1
|
TYK2 licenses non-canonical inflammasome activation during endotoxemia. Cell Death Differ 2020; 28:748-763. [PMID: 32929218 DOI: 10.1038/s41418-020-00621-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
The non-canonical inflammasome is an emerging crucial player in the development of inflammatory and neurodegenerative diseases. It is activated by direct sensing of cytosolic lipopolysaccharide (LPS) by caspase-11 (CASP11), which then induces pyroptosis, an inflammatory form of regulated cell death. Here, we report that tyrosine kinase 2 (TYK2), a cytokine receptor-associated kinase, is a critical upstream regulator of CASP11. Absence of TYK2 or its kinase activity impairs the transcriptional induction of CASP11 in vitro and in vivo and protects mice from LPS-induced lethality. Lack of TYK2 or its enzymatic activity inhibits macrophage pyroptosis and impairs release of mature IL-1β and IL-18 specifically in response to intracellular LPS. Deletion of TYK2 in myeloid cells reduces LPS-induced IL-1β and IL-18 production in vivo, highlighting the importance of these cells in the inflammatory response to LPS. In support of our data generated with genetically engineered mice, pharmacological inhibition of TYK2 reduced LPS-induced upregulation of CASP11 in bone marrow-derived macrophages (BMDMs) and of its homolog CASP5 in human macrophages. Our study provides insights into the regulation of CASP11 in vivo and uncovered a novel link between TYK2 activity and CASP11-dependent inflammation.
Collapse
|
2
|
Rausell A, Muñoz M, Martinez R, Roger T, Telenti A, Ciuffi A. Innate immune defects in HIV permissive cell lines. Retrovirology 2016; 13:43. [PMID: 27350062 PMCID: PMC4924258 DOI: 10.1186/s12977-016-0275-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background Primary CD4+ T cells and cell lines differ in their permissiveness to HIV infection. Impaired innate immunity may contribute to this different phenotype. Findings We used transcriptome profiling of 1503 innate immunity genes in primary CD4+ T cells and permissive cell lines. Two clusters of differentially expressed genes were identified: a set of 249 genes that were highly expressed in primary cells and minimally expressed in cell lines and a set of 110 genes with the opposite pattern. Specific to HIV, HEK293T, Jurkat, SupT1 and CEM cell lines displayed unique patterns of downregulation of genes involved in viral sensing and restriction. Activation of primary CD4+ T cells resulted in reversal of the pattern of expression of those sets of innate immunity genes. Functional analysis of prototypical innate immunity pathways of permissive cell lines confirmed impaired responses identified in transcriptome analyses. Conclusion Integrity of innate immunity genes and pathways needs to be considered in designing gain/loss functional genomic screens of viral infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0275-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Rausell
- Clinical Bioinformatics lab, Imagine Institute, Paris Descartes University - Sorbonne Paris Cité, 75015, Paris, France.
| | - Miguel Muñoz
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Raquel Martinez
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Amalio Telenti
- Genetic Medicine, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| |
Collapse
|
3
|
Huber R, Pietsch D, Günther J, Welz B, Vogt N, Brand K. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell Mol Life Sci 2014; 71:63-92. [PMID: 23525665 PMCID: PMC11113479 DOI: 10.1007/s00018-013-1322-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/12/2013] [Accepted: 03/07/2013] [Indexed: 12/26/2022]
Abstract
Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Characterization of how interferons (IFNs) mediate their biological response led to identification of the JAK-STAT signaling cascade, where JAKs are receptor-associated kinases and STATs the transcription factors they activate. Today, 4 JAKs and 7 STATs are known to transduce pivotal signals for the over 50 members of the four-helix bundle family of cytokines. This review will provide an overview and historical perspective of the JAK-STAT paradigm.
Collapse
|
5
|
Tau GZ, Cowan SN, Weisburg J, Braunstein NS, Rothman PB. Regulation of IFN-gamma signaling is essential for the cytotoxic activity of CD8(+) T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5574-82. [PMID: 11698428 PMCID: PMC4416493 DOI: 10.4049/jimmunol.167.10.5574] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have demonstrated that, as naive murine CD4(+) cells differentiate into Th1 cells, they lose expression of the second chain of IFN-gammaR (IFN-gammaR2). Hence, the IFN-gamma-producing subset of Th cells is unresponsive to IFN-gamma. Analysis of IFN-gamma-producing CD8(+) T cells demonstrates that, like Th1 cells, these cells do not express IFN-gammaR2. To define the importance of IFN-gamma signaling for the development of functional CD8(+) T cells, mice either lacking IFN-gammaR2 or overexpressing this protein were examined. While CD8(+) T cell development and function appear normal in IFN-gammaR2(-/-) mice, CD8(+) T cell function in IFN-gammaR2 transgenic is altered. IFN-gammaR2 transgenic CD8(+) T cells are unable to lyse target cells in vitro. However, these cells produce Fas ligand, perforin, and granzyme B, the effector molecules required for killing. Interestingly, TG CD8(+) T cells proliferate normally and produce cytokines, such as IFN-gamma in response to antigenic stimulation. Therefore, although IFN-gamma signaling is not required for the generation of normal cytotoxic T cells, constitutive IFN-gamma signaling can selectively impair the cytotoxic function of CD8(+) T cells.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Clone Cells
- Cytokines/biosynthesis
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- Immunologic Memory
- Interferon-gamma/pharmacology
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/biosynthesis
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Transcriptional Activation
- Tumor Cells, Cultured
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Gregory Z. Tau
- Integrated Program in Cell, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Simone N. Cowan
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jeffrey Weisburg
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Ned S. Braunstein
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Paul B. Rothman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
6
|
Bauvois B, Djavaheri-Mergny M, Rouillard D, Dumont J, Wietzerbin J. Regulation of CD26/DPPIV gene expression by interferons and retinoic acid in tumor B cells. Oncogene 2000; 19:265-72. [PMID: 10645005 DOI: 10.1038/sj.onc.1203292] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interferons (IFNs alpha, beta and gamma) and all trans retinoic acid (RA) have the ability to activate genes with GAS sites. We have found that the promoter of CD26/dipeptidylpeptidase IV (DPPIV) contains a consensus GAS site TTCnnnGAA located at bp-35 to -27, and computer analysis confirmed this sequence to be a putative Stat binding site. Consistent with this finding, we show that IFNs and RA rapidly enhanced CD26 gene and protein expression in chronic B lymphocytic leukemia (B-CLL) cells. Immunoblot analyses revealed that unstimulated B-CLL cells expressed detectable levels of serine/tyrosine-phosphorylated Stat1alpha, and RA and IFN-gamma treatment led to increased levels of tyrosine phosphorylation of Stat1alpha and its nuclear accumulation. As shown by electrophoretic mobility shift assay, RA and IFN-gamma increased the binding of a nuclear protein to the GAS-CD26 element. Shift-Western blotting identified Stat1alpha as the GAS-CD26 binding factor. Augmented levels of CD26 protein in malignant B cells cultured with IFNs or RA coincided with the enhancement of DPPIV activity. Taken together, our results are in favor of the IFN-/RA-mediated upregulation of CD26/DPPIV in B-CLL through the signaling pathway involving Stat1alpha and the GAS response element of CD26 promoter.
Collapse
Affiliation(s)
- B Bauvois
- Unité 365 INSERM, Institut Curie, 75231 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
7
|
Masumi A, Wang IM, Lefebvre B, Yang XJ, Nakatani Y, Ozato K. The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness. Mol Cell Biol 1999; 19:1810-20. [PMID: 10022868 PMCID: PMC83974 DOI: 10.1128/mcb.19.3.1810] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-alpha-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-alpha-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness.
Collapse
Affiliation(s)
- A Masumi
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | | | |
Collapse
|
8
|
Meinke A, Barahmand-Pour F, Wöhrl S, Stoiber D, Decker T. Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons. Mol Cell Biol 1996; 16:6937-44. [PMID: 8943349 PMCID: PMC231697 DOI: 10.1128/mcb.16.12.6937] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tyrosine phosphorylation and activation of the transcription factor Stat5 occur in response to stimuli like granulocyte-macrophage colony-stimulating factor, interleukin-3, or erythropoietin that stimulate both proliferation and differentiation of hematopoietic cells. It is unclear whether Stat5 is part of a proliferative response or part of the events leading to cellular differentiation. Here we report that agents promoting differentiation but not proliferation of hematopoietic cells, like phorbol ester or both types of interferons (IFNs), activate Stat5 in promonocytic U937 cells. Both IFN types caused tyrosine phosphorylation and DNA binding of predominantly one Stat5 isoform (Stat5a) despite expression of both Stat5a and Stat5b proteins. Monocytic differentiation of U937 cells led to a strong decrease in IFN-gamma-mediated activation of Stat5 but not of Stat1. Transactivation of Stat5-target genes occurred in response to IFN-gamma, which activates both Stat5 and Stat1, but not in response to granulocyte-macrophage colony-stimulating factor, which activates only Stat5. Tyrosine phosphorylation of Stat5 is not generally part of the IFN response. IFN-gamma did not cause Stat5 activation in HeLa cells, despite the expression of both Stat5 isoforms at similar levels. By contrast, IFN-alpha caused tyrosine phosphorylation and DNA binding of exclusively the b isoform of Stat5, and activated Stat5b formed a DNA binding activity previously found in HeLa cells and designated IFN-alpha activation factor 2. Taken together, our results demonstrate that ligand binding of IFN receptors leads to an isoform-specific activation of Stat5 in a restricted number of cell lineages. Moreover, they suggest that Stat5 might be part of the differentiation response of myeloid cells.
Collapse
Affiliation(s)
- A Meinke
- Vienna Biocenter, Institute of Microbiology and Genetics, Austria
| | | | | | | | | |
Collapse
|
9
|
Eilers A, Georgellis D, Klose B, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Decker T. Differentiation-regulated serine phosphorylation of STAT1 promotes GAF activation in macrophages. Mol Cell Biol 1995; 15:3579-86. [PMID: 7791765 PMCID: PMC230595 DOI: 10.1128/mcb.15.7.3579] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gamma interferon (IFN-gamma), a macrophage-activating cytokine, modulates gene expression through the activity of a transcription factor designated IFN-gamma activation factor (GAF). GAF is formed after phosphorylation on tyrosine and dimerization of the 91-kDa protein STAT1. We have recently reported that differentiation of the promonocytic cell line U937 into monocytes increases the amount of cellular GAF after IFN-gamma treatment and at the same time increases the phosphorylation of STAT1. Here we show that activation of the JAK family kinases, which are instrumental in mediating STAT1 phosphorylation on tyrosine, did not increase upon monocytic U937 differentiation. Consistent with this finding, levels of STAT1 tyrosine phosphorylation were virtually identical in promonocytic and monocytic U937 cells. Analysis of STAT1 phosphoamino acids and mapping of phosphopeptides showed an IFN-gamma-dependent increase in Ser phosphorylation in differentiated cells. Analyses of STAT1 isoforms by two-dimensional gel electrophoresis demonstrated a differentiation-induced shift toward more acidic isoforms. All isoforms were equally sensitive to subsequent tyrosine phosphorylation, as indicated by a sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility shift typical for tyrosine-phosphorylated STAT1. Consistent with the importance of Ser phosphorylation for high-affinity binding to the IFN-gamma activation site sequence, phosphatase 2A treatment strongly reduced the formation of IFN-gamma activation site-GAF complexes in an electrophoretic mobility shift assay. Our data indicate that the activity of GAF is modulated by STAT1 serine kinases/phosphatases and suggest that this mechanism is employed in the developmental control of macrophage responsiveness to IFN-gamma.
Collapse
Affiliation(s)
- A Eilers
- Vienna Biocenter, Institute of Microbiology and Genetics, Austria
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R, Saris C, Tempst P, Ihle JN, Schindler C. Interleukin-3 signals through multiple isoforms of Stat5. EMBO J 1995; 14:1402-11. [PMID: 7537213 PMCID: PMC398225 DOI: 10.1002/j.1460-2075.1995.tb07126.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The interleukin (IL)-3 family of cytokines mediates its numerous effects on myeloid growth and maturation by binding a family of related receptors. It has been shown recently that IL-3 induces the activation of two distinct cytoplasmic signal transducing factors (STFs) that are likely to mediate the induction of immediate early genes. In immature myeloid cells, IL-3 activates STF-IL-3a, which comprises two tyrosine-phosphorylated DNA binding proteins of 77 and 80 kDa. In mature myeloid cells, IL-3 and granulocyte-macrophage colony-stimulating factor activate STF-IL-3b, which consists of a 94 and 96 kDa tyrosine-phosphorylated DNA binding protein. Peptide sequence data obtained from the purified 77 and 80 kDa proteins (p77 and p80) indicate that they are closely related but are encoded by distinct genes. Both peptide and nucleotide sequence data demonstrate that these two proteins are the murine homologs of ovine mammary gland factor (MGF)/Stat5. The peptide data also indicate that p77 and p80 are phosphorylated on tyrosine 699, a position analogous to the tyrosine that is phosphorylated in Stat1 and Stat2 in response to interferon. Additionally, antiserum raised against bacterially expressed p77/p80 recognizes the 94 and 96 kDa protein components of STF-IL-3b, suggesting that these may be additional isoforms of Stat5. These studies indicate that the IL-3 family of ligands is able to activate multiple isoforms of the signal transducing protein Stat5.
Collapse
Affiliation(s)
- M Azam
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fc gamma receptor. Mol Cell Biol 1994. [PMID: 8035786 DOI: 10.1128/mcb.14.8.5023] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Induction by gamma interferon (IFN-gamma) of the gene encoding the human high-affinity Fc gamma receptor (Fc gamma R1) in myeloid cells requires an IFN-gamma response region (GRR) and a myeloid cell-activating transcription element (MATE). GRR and MATE interact with factors to form, respectively, an IFN-gamma-activating complex (GIRE-BP), depending on the phosphorylation of the 91-kDa protein (subunit of ISGF3), and a cell-type-specific complex (MATE-BP). Although GIRE-BP is detected in cells of different origins after IFN-gamma treatment, the presence of MATE-BP was found to be restricted to B- and myeloid cell lines. Sequence analysis of a cDNA encoding a polypeptide recognizing specifically the MATE motif led to the identification of this product as the proto-oncogene PU.1/Spi-1, a transcriptional activator expressed in myeloid and B cells. Expression of this factor in nonhematopoietic cells allowed IFN-gamma-induced expression of a reporter gene under control of the GRR and MATE sequences. The presence of these motifs in other gene promoters indicates that the binding of PU.1/Spi-1 and IFN regulatory proteins to their respective motifs could be part of a general mechanism leading to cell-type-restricted and IFN-induced gene expression.
Collapse
|
12
|
Perez C, Coeffier E, Moreau-Gachelin F, Wietzerbin J, Benech PD. Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fc gamma receptor. Mol Cell Biol 1994; 14:5023-31. [PMID: 8035786 PMCID: PMC359021 DOI: 10.1128/mcb.14.8.5023-5031.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Induction by gamma interferon (IFN-gamma) of the gene encoding the human high-affinity Fc gamma receptor (Fc gamma R1) in myeloid cells requires an IFN-gamma response region (GRR) and a myeloid cell-activating transcription element (MATE). GRR and MATE interact with factors to form, respectively, an IFN-gamma-activating complex (GIRE-BP), depending on the phosphorylation of the 91-kDa protein (subunit of ISGF3), and a cell-type-specific complex (MATE-BP). Although GIRE-BP is detected in cells of different origins after IFN-gamma treatment, the presence of MATE-BP was found to be restricted to B- and myeloid cell lines. Sequence analysis of a cDNA encoding a polypeptide recognizing specifically the MATE motif led to the identification of this product as the proto-oncogene PU.1/Spi-1, a transcriptional activator expressed in myeloid and B cells. Expression of this factor in nonhematopoietic cells allowed IFN-gamma-induced expression of a reporter gene under control of the GRR and MATE sequences. The presence of these motifs in other gene promoters indicates that the binding of PU.1/Spi-1 and IFN regulatory proteins to their respective motifs could be part of a general mechanism leading to cell-type-restricted and IFN-induced gene expression.
Collapse
Affiliation(s)
- C Perez
- Unité 365 INSERM, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
13
|
A factor induced by differentiation signals in cells of the macrophage lineage binds to the gamma interferon activation site. Mol Cell Biol 1994. [PMID: 7507205 DOI: 10.1128/mcb.14.2.1364] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid transcriptional induction of genes in response to gamma interferon (IFN-gamma) is mediated by the IFN-gamma activation site (GAS) and its cognate protein, the IFN-gamma activation factor (GAF). We describe a GAS-associated, differentiation-induced factor (DIF) as a potential molecular link between the activities of IFN-gamma and of growth and differentiation factors. DIF DNA binding was activated by colony-stimulating factor 1 in murine macrophages and also during tetradecanoyl phorbol acetate-induced differentiation or IFN-gamma treatment in myeloid U937 cells. IFN-gamma activation of DIF decreased significantly upon monocytic differentiation. DIF binding to DNA was inhibited by antiphosphotyrosine antibodies and could be induced by treatment of U937 cells with vanadate. Unlike GAF, DIF-DNA complexes did not contain the 91-kDa protein (p91) from ISGF-3. DIF bound with high affinity to GAS from the promoters of the IFP 53/tryptophanyl-tRNA synthetase and Fc gamma RI genes, intermediate affinity to the Ly6A/E GAS, and low affinity to the guanylate-binding protein GAS. DIF may belong to a family of cytokine- or growth factor-induced factors binding with variable affinities to GAS-related elements: the interleukin-6-responsive acute-phase response factor associated with GAS from different IFN-inducible promoters but with a different preference of binding compared with DIF. The sis-inducible element of the c-fos promoter bound GAF but not DIF. However, the sis-inducible element could be changed by point mutation to compete for GAF and DIF binding. Our data show DIF to be a novel DNA-binding protein which is activated in response to differentiating signals. Moreover, they suggest that a family of cytokine- or growth factor-regulated proteins integrates and coordinates the responses to cytokines and to growth and differentiation factors by binding to GAS-related elements.
Collapse
|
14
|
Eilers A, Baccarini M, Horn F, Hipskind RA, Schindler C, Decker T. A factor induced by differentiation signals in cells of the macrophage lineage binds to the gamma interferon activation site. Mol Cell Biol 1994; 14:1364-73. [PMID: 7507205 PMCID: PMC358491 DOI: 10.1128/mcb.14.2.1364-1373.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rapid transcriptional induction of genes in response to gamma interferon (IFN-gamma) is mediated by the IFN-gamma activation site (GAS) and its cognate protein, the IFN-gamma activation factor (GAF). We describe a GAS-associated, differentiation-induced factor (DIF) as a potential molecular link between the activities of IFN-gamma and of growth and differentiation factors. DIF DNA binding was activated by colony-stimulating factor 1 in murine macrophages and also during tetradecanoyl phorbol acetate-induced differentiation or IFN-gamma treatment in myeloid U937 cells. IFN-gamma activation of DIF decreased significantly upon monocytic differentiation. DIF binding to DNA was inhibited by antiphosphotyrosine antibodies and could be induced by treatment of U937 cells with vanadate. Unlike GAF, DIF-DNA complexes did not contain the 91-kDa protein (p91) from ISGF-3. DIF bound with high affinity to GAS from the promoters of the IFP 53/tryptophanyl-tRNA synthetase and Fc gamma RI genes, intermediate affinity to the Ly6A/E GAS, and low affinity to the guanylate-binding protein GAS. DIF may belong to a family of cytokine- or growth factor-induced factors binding with variable affinities to GAS-related elements: the interleukin-6-responsive acute-phase response factor associated with GAS from different IFN-inducible promoters but with a different preference of binding compared with DIF. The sis-inducible element of the c-fos promoter bound GAF but not DIF. However, the sis-inducible element could be changed by point mutation to compete for GAF and DIF binding. Our data show DIF to be a novel DNA-binding protein which is activated in response to differentiating signals. Moreover, they suggest that a family of cytokine- or growth factor-regulated proteins integrates and coordinates the responses to cytokines and to growth and differentiation factors by binding to GAS-related elements.
Collapse
Affiliation(s)
- A Eilers
- Department of Cell and Microbiology, Vienna Biocenter, Austria
| | | | | | | | | | | |
Collapse
|
15
|
Plasman N, Metz G, Vray B. Interferon-gamma-activated immature macrophages exhibit a high Trypanosoma cruzi infection rate associated with a low production of both nitric oxide and tumor necrosis factor-alpha. Parasitol Res 1994; 80:554-8. [PMID: 7531849 DOI: 10.1007/bf00933002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Murine peritoneal macrophages (MPM) can be subdivided into two subpopulations of mature and immature macrophages. In contrast to mature macrophages, immature ones were highly susceptible to Trypanosoma cruzi infection. This highly susceptibility was associated with a low production of alpha 2-macroglobulin. Interferon-gamma (IFN-gamma)-activated immature macrophages also exhibited a higher infection rate than did IFN-gamma-activated mature ones. This higher rate of infection was associated with a low production of both nitric oxide (N = O) and tumor necrosis factor-alpha (TNF-alpha). In contrast, mature MPM showed a lower rate of infection and produced higher levels of N = O and TFN-alpha. Taken together, these results show a clear-cut difference in the course of T. cruzi infection in relation to the macrophage maturation state.
Collapse
Affiliation(s)
- N Plasman
- Laboratoire d'Immunologie (CP 615), Faculté de Médecine, Brussels, Belgium
| | | | | |
Collapse
|
16
|
Müller M, Laxton C, Briscoe J, Schindler C, Improta T, Darnell JE, Stark GR, Kerr IM. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO J 1993; 12:4221-8. [PMID: 7693454 PMCID: PMC413716 DOI: 10.1002/j.1460-2075.1993.tb06106.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutants in complementation group U3, completely defective in the response of all genes tested to interferons (IFNs) alpha and gamma, do not express the 91 and 84 kDa polypeptide components of interferon-stimulated gene factor 3 (ISGF3), a transcription factor known to play a primary role in the IFN-alpha response pathway. The 91 and 84 kDa polypeptides are products of a single gene. They result from differential splicing and differ only in a 38 amino acid extension at the C-terminus of the 91 kDa polypeptide. Complementation of U3 mutants with cDNA constructs expressing the 91 kDa product at levels comparable to those observed in induced wild-type cells completely restored the response to both IFN-alpha and -gamma and the ability to form ISGF3. Complementation with the 84 kDa component similarly restored the ability to form ISGF3 and, albeit to a lower level, the IFN-alpha response of all genes tested so far. It failed, however, to restore the IFN-gamma response of any gene analysed. The precise nature of the DNA motifs and combination of factors required for the transcriptional response of all genes inducible by IFN-alpha and -gamma remains to be established. The results presented here, however, emphasize the apparent general requirement of the 91 kDa polypeptide in the primary transcriptional response to both types of IFN.
Collapse
Affiliation(s)
- M Müller
- Imperial Cancer Research Fund Laboratories, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A 1993; 90:9730-4. [PMID: 7692452 PMCID: PMC47644 DOI: 10.1073/pnas.90.20.9730] [Citation(s) in RCA: 824] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS.
Collapse
Affiliation(s)
- C J Lowenstein
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | |
Collapse
|