, Moore RE, Ge HY, Young MK, Lee TD, Stevens SW. Proteomic analysis of in vivo-assembled pre-mRNA splicing complexes expands the catalog of participating factors. Nucleic Acids Res 2007; 35:3928-44. [PMID: 17537823 PMCID: PMC1919476 DOI: 10.1093/nar/gkm347] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous compositional studies of pre-mRNA processing complexes have been performed in vitro on synthetic pre-mRNAs containing a single intron. To provide a more comprehensive list of polypeptides associated with the pre-mRNA splicing apparatus, we have determined the composition of the bulk pre-mRNA processing machinery in living cells. We purified endogenous nuclear pre-mRNA processing complexes from human and chicken cells comprising the massive (>200S) supraspliceosomes (a.k.a. polyspliceosomes). As expected, RNA components include a heterogeneous mixture of pre-mRNAs and the five spliceosomal snRNAs. In addition to known pre-mRNA splicing factors, 5′ end binding factors, 3′ end processing factors, mRNA export factors, hnRNPs and other RNA binding proteins, the protein components identified by mass spectrometry include RNA adenosine deaminases and several novel factors. Intriguingly, our purified supraspliceosomes also contain a number of structural proteins, nucleoporins, chromatin remodeling factors and several novel proteins that were absent from splicing complexes assembled in vitro. These in vivo analyses bring the total number of factors associated with pre-mRNA to well over 300, and represent the most comprehensive analysis of the pre-mRNA processing machinery to date.
Collapse
Affiliation(s)
- Yen-I G. Chen
- Graduate program in Microbiology, City of Hope Beckman Research Institute, Duarte, CA 91010, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University, Station #A4800, Austin, TX 78712 and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX, USA
| | - Roger E. Moore
- Graduate program in Microbiology, City of Hope Beckman Research Institute, Duarte, CA 91010, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University, Station #A4800, Austin, TX 78712 and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX, USA
| | - Helen Y. Ge
- Graduate program in Microbiology, City of Hope Beckman Research Institute, Duarte, CA 91010, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University, Station #A4800, Austin, TX 78712 and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX, USA
| | - Mary K. Young
- Graduate program in Microbiology, City of Hope Beckman Research Institute, Duarte, CA 91010, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University, Station #A4800, Austin, TX 78712 and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX, USA
| | - Terry D. Lee
- Graduate program in Microbiology, City of Hope Beckman Research Institute, Duarte, CA 91010, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University, Station #A4800, Austin, TX 78712 and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX, USA
| | - Scott W. Stevens
- Graduate program in Microbiology, City of Hope Beckman Research Institute, Duarte, CA 91010, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University, Station #A4800, Austin, TX 78712 and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX, USA
- *To whom correspondence should be addressed. +1-512-232-9303+1-512-232-3432
| |
Collapse
|
27
|
Sihn CR, Cho SY, Lee JH, Lee TR, Kim SH. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome. Biochem Biophys Res Commun 2007; 356:175-80. [PMID: 17349974 DOI: 10.1016/j.bbrc.2007.02.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 11/28/2022]
Abstract
Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein.
Collapse
Affiliation(s)
- Choong-Ryoul Sihn
- Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Lu X, Legerski RJ. The Prp19/Pso4 core complex undergoes ubiquitylation and structural alterations in response to DNA damage. Biochem Biophys Res Commun 2007; 354:968-74. [PMID: 17276391 PMCID: PMC1810354 DOI: 10.1016/j.bbrc.2007.01.097] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 01/17/2007] [Indexed: 11/17/2022]
Abstract
Prp19/Pso4, a U-box containing E3 ligase, has a demonstrated role in pre-mRNA splicing, but has also been implicated in both yeast and mammalian cells as having a direct role in DNA damage processing. In this report, we provide further evidence in support of this latter assertion. We show that hPrp19 forms an ubiquitylated oligomeric species that is resistant to disruption by SDS gel electrophoresis under nonreducing conditions suggesting that is mediated by a thiolester between ubiquitin and a cysteine residue in Prp19. The level of this species is significantly enhanced upon treatment of cells with DNA damaging agents, and its association with chromatin is increased. In addition, hPrp19 is known to form a stable core complex with Cdc5L, Plrg1, and Spf27; however, ubiquitylated hPrp19 fails to interact with either Cdc5L or Plrg1 indicating that DNA damage can induce profound alterations to the hPrp19 core complex. Finally, we show that overexpression of hPrp19 in human cells provides a pro-survival affect in that it reduces the levels of apoptosis observed after exposure of cells to DNA damage.
Collapse
|
29
|
Lehoczký P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 2006; 31:109-33. [PMID: 17096663 DOI: 10.1111/j.1574-6976.2006.00046.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.
Collapse
Affiliation(s)
- Peter Lehoczký
- Department of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | | |
Collapse
|
30
|
Urano Y, Iiduka M, Sugiyama A, Akiyama H, Uzawa K, Matsumoto G, Kawasaki Y, Tashiro F. Involvement of the mouse Prp19 gene in neuronal/astroglial cell fate decisions. J Biol Chem 2005; 281:7498-514. [PMID: 16352598 DOI: 10.1074/jbc.m510881200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms involved in neuronal/astroglial cell fate decisions during the development of the mammalian central nervous system are poorly understood. Here, we report that PRP19beta, a splice variant of mouse PRP19alpha corresponding to the yeast PRP19 protein, can function as a neuron-astroglial switch during the retinoic acid-primed neural differentiation of P19 cells. The beta-variant possesses an additional 19 amino acid residues in-frame in the N-terminal region of the alpha-variant. The forced expression of the alpha-variant RNA caused the down-regulation of oct-3/4 and nanog mRNA expression during the 12-48 h of the late-early stages of neural differentiation and was sufficient to convert P19 cells into neurons (but not glial cells) when the cells were cultured in aggregated form without retinoic acid. In contrast, the forced expression of the beta-variant RNA suppressed neuronal differentiation and conversely stimulated astroglial cell differentiation in retinoic acid-primed P19 cells. Based on yeast two-hybrid screening, cyclophilin A was identified as a specific binding partner of the beta-variant. Luciferase reporter assay mediated by the oct-3/4 promoter revealed that cyclophilin A could act as a transcriptional activator and that its activity was suppressed by the beta-variant, suggesting that cyclophilin A takes part in the induction of oct-3/4 gene expression, which might lead to neuroectodermal otx2 expression within 12 h of the immediate-early stages of retinoic acid-primed neural differentiation. These results show that the alpha-variant gene plays a pivotal role in neural differentiation and that the beta-variant participates in neuronal/astroglial cell fate decisions.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins/physiology
- Cell Differentiation
- Cell Line
- Cell Lineage
- Cells, Cultured
- Chromatin Immunoprecipitation
- Chromatography, Gel
- Cloning, Molecular
- Cyclophilin A/chemistry
- DNA Primers/chemistry
- DNA Repair Enzymes
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Genetic Vectors
- Green Fluorescent Proteins/metabolism
- Immunoprecipitation
- Luciferases/metabolism
- Mice
- Mice, Inbred ICR
- Models, Biological
- Molecular Sequence Data
- Neuroglia/metabolism
- Neurons/metabolism
- Nuclear Proteins
- Oligonucleotides/chemistry
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA Splicing Factors
- RNA, Messenger/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Spliceosomes/metabolism
- Time Factors
- Tissue Distribution
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Yumiko Urano
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba 270-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Brozmanová J, Vlcková V, Chovanec M. How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyces cerevisiae. Curr Genet 2004; 46:317-30. [PMID: 15614491 DOI: 10.1007/s00294-004-0536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/13/2004] [Accepted: 09/18/2004] [Indexed: 10/26/2022]
Abstract
DNA-damaging agents constantly challenge cellular DNA; and efficient DNA repair is therefore essential to maintain genome stability and cell viability. Several DNA repair mechanisms have evolved and these have been shown to be highly conserved from bacteria to man. DNA repair studies were originally initiated in very simple organisms such as Escherichia coli and Saccharomyces cerevisiae, bacteria being the best understood organism to date. As a consequence, bacterial DNA repair genes encoding proteins with well characterized functions have been transferred into higher organisms in order to increase repair capacity, or to complement repair defects, in heterologous cells. While indicating the contribution of these repair functions to protection against the genotoxic effects of DNA-damaging agents, heterologous expression studies also highlighted the role of the DNA lesions that are substrates for such processes. In addition, bacterial DNA repair-like functions could be identified in higher organisms using this approach. We heterologously expressed three well characterized E. coli repair genes in S. cerevisiae cells of different genetic backgrounds: (1) the ada gene encoding O(6)-methylguanine DNA-methyltransferase, a protein involved in the repair of alkylation damage to DNA, (2) the recA gene encoding the main recombinase in E. coli and (3) the nth gene, the product of which (endonuclease III) is responsible for the repair of oxidative base damage. Here, we summarize our results and indicate the possible implications they have for a better understanding of particular DNA repair processes in S. cerevisiae.
Collapse
Affiliation(s)
- Jela Brozmanová
- Laboratory of Molecular Genetics, Cancer Research Institute, Vlárska 7, 83391 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
32
|
Tsai CW, Van Der Weele CM, Wolniak SM. Differential segregation and modification of mRNA during spermiogenesis in Marsilea vestita. Dev Biol 2004; 269:319-30. [PMID: 15110703 DOI: 10.1016/j.ydbio.2004.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 11/12/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022]
Abstract
We are interested in the mechanisms that underlie cell fate determination in the endosporic male gametophytes of the fern, Marsilea vestita. Synchronous development is initiated by placing dry spores into water and involves the translation of stored mRNAs, with little transcription. Nine division cycles produce 32 spermatids surrounded by 7 sterile cells, and then each spermatid differentiates into a multiciliate gamete. Here, we focus on changes in the distribution of particular proteins, mRNAs, and patterns of polyadenylation as essential prerequisites for cell fate determination and gametogenesis. Earlier, we showed that alpha- and beta-tubulin proteins become concentrated in spermatogenous initials, and that centrin mRNA is translated only in spermatogenous initials. In situ hybridizations reveal that centrin, cyclin B, and beta-tubulin mRNAs are present in both sterile and spermatogenous cells, but that transcripts encoding RNA helicase and PRP-19 (a spliceosome component) become localized in spermatogenous cells. The targeted destruction of these two transcripts by RNAi treatments does not affect the numbers of division cycles, but the gametophytes exhibit anomalous patterns of cytokinesis, and a subsequent failure of spermatid differentiation. Thus, cell fate determination in the gametophyte involves localized translation, and the localization of mRNAs for proteins involved in transcript processing. We found differences in polyadenylation levels in sterile and spermatogenous cells that match the distribution of cytoplasmic poly(A) polymerase (PAP), which, in immunolocalizations, is abundant in spermatogenous cells, but undetectable in sterile cells. The activation of translation in spermatogenous initials, but not in sterile cells, may be under the control of mRNA processing enzymes, which become localized either as proteins or mRNAs in the spermatogenous subdomains before any divisions occur.
Collapse
Affiliation(s)
- Chiawei W Tsai
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
33
|
Brendel M, Bonatto D, Strauss M, Revers LF, Pungartnik C, Saffi J, Henriques JAP. Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res 2004; 544:179-93. [PMID: 14644320 DOI: 10.1016/j.mrrev.2003.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells' genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase zeta in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.
Collapse
Affiliation(s)
- Martin Brendel
- Departamento de Biofisica, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Ohi MD, Gould KL. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA (NEW YORK, N.Y.) 2002; 8:798-815. [PMID: 12088152 PMCID: PMC1370298 DOI: 10.1017/s1355838202025050] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Schizosaccharomyces pombe (Sp) Cdc5p and its Saccharomyces cerevisiae (Sc) ortholog, Cef1p, are essential components of the spliceosome. In S. cerevisiae, a subcomplex of the spliceosome that includes Cef1p can be isolated on its own; this has been termed the nineteen complex (Ntc) because it contains Prp19p. Components of the Ntc include Cef1p, Snt309p, Syf2p/Ntc31p, Ntc30p/lsy1p, Ntc20p and at least six unidentified proteins. We recently identified approximately 30 proteins that copurified with Cdc5p and Cef1p. Previously unidentified S. pombe proteins in this purification were called Cwfs for complexed with five and novel S. cerevisiae proteins were called Cwcs for complexed with Cef1p. Using these proteomics data coupled with available information regarding Ntc composition, we have investigated protein identities and interactions among Ntc components. Our data indicate that Cwc2p, Prp46p, Clf1p, and Syf1p most likely represent Ntc40p, Ntc50p, Ntc77p, and Ntc90p, respectively. We show that Sc Cwc2p interacts with Prp19p and is involved in pre-mRNA splicing. Sp cwf2+, the homolog of Sc CWC2, is allelic with the previously identified Sp prp3+. We present evidence that Sp Cwf7p, an essential protein with obvious homologs in many eukaryotes but not S. cerevisiae, is a functional counterpart of Sc Snt309p and binds Sp Cwf8p (a homolog of Sc Prp19p). Further, our data indicate that a mutation in the U-box of Prp19p disrupts these numerous protein interactions causing Cef1p degradation and Ntc instability.
Collapse
Affiliation(s)
- Melanie D Ohi
- Howard Hughes Medical Institute and Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
35
|
Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA (NEW YORK, N.Y.) 2002; 8:426-39. [PMID: 11991638 PMCID: PMC1370266 DOI: 10.1017/s1355838202021088] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We describe characterization of spliceosomes affinity purified under native conditions. These spliceosomes consist largely of C complex containing splicing intermediates. After C complex assembly on an MS2 affinity-tagged pre-mRNA substrate containing a 3' splice site mutation, followed by RNase H digestion of earlier complexes, spliceosomes were purified by size exclusion and affinity selection. This protocol yielded 40S C complexes in sufficient quantities to visualize in negative stain by electron microscopy. Complexes purified in this way contain U2, U5, and U6 snRNAs, but very little U1 or U4 snRNA. Analysis by tandem mass spectrometry confirmed the presence of core snRNP proteins (SM and LSM), U2 and U5 snRNP-specific proteins, and the second step factors Prp16, Prp17, Slu7, and Prp22. In contrast, proteins specific to earlier splicing complexes, such as U2AF and U1 snRNP components, were not detected in C complex, but were present in similarly purified H complex. Images of these spliceosomes revealed single particles with dimensions of approximately 270 x 240 A that assort into well-defined classes. These images represent an important first step toward attaining a comprehensive three-dimensional understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Melissa S Jurica
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
36
|
Biggins S, Bhalla N, Chang A, Smith DL, Murray AW. Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae. Genetics 2001; 159:453-70. [PMID: 11606525 PMCID: PMC1461834 DOI: 10.1093/genetics/159.2.453] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair alpha-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.
Collapse
Affiliation(s)
- S Biggins
- Department of Physiology, University of California, San Francisco, 94143, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.
Collapse
Affiliation(s)
- M L Dronkert
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
38
|
Gotzmann J, Gerner C, Meissner M, Holzmann K, Grimm R, Mikulits W, Sauermann G. hNMP 200: a novel human common nuclear matrix protein combining structural and regulatory functions. Exp Cell Res 2000; 261:166-79. [PMID: 11082287 DOI: 10.1006/excr.2000.5025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previously we have reported about human nuclear matrix proteins (hNMPs) with increased reassembling and potential filament-forming capability [C. Gerner et al., 1999, J. Cell. Biochem. 74, 145-151]. Here, we cloned the cDNA of one of these proteins, hNMP 200, following partial amino acid sequencing of the novel 56-kDa nuclear protein. Sequence alignments show hNMP 200-related proteins in metazoans, plants, and yeast, the homologous Saccharomyces cerevisiae protein prp19 being an accessory, but essential, factor for pre-mRNA processing. Evidence for any enzymatic activity was not detected. However, the hNMP 200 primary sequence contained five consensus WD-repeat sequences, indicative of participation and regulatory function in larger protein assemblies. Northern blot analysis and 2D protein electrophoresis showed ubiquitous expression of hNMP 200 in a variety of cell types. (35)S labeling studies indicated a high metabolic stability of the protein. The hNMP 200 gene was assigned to chromosomal region 11q12.2. Confocal laser scanning microscopy revealed that the intracellular localization conformed with that reported for other structural nuclear proteins. In interphase cells, green fluorescent protein-tagged hNMP 200 was predominantly nucleoplasmic. Structures with speckled appearance extended through several sections of in situ-isolated nuclear matrices. During cell division hNMP 200 became irregularly distributed in prophase, sparing regions of condensing chromatin. In anaphase it was concentrated in the spindle midzone. The putative dual function of the novel NMP is discussed. Being a component of the nuclear framework, it may provide structural support for components of the RNA-processing machinery, thereby also modulating splicing activities.
Collapse
Affiliation(s)
- J Gotzmann
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria.
| | | | | | | | | | | | | |
Collapse
|
39
|
Henriques JA, Brozmanova J, Brendel M. Role of PSO genes in the repair of photoinduced interstrand cross-links and photooxidative damage in the DNA of the yeast Saccharomyces cerevisiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1997; 39:185-96. [PMID: 9253198 DOI: 10.1016/s1011-1344(97)00020-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent progress in elucidating the molecular structure of the PSSO genes PSO2 to PSO7 is presented. Their role in DNA repair and mutagenesis is discussed in the light of the putative proteins encoded in the respective ORFs and with the knowledge of recent progress in biological and biochemical experimentation. The role of the RecA protein in some steps of DNA repair in Saccharomyces cerevisiae is presented and discussed.
Collapse
Affiliation(s)
- J A Henriques
- Department of Biophysics/Biotechnology Center, UFRGS, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
40
|
|
41
|
Affiliation(s)
- J D Beggs
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| |
Collapse
|