1
|
Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J 2021; 40:e105740. [PMID: 34254686 PMCID: PMC8327950 DOI: 10.15252/embj.2020105740] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase II (RNA Pol II) speed or elongation rate, i.e., the number of nucleotides synthesized per unit of time, is a major determinant of transcriptome composition. It controls co-transcriptional processes such as splicing, polyadenylation, and transcription termination, thus regulating the production of alternative splice variants, circular RNAs, alternatively polyadenylated transcripts, or read-through transcripts. RNA Pol II speed itself is regulated in response to intra- and extra-cellular stimuli and can in turn affect the transcriptome composition in response to these stimuli. Evidence points to a potentially important role of transcriptome composition modification through RNA Pol II speed regulation for adaptation of cells to a changing environment, thus pointing to a function of RNA Pol II speed regulation in cellular physiology. Analyzing RNA Pol II speed dynamics may therefore be central to fully understand the regulation of physiological processes, such as the development of multicellular organisms. Recent findings also raise the possibility that RNA Pol II speed deregulation can be detrimental and participate in disease progression. Here, we review initial and current approaches to measure RNA Pol II speed, as well as providing an overview of the factors controlling speed and the co-transcriptional processes which are affected. Finally, we discuss the role of RNA Pol II speed regulation in cell physiology.
Collapse
Affiliation(s)
- Lisa Muniz
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Estelle Nicolas
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Didier Trouche
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| |
Collapse
|
2
|
Liu X, Freitas J, Zheng D, Oliveira MS, Hoque M, Martins T, Henriques T, Tian B, Moreira A. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2017; 23:1807-1816. [PMID: 28851752 PMCID: PMC5689002 DOI: 10.1261/rna.062661.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Alternative polyadenylation (APA) is a mechanism that generates multiple mRNA isoforms with different 3'UTRs and/or coding sequences from a single gene. Here, using 3' region extraction and deep sequencing (3'READS), we have systematically mapped cleavage and polyadenylation sites (PASs) in Drosophila melanogaster, expanding the total repertoire of PASs previously identified for the species, especially those located in A-rich genomic sequences. Cis-element analysis revealed distinct sequence motifs around fly PASs when compared to mammalian ones, including the greater enrichment of upstream UAUA elements and the less prominent presence of downstream UGUG elements. We found that over 75% of mRNA genes in Drosophila melanogaster undergo APA. The head tissue tends to use distal PASs when compared to the body, leading to preferential expression of APA isoforms with long 3'UTRs as well as with distal terminal exons. The distance between the APA sites and intron location of PAS are important parameters for APA difference between body and head, suggesting distinct PAS selection contexts. APA analysis of the RpII215C4 mutant strain, which harbors a mutant RNA polymerase II (RNAPII) with a slower elongation rate, revealed that a 50% decrease in transcriptional elongation rate leads to a mild trend of more usage of proximal, weaker PASs, both in 3'UTRs and in introns, consistent with the "first come, first served" model of APA regulation. However, this trend was not observed in the head, suggesting a different regulatory context in neuronal cells. Together, our data expand the PAS collection for Drosophila melanogaster and reveal a tissue-specific effect of APA regulation by RNAPII elongation rate.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Jaime Freitas
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Marta S Oliveira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Torcato Martins
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Telmo Henriques
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-013 Porto, Portugal
| |
Collapse
|
3
|
Disparity between microRNA levels and promoter strength is associated with initiation rate and Pol II pausing. Nat Commun 2014; 4:2118. [PMID: 23831825 DOI: 10.1038/ncomms3118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are transcribed by RNA polymerase II but the transcriptional features influencing their synthesis are poorly defined. Here we report that a TATA box in microRNA and protein-coding genes is associated with increased sensitivity to slow RNA polymerase II. Promoters driven by TATA box or NF-κB elicit high re-initiation rates, but paradoxically lower microRNA levels. MicroRNA synthesis becomes more productive by decreasing the initiation rate, but less productive when the re-initiation rate increases. This phenomenon is associated with a delay in miR-146a induction by NF-κB. Finally, we demonstrate that microRNAs are remarkably strong pause sites. Our findings suggest that lower efficiency of microRNA synthesis directed by TATA box or NF-κB is a consequence of frequent transcription initiations that lead to RNA polymerase II crowding at pause sites, thereby increasing the chance of collision and premature termination. These findings highlight the importance of the transcription initiation mechanism for microRNA synthesis, and have implications for TATA-box promoters in general.
Collapse
|
4
|
Stump AD, Jablonski SE, Bouton L, Wilder JA. Distribution and mechanism of α-amanitin tolerance in mycophagous Drosophila (Diptera: Drosophilidae). ENVIRONMENTAL ENTOMOLOGY 2011; 40:1604-1612. [PMID: 22217779 DOI: 10.1603/en11136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many mycophagous species of Drosophila can tolerate the mushroom poison α-amanitin in wild mushrooms and in artificial diet. We conducted feeding assays with sixteen Drosophila species and α-amanitin in artificial diet to better determine the phylogenetic distribution of this tolerance. For eight tolerant and one related susceptible species, we sequenced the gene encoding the large subunit of RNA Polymerase II, which is the target site of α-amanitin. We found no differences in the gene that could account for differences in susceptibility to the toxin. We also conducted feeding assays in which α-amanitin was combined with chemical inhibitors of cytochrome P450s or glutathione S-transferases (GSTs) in artificial diet to determine if either of these enzyme families is involved in tolerance to α-amanitin. We found that an inhibitor of GSTs did not reduce tolerance to α-amanitin, but that an inhibitor of cytochrome P450s reduced tolerance in several species. It is possible that the same cytochrome P450 activity that produces tolerance of α-amanitin might produce tolerance of other mushroom toxins as well. If so, a general detoxification mechanism based on cytochrome P450s might answer the question of how tolerance to α-amanitin arose in mycophagous Drosophila when this toxin is found in relatively few mushrooms.
Collapse
Affiliation(s)
- Aram D Stump
- Department of Biology, Science Bldg., Room 103, Adelphi University, Garden City, New York 11530, USA.
| | | | | | | |
Collapse
|
5
|
Amino Acid Substitutions in the Caenorhabditis elegans RNA Polymerase II Large Subunit AMA-1/RPB-1 that Result in α-Amanitin Resistance and/or Reduced Function. G3-GENES GENOMES GENETICS 2011; 1:411-6. [PMID: 22384351 PMCID: PMC3276164 DOI: 10.1534/g3.111.000968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022]
Abstract
Mutations in the Caenorhabditis elegans RNA polymerase II AMA-1/RPB-1 subunit that cause α-amanitin resistance and/or developmental defects were isolated previously. We identified 12 of these mutations and mapped them onto the Saccharomyces cerevisiae RPB1 structure to provide insight into AMA-1 regions that are essential for development in a multicellular organism.
Collapse
|
6
|
RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J 2011; 30:2431-44. [PMID: 21602789 DOI: 10.1038/emboj.2011.156] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 04/11/2011] [Indexed: 01/13/2023] Open
Abstract
Regulated alternative polyadenylation is an important feature of gene expression, but how gene transcription rate affects this process remains to be investigated. polo is a cell-cycle gene that uses two poly(A) signals in the 3' untranslated region (UTR) to produce alternative messenger RNAs that differ in their 3'UTR length. Using a mutant Drosophila strain that has a lower transcriptional elongation rate, we show that transcription kinetics can determine alternative poly(A) site selection. The physiological consequences of incorrect polo poly(A) site choice are of vital importance; transgenic flies lacking the distal poly(A) signal cannot produce the longer transcript and die at the pupa stage due to a failure in the proliferation of the precursor cells of the abdomen, the histoblasts. This is due to the low translation efficiency of the shorter transcript produced by proximal poly(A) site usage. Our results show that correct polo poly(A) site selection functions to provide the correct levels of protein expression necessary for histoblast proliferation, and that the kinetics of RNA polymerase II have an important role in the mechanism of alternative polyadenylation.
Collapse
|
7
|
Kavi HH, Birchler JA. Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin 2009; 2:15. [PMID: 19917092 PMCID: PMC2785806 DOI: 10.1186/1756-8935-2-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 11/16/2009] [Indexed: 01/17/2023] Open
Abstract
Background Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in Schizosaccharomyces pombe have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on Drosophila heterochromatin structure. Results The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (dcr-2, ago1, ago2, piwi, Lip [D], aub and hls). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of white-mottled4h position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using Drosophila embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites. Conclusion Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in Drosophila. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in Drosophila.
Collapse
Affiliation(s)
- Harsh H Kavi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
8
|
Glaser ND, Lukyanenko YO, Wang Y, Wilson GM, Rogers TB. JNK activation decreases PP2A regulatory subunit B56alpha expression and mRNA stability and increases AUF1 expression in cardiomyocytes. Am J Physiol Heart Circ Physiol 2006; 291:H1183-92. [PMID: 16603688 PMCID: PMC1564198 DOI: 10.1152/ajpheart.01162.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A central feature of heart disease is a molecular remodeling of signaling pathways in cardiac myocytes. This study focused on novel molecular elements of MAPK-mediated alterations in the pattern of gene expression of the protein phosphatase 2A (PP2A). In an established model of sustained JNK activation, a 70% decrease in expression of the targeting subunit of PP2A, B56alpha, was observed in either neonatal or adult cardiomyocytes. This loss in protein abundance was accompanied by a decrease of 69% in B56alpha mRNA steady-state levels. Given that the 3'-untranslated region of this transcript contains adenylate-uridylate-rich elements known to regulate mRNA degradation, experiments explored the notion that instability of B56alpha mRNA accounts for the response. mRNA time-course analyses with real-time PCR methods showed that B56alpha transcript was transformed from a stable (no significant decay over 1 h) to a labile form that rapidly degraded within minutes. These results were supported by complementary experiments that revealed that the RNA-binding protein AUF1, known to destabilize target mRNA, was increased fourfold in JNK-activated cells. A variety of other stress-related stimuli, such as p38 MAPK activation and phorbol ester, upregulated AUF1 expression in cultured cardiac cells as well. In addition, gel mobility shift assays demonstrated that p37AUF1 binds with nanomolar affinity to segments of the B56alpha 3'-untranslated region. Thus these studies provide new evidence that signaling-induced mRNA instability is an important mechanism that underlies the changes in the pattern of gene expression evoked by stress-activated pathways in cardiac cells.
Collapse
Affiliation(s)
- Nicole D. Glaser
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Yevgeniya O. Lukyanenko
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Yibin Wang
- Departments of Anesthesiology and Medicine, University of California at Los Angeles, Los Angeles, California
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Terry B. Rogers
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
- Institute of Molecular Cardiology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201. Tel: 410-706-3169; Fax: 410-706-6676;
| |
Collapse
|
9
|
Titterington JS, Nun TK, Passarelli AL. Functional dissection of the baculovirus late expression factor-8 gene: sequence requirements for late gene promoter activation. J Gen Virol 2003; 84:1817-1826. [PMID: 12810876 DOI: 10.1099/vir.0.19083-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The late expression factor-8 gene (lef-8) of Autographa californica M nucleopolyhedrovirus encodes the largest subunit of the virally encoded DNA-directed RNA polymerase specific for the transcription of late and very late viral genes. The sequence of lef-8 predicts a C-terminal motif of 13 amino acids that is conserved in other polymerases. Detailed mutagenesis throughout lef-8 was performed, including this C-terminal motif, to define sequences required for late promoter activation. It was found that the conserved C-terminal motif was critical for late gene expression. In addition, regions throughout the entire lef-8-encoding sequence were important for optimal function, suggesting complex protein-protein and protein-DNA interrelationships in the late gene-specific viral transcriptosome.
Collapse
Affiliation(s)
- Jane S Titterington
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506-4901, USA
| | - Tamara K Nun
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506-4901, USA
| | - A Lorena Passarelli
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506-4901, USA
| |
Collapse
|
10
|
Mortin MA. Mutational Analysis of Drosophila RNA Polymerase II. Methods Enzymol 2003; 371:615-29. [PMID: 14712733 DOI: 10.1016/s0076-6879(03)71046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mark A Mortin
- Laboratory of Molecular Genetics, NICHD, NIH, Building 6B, Room 3B-331, Bethesda, Maryland 20892-4255, USA
| |
Collapse
|
11
|
Xu J, Teran-Garcia M, Park JH, Nakamura MT, Clarke SD. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem 2001; 276:9800-7. [PMID: 11124951 DOI: 10.1074/jbc.m008973200] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reduction in hepatic abundance of sterol regulatory element binding protein-1 (SREBP-1) mRNA and protein associated with the ingestion of polyunsaturated fatty acids (PUFA) appears to be largely responsible for the PUFA-dependent inhibition of lipogenic gene transcription. Our initial studies indicated that the induction of SREBP-1 expression by insulin and glucose was blocked by PUFA. Nuclear run-on assays suggested PUFA reduced SREBP-1 mRNA by post-transcriptional mechanisms. In this report we demonstrate that PUFA enhance the decay of both SREBP-1a and -1c. When rat hepatocytes in monolayer culture were treated with albumin-bound 20:4(n-6) or 20:5(n-3) the half-life of total SREBP-1 mRNA was reduced by 50%. Ribonuclease protection assays revealed that the decay of SREBP-1c mRNA was more sensitive to PUFA than was SREBP-1a, i.e. the half-life of SREBP-1c and -1a was reduced from 10.0 to 4.6 h and 11.6 to 7.6 h, respectively. Interestingly, treating the hepatocytes with the translational inhibitor, cycloheximide, prevented the PUFA-dependent decay of SREBP-1. This suggests that SREBP-1 mRNA may need to undergo translation to enter the decay process, or that the decay process requires the synthesis of a rapidly turning over protein. Although the mechanism by which PUFA accelerate SREBP-1 mRNA decay remains to be determined, cloning and sequencing of the 3'-untranslated region for the rat SREBP-1 transcript revealed the presence of an A-U-rich region that is characteristic of a destablizing element.
Collapse
Affiliation(s)
- J Xu
- Division of Nutritional Sciences, and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712, USA
| | | | | | | | | |
Collapse
|
12
|
Croan DG, Ellis J. The Leishmania major RNA polymerase II largest subunit lacks a carboxy-terminus heptad repeat structure and its encoding gene is linked with the calreticulin gene. Protist 2000; 151:57-68. [PMID: 10896133 DOI: 10.1078/1434-4610-00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene encoding the RNA polymerase II largest subunit (RPOIILS) has been isolated and sequenced from the kinetoplastid protozoan, Leishmania (Leishmania) major. The RPOIILS gene was shown to be present as a single copy and is composed of an uninterrupted open reading frame of 4.99 kb, specifying a protein 1663 aa in length with a predicted molecular mass of approximately 185 kDa. The carboxy terminus domain (CTD) of the RPOIILS from L. (L.) major, typical of the more evolutionary primitive protozoa, lacked a heptad repeat structure which is present in higher eukaryotes and some other protozoan phyla. Comparison of the predicted aa composition of the CTD from a diverse range of eukaryotic species revealed the abundance of Ser and Pro residues as the only discernible evolutionary conservative feature. A putative ATG start codon for an additional expressed sequence was located 1.1 kb downstream of the L. (L.) major RPOIILS gene stop codon. Nucleic acid database searches revealed the identity of this gene as that encoding the calcium binding protein calreticulin (CLT). The close proximity of the RPOIILS and CLT genes in L. (L.) major raises the possibility that these genes are transcribed as part of the same polycistronic unit.
Collapse
Affiliation(s)
- D G Croan
- Molecular Parasitology Unit, Faculty of Science, University of Technology, Sydney, NSW, Australia
| | | |
Collapse
|
13
|
Wlassoff WA, Kimura M, Ishihama A. Functional organization of two large subunits of the fission yeast Schizosaccharomyces pombe RNA polymerase II. Location of the catalytic sites. J Biol Chem 1999; 274:5104-13. [PMID: 9988759 DOI: 10.1074/jbc.274.8.5104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytically competent transcription complex of RNA polymerase II from the fission yeast Schizosaccharomyces pombe was affinity labeled with photoreactive nucleotide analogues incorporated at 3' termini of nascent RNA chains. To locate the catalytic site for RNA polymerization, the labeled subunits were separated by SDS-polyacrylamide gel electrophoresis and subjected to partial proteolysis. After microsequencing of proteolytic fragments, a complex multidomain organization was indicated for both of the two large subunits, Rpb1 and Rpb2, with the most available sites of proteolysis in junctions between the conserved sequences among RNA polymerase from both prokaryotes and eukaryotes. The cross-linking studies indicate the following: (i) the 3' termini of growing RNA chains are most extensively cross-linked to the second largest subunit Rpb2 between amino acids 825 and 994; (ii) the regions 298-535 of Rpb2 and 614-917 of Rpb1 are cross-linked to less extents, suggesting that these regions are situated in the vicinity of the catalytic site. All these regions include the conserved sequences of RNA polymerases, and the catalytic site of Rpb2 belongs to an NH2-terminal part of its conserved sequence H.
Collapse
Affiliation(s)
- W A Wlassoff
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
14
|
Affiliation(s)
- J S Malter
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinic, Madison 53792, USA
| |
Collapse
|
15
|
Rajagopalan LE, Malter JS. Regulation of eukaryotic messenger RNA turnover. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:257-86. [PMID: 9187056 DOI: 10.1016/s0079-6603(08)61007-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have demonstrated the existence of multiple mRNA binding proteins that interact specifically with defined regions in posttranscriptionally regulated mRNAs. These domains appear to be destabilizers whose function can be attenuated by the interaction with the specific binding proteins. Thus, the ability to alter mRNA decay rates on demand, given different environmental or intracellular conditions, appears to be mediated by controlling the localization, activity, and overall function of the cognate binding protein. Based on our limited experience, we predict that most, if not all, of similarly regulated mRNAs will ultimately be found to interact with regulatory mRNA binding proteins. Under conditions whereby the mRNA binding proteins are constitutively active (e.g., tumor cell lines), abnormal mRNA decay will result, with accumulation and overtranslation. Such appears to be the case for cytokines and possibly amyloid protein precursor mRNAs in cancer and Alzheimer's disease, respectively. Conversely, mutagenesis of these critical 3' untranslated region elements will likely have comparable deleterious effects on the regulation of gene expression. To the extent that such derangements exist in human disease, attention to understanding the mechanistic detail at this level may provide insights into the development of appropriate therapeutics or treatment strategies.
Collapse
Affiliation(s)
- L E Rajagopalan
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison Hospitals and Clinics 53792, USA
| | | |
Collapse
|
16
|
Quon DV, Delgadillo MG, Johnson PJ. Transcription in the early diverging eukaryote Trichomonas vaginalis: an unusual RNA polymerase II and alpha-amanitin-resistant transcription of protein-coding genes. J Mol Evol 1996; 43:253-62. [PMID: 8703091 DOI: 10.1007/bf02338833] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have examined transcription in an early diverging eukaryote by analyzing the effect of the fungus-derived toxin alpha-amanitin on the transcription of protein-coding genes of the protist Trichomonas vaginalis. In contrast to that typical in eukaryotes, the RNA polymerase that transcribes T. vaginalis protein-coding genes is relatively resistant to alpha-amanitin (50% inhibition = 250 microg alpha-amanitin/ml). We have also characterized the gene encoding the largest subunit of RNA polymerase II, the subunit that binds alpha-amanitin. This protein is 41% identical to the mouse RNA polymerase II. Sequence analysis of the 50-amino-acid region thought to bind alpha-amanitin shows that this region of the trichomonad RNA polymerase II lacks many of the conserved amino acids present in the putative binding site, in agreement with the observed insensitivity to this inhibitor. Similar to other RNA polymerase IIs analyzed from ancient eukaryotes, the T. vaginalis RNA polymerase II lacks the typical heptapeptide (Tyr-Ser-Pro-Thr-Ser-Pro-Ser) repeat carboxyl-terminal domain (CTD) that is a hallmark of higher eukaryotic RNA polymerase IIs. The trichomonad enzyme, however, does contain a short modified CTD that is rich in the amino acid residues that compose the repeat. These data suggest that T. vaginalis protein-coding genes are transcribed by a RNA polymerase II that is relatively insensitive to alpha-amanitin and that differs from typical eukaryotic RNA polymerase IIs as it lacks a heptapeptide repeated CTD.
Collapse
Affiliation(s)
- D V Quon
- Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles, 90095-1747, USA
| | | | | |
Collapse
|
17
|
Chu G, Mayne L. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy: do the genes explain the diseases? Trends Genet 1996; 12:187-92. [PMID: 8984734 DOI: 10.1016/0168-9525(96)10021-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three distinct human syndromes associated with sensitivity to ultraviolet radiation. We review evidence that these syndromes overlap with each other and arise from mutations in genes involved in nucleotide-excision repair and RNA transcription. Attempts have been made to explain the syndromes in terms of defects in repair and transcription. These two biochemical pathways do not easily account for all the features of the syndromes. Therefore, we propose a third pathway, in which the syndromes are due, in part, to defects in a demethylation mechanism involving the excision of methylated cytosine. Perturbation of demethylation could affect the developmentally regulated expression of some genes.
Collapse
Affiliation(s)
- G Chu
- Department of Medicine, Stanford University Medical Center, CA 94305, USA.
| | | |
Collapse
|
18
|
Chen Y, Chafin D, Price DH, Greenleaf AL. Drosophila RNA Polymerase II Mutants That Affect Transcription Elongation. J Biol Chem 1996. [DOI: 10.1074/jbc.271.11.5993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Thuillier V, Brun I, Sentenac A, Werner M. Mutations in the alpha-amanitin conserved domain of the largest subunit of yeast RNA polymerase III affect pausing, RNA cleavage and transcriptional transitions. EMBO J 1996; 15:618-29. [PMID: 8599945 PMCID: PMC449980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The alpha-amanitin domain or domain f of the largest subunit of RNA polymerases is one of the most conserved of these enzymes. We have found that the C-terminal part of domain f can be swapped between yeast RNA polymerase II and III. An extensive mutagenesis of domain f of C160, the largest subunit of RNA polymerase III, was carried out to better define its role and understand the mechanism through which C160 participates in transcription. One mutant enzyme, C160-270, showed much reduced transcription of a non-specific template at low DNA concentrations. Abortive synthesis of trinucleotides in a dinucleotide-primed reaction proceeded at roughly wild-type levels, indicating that the mutation did not affect the formation of the first phosphodiester bond, but rather the transition from abortive initiation to processive elongation. In specific transcription assays, on the SUP4 tRNA gene, pausing was extended but the rate of RNA elongation between pause sites was not affected. Finally, the rate of cleavage of nascent RNA transcripts by halted mutant RNA polymerase was increased approximately 10-fold. We propose that the domain f mutation affects the transition between two transcriptional modes, one being adopted during abortive transcription and at pause sites, the other during elongation between pause sites.
Collapse
Affiliation(s)
- V Thuillier
- Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
20
|
Abstract
Interference between different classes of RNA polymerase II alleles causes a mutant phenotype called the "Ubx effect" that resembles one seen in flies haploinsufficient for the transcription factor, Ultrabithorax (Ubx). Flies carrying the mutation in the largest subunit of Drosophila RNA polymerase II, RpII215(4), display the Ubx effect when heterozygous as in RpII215(4)/+ but not when homozygous mutant or wild type. In this report we demonstrate that the interaction between alleles in different classes of polymerase occurs even in the absence of transcription by the wild-type polymerase. We utilized the resistance to the transcriptional inhibitor alpha-amanitin conferred by RpII215(4) to show that RpII215(4)/+ flies raised on alpha-amanitin-containing food still show the Ubx effect and are indistinguishable from flies raised on normal food. We demonstrate using HPLC that the intracellular concentration of alpha-amanitin in the developing larvae is sufficient to inhibit transcription by alpha-amanitin-sensitive polymerase. Furthermore, fluorescein-labeled alpha-amanitin accumulates in imaginal discs, which are the precursor cells for the tissue showing the homeotic transformation in adults. We conclude that the interaction between different classes of RNA polymerase II alleles resulting in the Ubx effect occurs prior to the block in transcription caused by alpha-amanitin.
Collapse
Affiliation(s)
- L P Burke
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
21
|
Jin DJ, Zhou YN. Mutational analysis of structure-function relationship of RNA polymerase in Escherichia coli. Methods Enzymol 1996; 273:300-19. [PMID: 8791620 DOI: 10.1016/s0076-6879(96)73027-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D J Jin
- Laboratory of Molecular Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
Severinov K, Markov D, Severinova E, Nikiforov V, Landick R, Darst SA, Goldfarb A. Streptolydigin-resistant mutants in an evolutionarily conserved region of the beta' subunit of Escherichia coli RNA polymerase. J Biol Chem 1995; 270:23926-9. [PMID: 7592584 DOI: 10.1074/jbc.270.41.23926] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations conferring streptolydigin resistance onto Escherichia coli RNA polymerase have been found exclusively in the beta subunit (Heisler, L. M., Suzuki, H., Landick, R., and Gross, C. A. (1993) J. Biol. Chem. 268, 25369-25375). We report here the isolation of a streptolydigin-resistant mutation in the E. coli rpoC gene, encoding the beta' subunit. The mutation is the Phe793-->Ser substitution, which occurred in an evolutionarily conserved segment of the beta' subunit. The homologous segment in the eukaryotic RNA polymerase II largest subunit harbors mutations conferring alpha-amanitin resistance. Both streptolydigin and alpha-amanitin are inhibitors of transcription elongation. Thus, the two antibiotics may inhibit transcription in their respective systems by a similar mechanism, despite their very different chemical nature.
Collapse
Affiliation(s)
- K Severinov
- Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end.
Collapse
Affiliation(s)
- J Ross
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706, USA
| |
Collapse
|
24
|
Abstract
This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end.
Collapse
Affiliation(s)
- J Ross
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706, USA
| |
Collapse
|
25
|
Brickey WJ, Greenleaf AL. Functional studies of the carboxy-terminal repeat domain of Drosophila RNA polymerase II in vivo. Genetics 1995; 140:599-613. [PMID: 7498740 PMCID: PMC1206638 DOI: 10.1093/genetics/140.2.599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To understand the in vivo function of the unique and conserved carboxy-terminal repeat domain (CTD) of RNA polymerase II largest subunit (RpII215), we have studied RNA polymerase II biosynthesis, activity and genetic function in Drosophila RpII215 mutants that possessed all (C4), half (W81) or none (IIt) of the CTD repeats. We have discovered that steady-state mRNA levels from transgenes encoding a fully truncated, CTD-less subunit (IIt) are essentially equal to wild-type levels, whereas the levels of the CTD-less subunit itself and the amount of polymerase harboring it (Pol IIT) are significantly lower than wild type. In contrast, for the half-CTD mutant (W81), steady-state mRNA levels are somewhat lower than for wild type or IIt, while W81 subunit and polymerase amounts are much less than wild type. Finally, we have tested genetically the ability of CTD mutants to complement (rescue) partially functional RpII215 alleles and have found that IIt fails to complement whereas W81 complements partially to completely. These results suggest that removal of the entire CTD renders polymerase completely defective in vivo, whereas eliminating half of the CTD results in a polymerase with significant in vivo activity.
Collapse
Affiliation(s)
- W J Brickey
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
26
|
Bartolomei MS, Corden JL. Clustered alpha-amanitin resistance mutations in mouse. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:778-82. [PMID: 7898449 DOI: 10.1007/bf00290727] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the identification of three new alpha-amanitin resistance mutations in the gene encoding the largest subunit of mouse RNA polymerase II (RPII215). These mutations are clustered in a region of the largest subunit that is important for transcription elongation. This same domain has been identified as the site of alpha-amanitin resistance mutations in both Drosophila and Caenarhabditis elegans. The sequences encompassing this cluster of mutations are highly conserved among RNA polymerase II genes from a number of species, including those that are naturally more resistant to alpha-amanitin suggesting that this region of the largest subunit is critical for a conserved catalytic function. The mutations reported here change leucine 745 to phenylalanine, arginine 749 to proline, or isoleucine 779 to phenylalanine. Together with the previously reported asparagine 792 to aspartate substitution these mutations define a potential alpha-amanitin binding pocket in a region of the mouse subunit that could be involved in translocation of polymerase during elongation.
Collapse
Affiliation(s)
- M S Bartolomei
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
27
|
Skantar AM, Greenleaf AL. Identifying a transcription factor interaction site on RNA polymerase II. Gene Expr 1995; 5:49-69. [PMID: 7488860 PMCID: PMC6138034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/1994] [Accepted: 03/09/1995] [Indexed: 01/25/2023]
Abstract
We have generated a series of fusion proteins carrying portions of subunit IIc, the second largest subunit of Drosophila RNA polymerase I, and have used them in a domain interference assay to identify a fragment of the IIc subunit that carries the binding site for a basal transcription factor. Fusion proteins carrying a subunit IIc fragment spanning residues Ala519-Gly992 strongly inhibit promoter-driven transcription in both unfractionated nuclear extracts and in reconstituted systems. The same fusion proteins similarly inhibit dTFIIF stimulation of Pol II elongation on dC-tailed templates, suggesting that the IIc(A519-G992) fragment, which carries conserved regions D-H, interferes with transcription by binding to dTFIIF. Finally, dTFIIF can be specifically cross-linked to a GST-IIc(A519-G992) fusion protein or to subunit IIc in intact Pol II.
Collapse
Affiliation(s)
- A M Skantar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Passarelli AL, Todd JW, Miller LK. A baculovirus gene involved in late gene expression predicts a large polypeptide with a conserved motif of RNA polymerases. J Virol 1994; 68:4673-8. [PMID: 8207843 PMCID: PMC236397 DOI: 10.1128/jvi.68.7.4673-4678.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have identified and sequenced a novel baculovirus gene, late expression factor eight gene (lef-8), of Autographa californica nuclear polyhedrosis virus that is necessary for efficient expression from late and very late virus gene promoters in a transient expression assay. The predicted gene product, LEF-8, has a molecular mass of 102 kDa and contains a conserved sequence motif, GXKX4HGQ/NKG, found in DNA-directed RNA polymerases throughout the animal, plant, and microbial kingdoms.
Collapse
Affiliation(s)
- A L Passarelli
- Department of Genetics, University of Georgia, Athens 30602
| | | | | |
Collapse
|