1
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
2
|
Canzler S, Stadler PF, Hertel J. U6 snRNA intron insertion occurred multiple times during fungi evolution. RNA Biol 2016; 13:119-27. [PMID: 26828373 DOI: 10.1080/15476286.2015.1132139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
U6 small nuclear RNAs are part of the splicing machinery. They exhibit several unique features setting them appart from other snRNAs. Reports of introns in structured non-coding RNAs have been very rare. U6 genes, however, were found to be interrupted by an intron in several Schizosaccharomyces species and in 2 Basidiomycota. We conducted a homology search across 147 currently available fungal genome and identified the U6 genes in all but 2 of them. A detailed comparison of their sequences and predicted secondary structures showed that intron insertion events in the U6 snRNA were much more common in the fungal lineage than previously thought. Their positional distribution across the entire mature snRNA strongly suggests a large number of independent events. All the intron sequences reported here show canonical splice site and branch site motifs indicating that they require the splicesomal pathway for their removal.
Collapse
Affiliation(s)
- Sebastian Canzler
- a Bioinformatics Group , Department of Computer Science,and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany
| | - Peter F Stadler
- a Bioinformatics Group , Department of Computer Science,and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany.,b Computational EvoDevo Group , Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany.,c LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig , Germany.,d Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22 , D-04103 Leipzig , Germany.,e Fraunhofer Institut für Zelltherapie und Immunologie - IZI Perlickstraße 1 , D-04103 Leipzig , Germany.,f Department of Theoretical Chemistry , University of Vienna, Währingerstraße 17, A-1090 Wien , Austria.,g Center for non-coding RNA in Technology and Health , University of Copenhagen, Grønnegårdsvej 3 , DK-1870 Frederiksberg C, Denmark.,h Santa Fe Institute; 1399 Hyde Park Rd. ; Santa Fe ; NM 87501 , USA
| | - Jana Hertel
- a Bioinformatics Group , Department of Computer Science,and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18 , D-04107 Leipzig , Germany.,i Department of Proteomics , Helmholtz Centre for Environmental Research - UFZ , Permoserstrabe 15, 04318 Leipzig , Germany
| |
Collapse
|
3
|
López MD, Alm Rosenblad M, Samuelsson T. Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Res 2008; 36:3001-10. [PMID: 18390578 PMCID: PMC2396436 DOI: 10.1093/nar/gkn142] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The RNA molecules of the spliceosome are critical for specificity and catalysis during splicing of eukaryotic pre-mRNA. In order to examine the evolution and phylogenetic distribution of these RNAs, we analyzed 149 eukaryotic genomes representing a broad range of phylogenetic groups. RNAs were predicted using high-sensitivity local alignment methods and profile HMMs in combination with covariance models. The results provide the most comprehensive view so far of the phylogenetic distribution of spliceosomal RNAs. RNAs were predicted in many phylogenetic groups where these RNA were not previously reported. Examples are RNAs of the major (U2-type) spliceosome in all fungal lineages, in lower metazoa and many protozoa. We also identified the minor (U12-type) spliceosomal U11 and U6atac RNAs in Acanthamoeba castellanii, where U12 spliceosomal RNA as well as minor introns were reported recently. In addition, minor-spliceosome-specific RNAs were identified in a number of phylogenetic groups where previously such RNAs were not observed, including the nematode Trichinella spiralis, the slime mold Physarum polycephalum and the fungal lineages Zygomycota and Chytridiomycota. The detailed map of the distribution of the U12-type RNA genes supports an early origin of the minor spliceosome and points to a number of occasions during evolution where it was lost.
Collapse
Affiliation(s)
- Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, Box 440 and Department of Cell and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Magnus Alm Rosenblad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, Box 440 and Department of Cell and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, Box 440 and Department of Cell and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- *To whom correspondence should be addressed. +46 31 786 3468+46 31 41 6108
| |
Collapse
|
4
|
Smith DJ, Query CC, Konarska MM. trans-splicing to spliceosomal U2 snRNA suggests disruption of branch site-U2 pairing during pre-mRNA splicing. Mol Cell 2007; 26:883-90. [PMID: 17588521 PMCID: PMC1973159 DOI: 10.1016/j.molcel.2007.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/23/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved branch site-binding region of U2 is used in trans as a 5' splice site for both steps of splicing in vivo. Formation of this product occurs in functional spliceosomes assembled on reporter genes whose 5' splice sites are predicted to bind poorly at the spliceosome catalytic center. Multiple spatially disparate splice sites in U2 can be used, calling into question both the fate of its pairing to the branch site and the details of its role in splicing catalysis.
Collapse
Affiliation(s)
| | - Charles C. Query
- Dept. of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
5
|
Ragg H, Lokot T, Kamp PB, Atchley WR, Dress A. Vertebrate serpins: construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. Mol Biol Evol 2001; 18:577-84. [PMID: 11264410 DOI: 10.1093/oxfordjournals.molbev.a003838] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A combination of three independent biological features, genomic organization, diagnostic amino acid sites, and rare indels, was used to elucidate the phylogeny of the vertebrate serpin (serine protease inhibitor) superfamily. A strong correlation between serpin gene families displaying (1) a conserved exon-intron pattern and (2) family-specific combinations of amino acid residues at specific sites suggests that present-day vertebrates encompass six serpin gene families which evolved from primordial genes by massive intron insertion before or during early vertebrate radiation. Introns placed at homologous positions in the gene sequences in combination with diagnostic sequence characters may also constitute a reliable kinship indicator for other protein superfamilies.
Collapse
Affiliation(s)
- H Ragg
- Faculty of Technology and Faculty of Mathematics, University of Bielefeld, Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
6
|
Bhattacharya D, Lutzoni F, Reeb V, Simon D, Nason J, Fernandez F. Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. Mol Biol Evol 2000; 17:1971-84. [PMID: 11110913 DOI: 10.1093/oxfordjournals.molbev.a026298] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spliceosomal (pre-mRNA) introns have previously been found in eukaryotic protein-coding genes, in the small nuclear RNAs of some fungi, and in the small- and large-subunit ribosomal DNA genes of a limited number of ascomycetes. How the majority of these introns originate remains an open question because few proven cases of recent and pervasive intron origin have been documented. We report here the widespread occurrence of spliceosomal introns (69 introns at 27 different sites) in the small- and large-subunit nuclear-encoded rDNA of lichen-forming and free-living members of the Ascomycota. Our analyses suggest that these spliceosomal introns are of relatively recent origin, i.e., within the Euascomycetes, and have arisen through aberrant reverse-splicing (in trans) of free pre-mRNA introns into rRNAs. The spliceosome itself, and not an external agent (e.g., transposable elements, group II introns), may have given rise to these introns. A nonrandom sequence pattern was found at sites flanking the rRNA spliceosomal introns. This pattern (AG-intron-G) closely resembles the proto-splice site (MAG-intron-R) postulated for intron insertions in pre-mRNA genes. The clustered positions of spliceosomal introns on secondary structures suggest that particular rRNA regions are preferred sites for insertion through reverse-splicing.
Collapse
Affiliation(s)
- D Bhattacharya
- Department of Biological Sciences, University of Iowa, Iowa City, 52242-1324, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Fournier R, Brulé F, Ségault V, Mougin A, Branlant C. U3 snoRNA genes with and without intron in the Kluyveromyces genus: yeasts can accommodate great variations of the U3 snoRNA 3'-terminal domain. RNA (NEW YORK, N.Y.) 1998; 4:285-302. [PMID: 9510331 PMCID: PMC1369618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The U3 snoRNA coding sequences from the genomic DNAs of Kluyveromyces delphensis and four variants of the Kluyveromyces marxianus species were cloned by PCR amplification. Nucleotide sequence analysis of the amplification products revealed a unique U3 snoRNA gene sequence in all the strains studied, except for K. marxianus var. fragilis. The K. marxianus U3 genes were intronless, whereas an intron similar to those of the Saccharomyces cerevisiae U3 genes was found in K. delphensis. Hence, U3 genes with and without intron are found in yeasts of the Saccharomycetoideae subfamily. The secondary structure of the K. delphensis pre-U3 snoRNA and of the K. marxianus mature snoRNAs were studied experimentally. They revealed a strong conservation in yeasts of (1) the architecture of U3 snoRNA introns, (2) the 5'-terminal domain of the mature snoRNA, and (3) the protein-anchoring regions of the U3 snoRNA 3' domain. In contrast, stem-loop structures 2, 3, and 4 of the 3' domain showed great variations in size, sequence, and structure. Using a genetic test, we show that, in spite of these variations, the Kluyveromyces U3 snoRNAs are functional in S. cerevisiae. We also show that S. cerevisiae U3A snoRNAs lacking the stem-loop structure 2 or 4 are functional. Hence, U3 snoRNA function can accommodate great variations of the RNA 3'-terminal domain.
Collapse
Affiliation(s)
- R Fournier
- UMR 7567 UHP-CNRS, Maturation des ARN et Enzymologie Moléculaire, Faculté des Sciences, Vandoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|
8
|
Hankeln T, Friedl H, Ebersberger I, Martin J, Schmidt ER. A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 1997; 205:151-60. [PMID: 9461389 DOI: 10.1016/s0378-1119(97)00518-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intron positions found in globin genes of plants, protozoa and invertebrates have been interpreted as evidence for a three-intron-four-exon structure of the ancestral globin gene. In particular, the so-called 'central' introns, which are not found in vertebrate globin genes but are present in a variety of invertebrate and plant species, have been used as an argument for an ancestral gene structure featuring three introns. We have analyzed the presence or absence of central introns in the Gb genes 2beta, 9 and 7A of various European and Australasian species of the insect Chironomus. We find unrelated central introns at different positions in some of the species investigated, while other species completely lack introns in these genes. This variable distribution of introns is parsimoniously explained by independent intron additions. Such a gain of introns may occur convergently at identical positions in unrelated taxa. Insertion by gene conversion may be a viable mechanism to explain intron gain.
Collapse
Affiliation(s)
- T Hankeln
- Institute of Molecular Genetics and Biosafety Research, Johannes Gutenberg University Mainz, Germany
| | | | | | | | | |
Collapse
|
9
|
Abstract
The small RNA database is a compilation of all the small size RNA sequences available to date, including nuclear, nucleolar, cytoplasmic and mitochondrial small RNAs from eukaryotic organisms and small RNAs from prokaryotic cells as well as viruses. Currently, about 600 small RNA sequences are in our database. It also gives the sources of individual RNAs and their GenBank accession numbers. The small RNA database can be accessed through WWW(World Wide Web). Our WWW URL address is: http://mbcr.bcm.tmc.edu/smallRNA/smallrna. html . The new small RNA sequences published since our last compilation are listed in this paper.
Collapse
Affiliation(s)
- J Gu
- Pharmacology Department, Baylor College of Medicine, One Baylor Plaza, 319D, Houston, TX 77030, USA
| | | |
Collapse
|
10
|
Brulé F, Venema J, Ségault V, Tollervey D, Branlant C. The yeast Hansenula wingei U3 snoRNA gene contains an intron and its coding sequence co-evolved with the 5' ETS region of the pre-ribosomal RNA. RNA (NEW YORK, N.Y.) 1996; 2:183-197. [PMID: 8601284 PMCID: PMC1369362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 5' external transcribed spacer (ETS) region of the pre-rRNA in Saccharomyces cerevisiae contains a sequence with 10 bp of perfect complementarity to the U3 snoRNA. Base pairing between these sequences has been shown to be required for 18S rRNA synthesis, although interaction over the full 10 bp of complementarity is not required. We have identified the homologous sequence in the 5' ETS from the evolutionarily distant yeast Hansenula wingei; unexpectedly, this shows two sequence changes in the region predicted to base pair to U3. By PCR amplification and direct RNA sequencing, a single type of U3 snoRNA coding sequence was identified in H. wingei. As in the S. cerevisiae U3 snoRNA genes, it is interrupted by an intron with features characteristic of introns spliced in a spliceosome. Consequently, this unusual property is not restricted to the yeast genus Saccharomyces. The introns of the H. wingei and S. cerevisiae U3 genes show strong differences in length and sequence, but are located at the same position in the U3 sequence, immediately upstream of the phylogenetically conserved Box A region. The 3' domains of the H. wingei and S. cerevisiae U3 snoRNAs diverge strongly in primary sequence, but have very similar predicted secondary structures. The 5' domains, expected to play a direct role in pre-ribosomal RNA maturation, are more conserved. The sequence predicted to base pair to the pre-rRNA contains two nucleotide substitutions in H. wingei that restore 10 bp of perfect complementarity to the 5' ETS. This is a strong phylogenetic evidence for the importance of the U3/pre-rRNA interaction.
Collapse
Affiliation(s)
- F Brulé
- Laboratoire d'Enzymologie et de Génie Génétique, URA CNRS 457, Université de Nancy l, France
| | | | | | | | | |
Collapse
|
11
|
Rotondo G, Gillespie M, Frendewey D. Rescue of the fission yeast snRNA synthesis mutant snm1 by overexpression of the double-strand-specific Pac1 ribonuclease. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:698-708. [PMID: 7616961 DOI: 10.1007/bf00290401] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Schizosaccharomyces pombe temperature-sensitive mutant snm1 maintains reduced steady-state quantities of the spliceosomal small nuclear RNAs (snRNAs) and the RNA subunit of the tRNA processing enzyme RNase P. We report here the isolation of the pac1+ gene as a multi-copy suppressor of snm1. The pac1+ gene was previously identified as a suppressor of the ran1 mutant and by its ability to cause sterility when overexpressed. The pac1+ gene encodes a double-strand-specific ribonuclease that is similar to RNase III, an RNA processing and turnover enzyme in Escherichia coli. To investigate the essential structural features of the Pac1 RNase, we altered the pac1+ gene by deletion and point mutation and tested the mutant constructs for their ability to complement the snm1 and ran1 mutants and to cause sterility. These experiments identified four essential amino acids in the Pac1 sequence: glycine 178, glutamic acid 251, and valines 346 and 347. These amino acids are conserved in all RNase III-like proteins. The glycine and glutamic acid residues were previously identified as essential for E. coli RNase III activity. The valines are conserved in an element found in a family of double-stranded RNA binding proteins. Our results support the hypothesis that the Pac1 RNase is an RNase III homolog and suggest a role for the Pac1 RNase in snRNA metabolism.
Collapse
Affiliation(s)
- G Rotondo
- Department of Microbiology, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
12
|
Yu YT, Maroney PA, Nilsen TW. Functional reconstitution of U6 snRNA in nematode cis- and trans-splicing: U6 can serve as both a branch acceptor and a 5' exon. Cell 1993; 75:1049-59. [PMID: 8261508 DOI: 10.1016/0092-8674(93)90315-h] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maturation of nuclear pre-mRNAs in nematodes requires both cis- and trans-splicing. Both processing pathways involve analogous two-step phosphotransfer reactions and both are dependent upon the integrity of U6 snRNA. We have developed a functional reconstitution assay to assess the U6 snRNA sequence requirements for cis- and trans-splicing. Branch formation between the splicing substrates and U6 snRNA was observed. The frequency of this event was greatly enhanced when a highly conserved sequence in U6 snRNA was altered by mutation. In cis- and trans-splicing reactions reconstituted with this mutant U6 snRNA the liberated exon of U6 proceeded through the second step of splicing using the appropriate splice acceptor sites. These results demonstrate covalent interactions between a U snRNA required for splicing and a splicing substrate, and they provide evidence for an unexpected degree of catalytic flexibility within the spliceosome.
Collapse
Affiliation(s)
- Y T Yu
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | |
Collapse
|