1
|
Elmanfi S, Onyedibe KI, Aryal UK, Könönen E, Sintim HO, Gürsoy UK. Activation of cellular responses by cyclic dinucleotides and porphyromonas gingivalis lipopolysaccharide: a proteomic study on gingival fibroblasts. J Oral Microbiol 2024; 17:2431453. [PMID: 39669221 PMCID: PMC11632945 DOI: 10.1080/20002297.2024.2431453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 12/14/2024] Open
Abstract
Background Bacterial cyclic dinucleotides (CDNs), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) upregulate interferon signaling proteins of human gingival fibroblasts (HGFs). However, the simultaneous effect of bacterial CDNs and lipopolysaccharides (LPS) on the HGF proteome is unknown. Aim The aim was to apply an unbiased proteomics approach to evaluate how simultaneous exposure to CDNs and Porphyromonas gingivalis (Pg) LPS affect the global proteome of HGFs. Methods The proteomic responses of HGFs were examined under three different treatment conditions (c-di-AMP+Pg LPS, c-di-GMP+Pg LPS, and Pg LPS alone) by label-free quantitative mass spectrometry analysis. Results Simultaneous exposure to CDNs and Pg LPS significantly upregulated innate immunity-related and interferon signaling-related proteins, such as ubiquitin-like protein ISG15 (ISG15), deoxynucleoside triphosphate triphosphohydrolase (SAMHD1), interferon regulatory factor 9 (IRF-9), interferon-induced GTP-binding protein Mx (MX)1, and MX2. Interferon signaling pathway was the most significantly regulated canonical pathway in both CDN treatment groups. Conclusion Simultaneous exposure to CDNs and Pg LPS stimulates the periodontal immune response by activating the anti-microbial cellular responses of HGFs with some notable differences from individual exposures.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Kenneth I. Onyedibe
- Department of Chemistry, Purdue University, West Lafayette, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, MaconGA, USA
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, West Lafayette, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Chin Sang C, Moore G, Tereshchenko M, Zhang H, Nosella ML, Dasovich M, Alderson TR, Leung AKL, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. EMBO Rep 2024; 25:5635-5666. [PMID: 39496836 PMCID: PMC11624282 DOI: 10.1038/s44319-024-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it remains unclear how exactly PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human single-strand repair proteins in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain length-dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments, which correlates with PARP1 clusters compacting long DNA and bridging DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities of DNA repair factors, which may inform on how PARPs function in DNA repair foci and other PAR-driven condensates in cells.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael L Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Green Centre for Reproductive Biology Sciences, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - T Reid Alderson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Bavaria, Germany
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Allam WR, Hegazy MT, Hussein MA, Zoheir N, Quartuccio L, El-Khamisy SF, Ragab G. A comparative study of different antiviral treatment protocols in HCV related cryoglobulinemic vasculitis. Sci Rep 2024; 14:11840. [PMID: 38782988 PMCID: PMC11116471 DOI: 10.1038/s41598-024-60490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/09/2024] [Indexed: 05/25/2024] Open
Abstract
The treatment of HCV and its sequelae are used to be predominantly based on Interferon (IFN). However, this was associated with significant adverse events as a result of its immunostimulant capabilities. Since their introduction, the directly acting antiviral drugs (DAAs), have become the standard of care to treat of HCV and its complications including mixed cryoglobulinemic vasculitis (MCV). In spite of achieving sustained viral response (SVR), there appeared many reports describing unwelcome complications such as hepatocellular and hematological malignancies as well as relapses. Prolonged inflammation induced by a multitude of factors, can lead to DNA damage and affects BAFF and APRIL, which serve as markers of B-cell proliferation. We compared, head-to-head, three antiviral protocols for HCV-MCV treatment As regards the treatment response and relapse, levels of BAFF and APRIL among pegylated interferon α-based and free regimens (Sofosbuvir + Ribavirin; SOF-RIBA, Sofosbuvir + Daclatasvir; SOF-DACLA). Regarding clinical response HCV-MCV and SVR; no significant differences could be identified among the 3 different treatment protocols, and this was also independent form using IFN. We found no significant differences between IFN-based and free regimens DNA damage, markers of DNA repair, or levels of BAFF and APRIL. However, individualized drug-to-drug comparisons showed many differences. Those who were treated with IFN-based protocol showed decreased levels of DNA damage, while the other two IFN-free groups showed increased DNA damage, being the worst in SOF-DACLA group. There were increased levels of BAFF through follow-up periods in the 3 protocols being the best in SOF-DACLA group (decreased at 24 weeks). In SOF-RIBA, CGs relapsed significantly during the follow-up period. None of our patients who were treated with IFN-based protocol had significant clinico-laboratory relapse. Those who received IFN-free DAAs showed a statistically significant relapse of constitutional manifestations. Our findings suggest that IFN-based protocols are effective in treating HCV-MCV similar to IFN-free protocols. They showed lower levels of DNA damage and repair. We believe that our findings may offer an explanation for the process of lymphoproliferation, occurrence of malignancies, and relapses by shedding light on such possible mechanisms.
Collapse
Affiliation(s)
| | - Mohamed Tharwat Hegazy
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Mohamed A Hussein
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Naguib Zoheir
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medical Area (DAME), University Hospital "Santa Maria Della Misericordia", University of Udine, Udine, Italy
| | - Sherif F El-Khamisy
- Center for Genomics, Zewail City of Science and Technology, Giza, Egypt.
- The Healthy Lifespan and the Institute of Neuroscience, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Gaafar Ragab
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt.
- School of Medicine, Newgiza University (NGU), Giza, Egypt.
| |
Collapse
|
4
|
Lin X, Leung KSK, Wolfe KF, Lee BJ, Zha S. XRCC1 mediates PARP1- and PAR-dependent recruitment of PARP2 to DNA damage sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594230. [PMID: 38798615 PMCID: PMC11118530 DOI: 10.1101/2024.05.14.594230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poly-ADP-ribose polymerases 1 and 2 (PARP1 and PARP2) are crucial sensors of DNA-strand breaks and emerging cancer therapy targets. Once activated by DNA breaks, PARP1 and PARP2 generate poly-ADP-ribose (PAR) chains on themselves and other substrates to promote DNA single-strand break repair (SSBR). PARP1 can be activated by diverse DNA lesions, whereas PARP2 specifically recognizes 5' phosphorylated nicks. They can be activated independently and provide mutual backup in the absence of the other. However, whether PARP1 and PARP2 have synergistic functions in DNA damage response remains elusive. Here, we show that PARP1 and the PAR chains generated by PARP1 recruit PARP2 to the vicinity of DNA damage sites through the scaffold protein XRCC1. Using quantitative live-cell imaging, we found that loss of XRCC1 markedly reduces irradiation-induced PARP2 foci in PARP1-proficient cells. The central BRCT domain (BRCT1) of XRCC1 binds to the PAR chain, while the C-terminal BRCT domain (BRCT2) of XRCC1 interacts with the catalytic domain of PARP2, facilitating its localization near the breaks. Together, these findings unveil a new function of XRCC1 in augmenting PARP2 recruitment in response to PARP1 activation and explain why PARP1, but not PARP2, is aggregated and hyperactivated in XRCC1-deficient cells.
Collapse
|
5
|
Nie L, Wang C, Huang M, Liu X, Feng X, Tang M, Li S, Hang Q, Teng H, Shen X, Ma L, Gan B, Chen J. DePARylation is critical for S phase progression and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551317. [PMID: 37577639 PMCID: PMC10418084 DOI: 10.1101/2023.07.31.551317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Sang CC, Moore G, Tereshchenko M, Nosella ML, Zhang H, Alderson TR, Dasovich M, Leung A, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.575817. [PMID: 38328070 PMCID: PMC10849519 DOI: 10.1101/2024.01.20.575817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it is not understood how PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human PARP1 in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain-length dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments and facilitate compaction of long DNA and bridge DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities in DNA repair foci, which may inform on how PARPs function in other PAR-driven condensates.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - T. Reid Alderson
- Division of Molecular Biology and Biochemistry, Medizinische Universität Graz, Graz, 8010, Austria
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O. Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
7
|
Wicks AJ, Krastev DB, Pettitt SJ, Tutt ANJ, Lord CJ. Opinion: PARP inhibitors in cancer-what do we still need to know? Open Biol 2022; 12:220118. [PMID: 35892198 PMCID: PMC9326299 DOI: 10.1098/rsob.220118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors (PARPi) have been demonstrated to exhibit profound anti-tumour activity in individuals whose cancers have a defect in the homologous recombination DNA repair pathway. Here, we describe the current consensus as to how PARPi work and how drug resistance to these agents emerges. We discuss the need to refine the current repertoire of clinical-grade companion biomarkers to be used with PARPi, so that patient stratification can be improved, the early emergence of drug resistance can be detected and dose-limiting toxicity can be predicted. We also highlight current thoughts about how PARPi resistance might be treated.
Collapse
Affiliation(s)
- Andrew J. Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Dragomir B. Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Andrew N. J. Tutt
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
8
|
Hirota K, Ooka M, Shimizu N, Yamada K, Tsuda M, Ibrahim MA, Yamada S, Sasanuma H, Masutani M, Takeda S. XRCC1 counteracts PARP poisons, Olaparib and Talazoparib, and a clinical alkylating agent, Temozolomide, by promoting the removal of trapped PARP1 from broken DNA. Genes Cells 2022; 27:331-344. [PMID: 35194903 PMCID: PMC9310723 DOI: 10.1111/gtc.12929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
Base excision repair (BER) removes damaged bases by generating single‐strand breaks (SSBs), gap‐filling by DNA polymerase β (POLβ), and resealing SSBs. A base‐damaging agent, methyl methanesulfonate (MMS) is widely used to study BER. BER increases cellular tolerance to MMS, anti‐cancer base‐damaging drugs, temozolomide, carmustine, and lomustine, and to clinical poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib. The poisons stabilize PARP1/SSB complexes, inhibiting access of BER factors to SSBs. PARP1 and XRCC1 collaboratively promote SSB resealing by recruiting POLβ to SSBs, but XRCC1−/− cells are much more sensitive to MMS than PARP1−/− cells. We recently report that the PARP1 loss in XRCC1−/− cells restores their MMS tolerance and conclude that XPCC1 facilitates the release of PARP1 from SSBs by maintaining its autoPARylation. We here show that the PARP1 loss in XRCC1−/− cells also restores their tolerance to the three anti‐cancer base‐damaging drugs, although they and MMS induce different sets of base damage. We reveal the synthetic lethality of the XRCC1−/− mutation, but not POLβ−/−, with olaparib and talazoparib, indicating that XRCC1 is a unique BER factor in suppressing toxic PARP1/SSB complex and can suppress even when PARP1 catalysis is inhibited. In conclusion, XRCC1 suppresses the PARP1/SSB complex via PARP1 catalysis‐dependent and independent mechanisms.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan.,Department of Chemistry, Graduate school of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate school of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Kousei Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan.,Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Mahmoud Abdelghany Ibrahim
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Rashid I, Tsai MS, Sverzhinsky A, Hlaing AS, Shih B, Thwin AC, Lin JG, Maw SS, Pascal JM, Tomkinson AE. Purification and Characterization of Human DNA Ligase IIIα Complexes After Expression in Insect Cells. Methods Mol Biol 2022; 2444:243-269. [PMID: 35290642 PMCID: PMC9278544 DOI: 10.1007/978-1-0716-2063-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With improvements in biophysical approaches, there is growing interest in characterizing large, flexible multi-protein complexes. The use of recombinant baculoviruses to express heterologous genes in cultured insect cells has advantages for the expression of human protein complexes because of the ease of co-expressing multiple proteins in insect cells and the presence of a conserved post-translational machinery that introduces many of the same modifications found in human cells. Here we describe the preparation of recombinant baculoviruses expressing DNA ligase IIIα, XRCC1, and TDP1, their subsequent co-expression in cultured insect cells, the purification of complexes containing DNA ligase IIIα from insect cell lysates, and their characterization by multi-angle light scattering linked to size exclusion chromatography and negative stain electron microscopy.
Collapse
Affiliation(s)
- Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aye Su Hlaing
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian Shih
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aye C Thwin
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Judy G Lin
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Su S Maw
- Biological Systems and Engineering Division, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Nomura S, Komuro I. Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. J Mol Cell Cardiol 2021; 152:29-39. [PMID: 33275937 DOI: 10.1016/j.yjmcc.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Japan.
| |
Collapse
|
11
|
Kutuzov MM, Belousova EA, Kurgina TA, Ukraintsev AA, Vasil’eva IA, Khodyreva SN, Lavrik OI. The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. Sci Rep 2021; 11:4849. [PMID: 33649352 PMCID: PMC7921663 DOI: 10.1038/s41598-021-84351-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
The regulation of repair processes including base excision repair (BER) in the presence of DNA damage is implemented by a cellular signal: poly(ADP-ribosyl)ation (PARylation), which is catalysed by PARP1 and PARP2. Despite ample studies, it is far from clear how BER is regulated by PARPs and how the roles are distributed between the PARPs. Here, we investigated the effects of PARP1, PARP2 and PARylation on activities of the main BER enzymes (APE1, DNA polymerase β [Polβ] and DNA ligase IIIα [LigIIIα]) in combination with BER scaffold protein XRCC1 in the nucleosomal context. We constructed nucleosome core particles with midward- or outward-oriented damage. It was concluded that in most cases, the presence of PARP1 leads to the suppression of the activities of APE1, Polβ and to a lesser extent LigIIIα. PARylation by PARP1 attenuated this effect to various degrees depending on the enzyme. PARP2 had an influence predominantly on the last stage of BER: DNA sealing. Nonetheless, PARylation by PARP2 led to Polβ inhibition and to significant stimulation of LigIIIα activities in a NAD+-dependent manner. On the basis of the obtained and literature data, we suggest a hypothetical model of the contribution of PARP1 and PARP2 to BER.
Collapse
Affiliation(s)
- M. M. Kutuzov
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - E. A. Belousova
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - T. A. Kurgina
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia ,grid.4605.70000000121896553Novosibirsk State University, Novosibirsk, Russia
| | - A. A. Ukraintsev
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - I. A. Vasil’eva
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - S. N. Khodyreva
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - O. I. Lavrik
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia ,grid.4605.70000000121896553Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
12
|
Jurkiw TJ, Tumbale PP, Schellenberg MJ, Cunningham-Rundles C, Williams RS, O’Brien PJ. LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency. Nucleic Acids Res 2021; 49:1619-1630. [PMID: 33444456 PMCID: PMC7897520 DOI: 10.1093/nar/gkaa1297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 11/14/2022] Open
Abstract
Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.
Collapse
Affiliation(s)
- Thomas J Jurkiw
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Percy P Tumbale
- Structural Cell Biology group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Matthew J Schellenberg
- Structural Cell Biology group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - R Scott Williams
- Structural Cell Biology group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Patrick J O’Brien
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Tomkinson AE, Naila T, Khattri Bhandari S. Altered DNA ligase activity in human disease. Mutagenesis 2021; 35:51-60. [PMID: 31630206 DOI: 10.1093/mutage/gez026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The joining of interruptions in the phosphodiester backbone of DNA is critical to maintain genome stability. These breaks, which are generated as part of normal DNA transactions, such as DNA replication, V(D)J recombination and meiotic recombination as well as directly by DNA damage or due to DNA damage removal, are ultimately sealed by one of three human DNA ligases. DNA ligases I, III and IV each function in the nucleus whereas DNA ligase III is the sole enzyme in mitochondria. While the identification of specific protein partners and the phenotypes caused either by genetic or chemical inactivation have provided insights into the cellular functions of the DNA ligases and evidence for significant functional overlap in nuclear DNA replication and repair, different results have been obtained with mouse and human cells, indicating species-specific differences in the relative contributions of the DNA ligases. Inherited mutations in the human LIG1 and LIG4 genes that result in the generation of polypeptides with partial activity have been identified as the causative factors in rare DNA ligase deficiency syndromes that share a common clinical symptom, immunodeficiency. In the case of DNA ligase IV, the immunodeficiency is due to a defect in V(D)J recombination whereas the cause of the immunodeficiency due to DNA ligase I deficiency is not known. Overexpression of each of the DNA ligases has been observed in cancers. For DNA ligase I, this reflects increased proliferation. Elevated levels of DNA ligase III indicate an increased dependence on an alternative non-homologous end-joining pathway for the repair of DNA double-strand breaks whereas elevated level of DNA ligase IV confer radioresistance due to increased repair of DNA double-strand breaks by the major non-homologous end-joining pathway. Efforts to determine the potential of DNA ligase inhibitors as cancer therapeutics are on-going in preclinical cancer models.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Tasmin Naila
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Seema Khattri Bhandari
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
14
|
Vasil'eva IA, Moor NA, Lavrik OI. Effect of Human XRCC1 Protein Oxidation on the Functional Activity of Its Complexes with the Key Enzymes of DNA Base Excision Repair. BIOCHEMISTRY (MOSCOW) 2021; 85:288-299. [PMID: 32564733 DOI: 10.1134/s0006297920030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Base excision repair (BER) ensures correction of most abundant DNA lesions in mammals. The efficiency of this multistep DNA repair process that can occur via different pathways depends on the coordinated action of enzymes catalyzing its individual steps. The scaffold XRCC1 (X-ray repair cross-complementing protein 1) protein plays an important coordinating role in the repair of damaged bases and apurinic/apyrimidinic (AP) sites via short-patch (SP) BER pathway, as well as in the repair of single-strand DNA breaks. In this study, we demonstrated for the first time in vitro formation of the ternary XRCC1 complex with the key enzymes of SP BER - DNA polymerase β (Polβ) and DNA ligase IIIα (LigIIIα) - using the fluorescence-based technique. It was found that Polβ directly interacts with LigIIIα, but their complex is less stable than the XRCC1-Polβ and XRCC1-LigIIIα complexes. The effect of XRCC1 oxidation and composition of the multiprotein complex on the efficiency of DNA synthesis and DNA ligation during DNA repair has been explored. We found that formation of the disulfide bond between Cys12 and Cys20 residues as a result of XRCC1 oxidation (previously shown to modulate the protein affinity for Polβ), affects the yield of the final product of SP BER and of non-ligated DNA intermediates (substrates of long-patch BER). The effect of XRCC1 oxidation on the final product yield depended on the presence of AP endonuclease 1. Together with the data from our previous work, the results of this study suggest an important role of XRCC1 oxidation in the fine regulation of formation of BER complexes and their functional activity.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - N A Moor
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
15
|
Hammel M, Rashid I, Sverzhinsky A, Pourfarjam Y, Tsai MS, Ellenberger T, Pascal JM, Kim IK, Tainer JA, Tomkinson AE. An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA Ligase IIIα within a flexible DNA repair complex. Nucleic Acids Res 2021; 49:306-321. [PMID: 33330937 PMCID: PMC7797052 DOI: 10.1093/nar/gkaa1188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023] Open
Abstract
The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics & Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA
| | - Miaw-Sheue Tsai
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Ellenberger
- Department of Biochemistry, Washington University, St. Louis, MO, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA
| | - John A Tainer
- Departments of Cancer Biology and Molecular & Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics & Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
16
|
Kumar M, Jaiswal RK, Yadava PK, Singh RP. An assessment of poly (ADP-ribose) polymerase-1 role in normal and cancer cells. Biofactors 2020; 46:894-905. [PMID: 33098603 DOI: 10.1002/biof.1688] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is a superfamily of 18 proteins characterized by the PARP homology domain, the catalytic domain. This catalytic domain helps in the ADP-ribosylation of various acceptor proteins using nicotinamide adenine dinucleotide (NAD+) as a donor for ADP-ribose. PARP-1 and PARP-2 carry out 80% of poly-ADP-ribosylation of cellular protein. Hence, their combined knockout results in embryonic lethality of mice. PARP-1 consists of three major domains, namely, DNA binding domain, automodification domain, and a catalytic domain. These domains further consist of subdomains and motifs, which helps PARP-1 in a diverse function. PARP-1 is mainly involved in DNA damage detection and repair, but emerging evidence suggests its role in many other functions such as DNA synthesis, replication, apoptosis, necrosis, and cancer progression. Herein, we review the current state of the PARP-1 role in DNA damage repair and other biological processes including epithelial to mesenchymal transition (EMT). We have also observed the role of PARP-1 in modulating EMT regulators like E-cadherin, Vimentin, Claudin-1, Snail, Smad-4, Twist-1, and β-catenin. Here, we have also attempted to relate the role of PARP-1 in EMT of cancer cells.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pramod K Yadava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Zagnoli-Vieira G, Caldecott KW. Untangling trapped topoisomerases with tyrosyl-DNA phosphodiesterases. DNA Repair (Amst) 2020; 94:102900. [PMID: 32653827 DOI: 10.1016/j.dnarep.2020.102900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases alleviate the torsional stress that is generated by processes that are central to genome metabolism such as transcription and DNA replication. To do so, these enzymes generate an enzyme intermediate known as the cleavage complex in which the topoisomerase is covalently linked to the termini of a DNA single- or double-strand break. Whilst cleavage complexes are normally transient they can occasionally become abortive, creating protein-linked DNA breaks that threaten genome stability and cell survival; a process promoted and exploited in the cancer clinic by the use of topoisomerase 'poisons'. Here, we review the consequences to genome stability and human health of abortive topoisomerase-induced DNA breakage and the cellular pathways that cells have adopted to mitigate them, with particular focus on an important class of enzymes known as tyrosyl-DNA phosphodiesterases.
Collapse
Affiliation(s)
- Guido Zagnoli-Vieira
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Keith W Caldecott
- Genome Damage Stability Centre, University of Sussex, Falmer Road, Brighton, BN1 9RQ, UK.
| |
Collapse
|
18
|
Displacement of Slow-Turnover DNA Glycosylases by Molecular Traffic on DNA. Genes (Basel) 2020; 11:genes11080866. [PMID: 32751599 PMCID: PMC7465369 DOI: 10.3390/genes11080866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1–DNA product complex was disrupted by DNA polymerase β (POLβ) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLβ and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.
Collapse
|
19
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
21
|
Abstract
Effective maintenance and stability of our genomes is essential for normal cell division, tissue homeostasis, and cellular and organismal fitness. The processes of chromosome replication and segregation require continual surveillance to insure fidelity. Accurate and efficient repair of DNA damage preserves genome integrity, which if lost can lead to multiple diseases, including cancer. Poly(ADP-ribose) a dynamic and reversible posttranslational modification and the enzymes that catalyze it (PARP1, PARP2, tankyrase 1, and tankyrase 2) function to maintain genome stability through diverse mechanisms. Here we review the role of these enzymes and the modification in genome repair, replication, and resolution in human cells.
Collapse
Affiliation(s)
- Kameron Azarm
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Susan Smith
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
22
|
Zhang H, Cai B, Geng A, Tang H, Zhang W, Li S, Jiang Y, Tan R, Wan X, Mao Z. Base excision repair but not DNA double-strand break repair is impaired in aged human adipose-derived stem cells. Aging Cell 2020; 19:e13062. [PMID: 31782607 PMCID: PMC6996963 DOI: 10.1111/acel.13062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The decline in DNA repair capacity contributes to the age-associated decrease in genome integrity in somatic cells of different species. However, due to the lack of clinical samples and appropriate tools for studying DNA repair, whether and how age-associated changes in DNA repair result in a loss of genome integrity of human adult stem cells remains incompletely characterized. Here, we isolated 20 eyelid adipose-derived stem cell (ADSC) lines from healthy individuals (young: 10 donors with ages ranging 17-25 years; old: 10 donors with ages ranging 50-59 years). Using these cell lines, we systematically compared the efficiency of base excision repair (BER) and two DNA double-strand break (DSB) repair pathways-nonhomologous end joining (NHEJ) and homologous recombination (HR)-between the young and old groups. Surprisingly, we found that the efficiency of BER but not NHEJ or HR is impaired in aged human ADSCs, which is in contrast to previous findings that DSB repair declines with age in human fibroblasts. We also demonstrated that BER efficiency is negatively associated with tail moment, which reflects a loss of genome integrity in human ADSCs. Mechanistic studies indicated that at the protein level XRCC1, but not other BER factors, exhibited age-associated decline. Overexpression of XRCC1 reversed the decline of BER efficiency and genome integrity, indicating that XRCC1 is a potential therapeutic target for stabilizing genomes in aged ADSCs.
Collapse
Affiliation(s)
- Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Bailian Cai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Anke Geng
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Huanyin Tang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenjun Zhang
- Department of Plastic SurgeryChangzheng HospitalShanghaiChina
| | - Sheng Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Rong Tan
- Center for Molecular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant HospitalSchool of MedicineTongji UniversityShanghaiChina
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
23
|
|
24
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
25
|
Abstract
Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.
Collapse
Affiliation(s)
- William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA;
| |
Collapse
|
26
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
27
|
Khan MI, Mishra A, Jha PK, Abhishek K, Chaba R, Das P, Sinha KK. DNA polymerase β of Leishmania donovani is important for infectivity and it protects the parasite against oxidative damage. Int J Biol Macromol 2019; 124:291-303. [DOI: 10.1016/j.ijbiomac.2018.11.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
|
28
|
Kordon MM, Szczurek A, Berniak K, Szelest O, Solarczyk K, Tworzydło M, Wachsmann-Hogiu S, Vaahtokari A, Cremer C, Pederson T, Dobrucki JW. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks. FASEB J 2019; 33:2301-2313. [PMID: 30260704 PMCID: PMC6993927 DOI: 10.1096/fj.201801379r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
DNA lesions induce recruitment and accumulation of various repair factors, resulting in formation of discrete nuclear foci. Using superresolution fluorescence microscopy as well as live cell and quantitative imaging, we demonstrate that X-ray repair cross-complementing protein 1 (XRCC1), a key factor in single-strand break and base excision repair, is recruited into nuclear bodies formed in response to replication-related single-strand breaks. Intriguingly, these bodies are assembled immediately in the vicinity of these breaks and never fully colocalize with replication foci. They are structurally organized, containing canonical promyelocytic leukemia (PML) nuclear body protein SP100 concentrated in a peripheral layer, and XRCC1 in the center. They also contain other factors, including PML, poly(ADP-ribose) polymerase 1 (PARP1), ligase IIIα, and origin recognition complex subunit 5. The breast cancer 1 and -2 C terminus domains of XRCC1 are essential for formation of these repair foci. These results reveal that XRCC1-contaning foci constitute newly recognized PML-like nuclear bodies that accrete and locally deliver essential factors for repair of single-strand DNA breaks in replication regions.-Kordon, M. M., Szczurek, A., Berniak, K., Szelest, O., Solarczyk, K., Tworzydło, M., Wachsmann-Hogiu, S., Vaahtokari, A., Cremer, C., Pederson, T., Dobrucki, J. W. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks.
Collapse
Affiliation(s)
- Magdalena M. Kordon
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Aleksander Szczurek
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Superresolution Microscopy Group, Institute of Molecular Biology, Mainz, Germany
| | - Krzysztof Berniak
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Oskar Szelest
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamil Solarczyk
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Tworzydło
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Wachsmann-Hogiu
- Department of Pathology and Laboratory Medicine, University of California at Davis, Davis, California, USA
| | - Anne Vaahtokari
- The Francis Crick Institute, Cancer Research UK, London, United Kingdom; and
| | - Christoph Cremer
- Superresolution Microscopy Group, Institute of Molecular Biology, Mainz, Germany
| | - Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jurek W. Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
29
|
Polo LM, Xu Y, Hornyak P, Garces F, Zeng Z, Hailstone R, Matthews SJ, Caldecott KW, Oliver AW, Pearl LH. Efficient Single-Strand Break Repair Requires Binding to Both Poly(ADP-Ribose) and DNA by the Central BRCT Domain of XRCC1. Cell Rep 2019; 26:573-581.e5. [PMID: 30650352 PMCID: PMC6334254 DOI: 10.1016/j.celrep.2018.12.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
XRCC1 accelerates repair of DNA single-strand breaks by acting as a scaffold protein for the recruitment of Polβ, LigIIIα, and end-processing factors, such as PNKP and APTX. XRCC1 itself is recruited to DNA damage through interaction of its central BRCT domain with poly(ADP-ribose) chains generated by PARP1 or PARP2. XRCC1 is believed to interact directly with DNA at sites of damage, but the molecular basis for this interaction within XRCC1 remains unclear. We now show that the central BRCT domain simultaneously mediates interaction of XRCC1 with poly(ADP-ribose) and DNA, through separate and non-overlapping binding sites on opposite faces of the domain. Mutation of residues within the DNA binding site, which includes the site of a common disease-associated human polymorphism, affects DNA binding of this XRCC1 domain in vitro and impairs XRCC1 recruitment and retention at DNA damage and repair of single-strand breaks in vivo.
Collapse
Affiliation(s)
- Luis M Polo
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Yingqi Xu
- Cross-Faculty NMR Centre, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Peter Hornyak
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Fernando Garces
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Zhihong Zeng
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Richard Hailstone
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Steve J Matthews
- Cross-Faculty NMR Centre, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| |
Collapse
|
30
|
Endutkin AV, Yudkina AV, Sidorenko VS, Zharkov DO. Transient protein-protein complexes in base excision repair. J Biomol Struct Dyn 2018; 37:4407-4418. [PMID: 30488779 DOI: 10.1080/07391102.2018.1553741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient protein-protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia.,Podalirius Ltd. , Novosibirsk , Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University , Stony Brook , NY , USA
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia
| |
Collapse
|
31
|
Steinacher R, Barekati Z, Botev P, Kuśnierczyk A, Slupphaug G, Schär P. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J 2018; 38:embj.201899242. [PMID: 30523148 DOI: 10.15252/embj.201899242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.
Collapse
Affiliation(s)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petar Botev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The Importance of Poly(ADP-Ribose) Polymerase as a Sensor of Unligated Okazaki Fragments during DNA Replication. Mol Cell 2018; 71:319-331.e3. [PMID: 29983321 PMCID: PMC6060609 DOI: 10.1016/j.molcel.2018.06.004] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/11/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) is synthesized by PARP enzymes during the repair of stochastic DNA breaks. Surprisingly, however, we show that most if not all endogenous poly(ADP-ribose) is detected in normal S phase cells at sites of DNA replication. This S phase poly(ADP-ribose) does not result from damaged or misincorporated nucleotides or from DNA replication stress. Rather, perturbation of the DNA replication proteins LIG1 or FEN1 increases S phase poly(ADP-ribose) more than 10-fold, implicating unligated Okazaki fragments as the source of S phase PARP activity. Indeed, S phase PARP activity is ablated by suppressing Okazaki fragment formation with emetine, a DNA replication inhibitor that selectively inhibits lagging strand synthesis. Importantly, PARP activation during DNA replication recruits the single-strand break repair protein XRCC1, and human cells lacking PARP activity and/or XRCC1 are hypersensitive to FEN1 perturbation. Collectively, our data indicate that PARP1 is a sensor of unligated Okazaki fragments during DNA replication and facilitates their repair.
Collapse
Affiliation(s)
- Hana Hanzlikova
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic.
| | - Ilona Kalasova
- Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic
| | - Annie A Demin
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Lewis E Pennicott
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Zuzana Cihlarova
- Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic
| | - Keith W Caldecott
- Genome Damage and Stability Centre & Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic.
| |
Collapse
|
33
|
Kim K, Pedersen LC, Kirby TW, DeRose EF, London RE. Characterization of the APLF FHA-XRCC1 phosphopeptide interaction and its structural and functional implications. Nucleic Acids Res 2017; 45:12374-12387. [PMID: 29059378 PMCID: PMC5716189 DOI: 10.1093/nar/gkx941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023] Open
Abstract
Aprataxin and PNKP-like factor (APLF) is a DNA repair factor containing a forkhead-associated (FHA) domain that supports binding to the phosphorylated FHA domain binding motifs (FBMs) in XRCC1 and XRCC4. We have characterized the interaction of the APLF FHA domain with phosphorylated XRCC1 peptides using crystallographic, NMR, and fluorescence polarization studies. The FHA–FBM interactions exhibit significant pH dependence in the physiological range as a consequence of the atypically high pK values of the phosphoserine and phosphothreonine residues and the preference for a dianionic charge state of FHA-bound pThr. These high pK values are characteristic of the polyanionic peptides typically produced by CK2 phosphorylation. Binding affinity is greatly enhanced by residues flanking the crystallographically-defined recognition motif, apparently as a consequence of non-specific electrostatic interactions, supporting the role of XRCC1 in nuclear cotransport of APLF. The FHA domain-dependent interaction of XRCC1 with APLF joins repair scaffolds that support single-strand break repair and non-homologous end joining (NHEJ). It is suggested that for double-strand DNA breaks that have initially formed a complex with PARP1 and its binding partner XRCC1, this interaction acts as a backup attempt to intercept the more error-prone alternative NHEJ repair pathway by recruiting Ku and associated NHEJ factors.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Yang L, Sun L, Teng Y, Chen H, Gao Y, Levine AS, Nakajima S, Lan L. Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage. Nucleic Acids Res 2017; 45:3906-3921. [PMID: 28160604 PMCID: PMC5397190 DOI: 10.1093/nar/gkx083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative DNA damage triggers telomere erosion and cellular senescence. However, how repair is initiated at telomeres is largely unknown. Here, we found unlike PARP1-mediated Poly-ADP-Ribosylation (PARylation) at genomic damage sites, PARylation at telomeres is mainly dependent on tankyrase1 (TNKS1). TNKS1 is recruited to damaged telomeres via its interaction with TRF1, which subsequently facilitates the PARylation of TRF1 after damage. TNKS inhibition abolishes the recruitment of the repair proteins XRCC1 and polymerase β at damaged telomeres, while the PARP1/2 inhibitor only has such an effect at non-telomeric damage sites. The ANK domain of TNKS1 is essential for the telomeric damage response and TRF1 interaction. Mutation of the tankyrase-binding motif (TBM) on TRF1 (13R/18G to AA) disrupts its interaction with TNKS1 concomitant recruitment of TNKS1 and repair proteins after damage. Either TNKS1 inhibition or TBM mutated TRF1 expression markedly sensitizes cells to telomere oxidative damage as well as XRCC1 inhibition. Together, our data reveal a novel role of TNKS1 in facilitating SSBR at damaged telomeres through PARylation of TRF1, thereby protecting genome stability and cell viability.
Collapse
Affiliation(s)
- Lu Yang
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China.,University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Luxi Sun
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China.,University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Yaqun Teng
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China.,University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Hao Chen
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China.,University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Ying Gao
- School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China.,University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Arthur S Levine
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA.,Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 450 Technology Drive, 523 Bridgeside Point II, Pittsburgh, PA 15219, USA
| |
Collapse
|
35
|
Guan J, Zhao Q, Lv J, Zhang Z, Sun S, Mao W. Triptolide induces DNA breaks, activates caspase-3-dependent apoptosis and sensitizes B-cell lymphoma to poly(ADP-ribose) polymerase 1 and phosphoinositide 3-kinase inhibitors. Oncol Lett 2017; 14:4965-4970. [PMID: 29085508 DOI: 10.3892/ol.2017.6771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Triptolide is the primary compound isolated from Tripterygium wilfordii, which has been reported to inhibit nucleotide excision repair as well as exhibit anti-inflammatory and antitumor activities. However, the action of triptolide in DNA breaks remains unknown. The present study investigated the effects of triptolide in the induction of DNA breaks and apoptosis in a murine B-cell lymphoma cell line, CH12F3. An MTT assay revealed that X-ray repair cross-complementing protein 1 (XRCC1)-/- CH12F3 cells were more sensitive to 6 nM triptolide compared with the wild-type CH12F3 cells, which suggests that low levels of triptolide induce DNA breaks in a manner that is dependent on the XRCC1-mediated repair pathway. Flow cytometric analysis identified that 50 nM triptolide increased the phospho-histone H2AX level, demonstrating that triptolide induces double-strand breaks. Western blot analysis revealed that triptolide up-regulated Rad51 and nuclear proliferating cell nuclear antigen. Annexin V/propidium iodide staining identified that triptolide promoted apoptosis and western blot analysis confirmed that triptolide activated caspase-3-dependent apoptosis. The results of the present study also demonstrated that 5 nM triptolide sensitized CH12F3 lymphoma cells to poly(ADP-ribose) polymerase 1 and phosphoinositide 3-kinase inhibitors, suggesting that triptolide may be a potent antitumor drug for sensitizing lymphoma cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Jiawei Guan
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qian Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jian Lv
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhiwei Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shijie Sun
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Weifeng Mao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
36
|
Association of Arg194Trp and Arg399Gln Polymorphisms of XRCC1 Gene and Risk of Differentiated Thyroid Carcinoma in Iranian-Azeri Patients. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.5790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Krupa R, Czarny P, Wigner P, Wozny J, Jablkowski M, Kordek R, Szemraj J, Sliwinski T. The Relationship Between Single-Nucleotide Polymorphisms, the Expression of DNA Damage Response Genes, and Hepatocellular Carcinoma in a Polish Population. DNA Cell Biol 2017; 36:693-708. [PMID: 28598207 DOI: 10.1089/dna.2017.3664] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanism of hepatocellular carcinoma (HCC) is related to DNA damage caused by oxidative stress products induced by hepatitis B virus (HBV) or C (HCV) infection and exposure to environmental pollutants. Single-nucleotide polymorphisms (SNPs) of DNA damage response (DDR) genes may influence individual susceptibility to environmental risk factors and affect DNA repair efficacy, which, in turn, can influence the risk of HCC. The study evaluates a panel of 15 SNPs in 11 DDR genes (XRCC1, XRCC3, XPD, MUTYH, LIG1, LIG3, hOGG1, PARP1, NFIL1, FEN1, and APEX1) in 65 HCC patients, 50 HBV- and 50 HCV-infected non-cancerous patients, and 50 healthy controls. It also estimates the mRNA expression of nine DDR genes in cancerous and adjacent healthy liver tissues. Two of the investigated polymorphisms (rs1052133 and rs13181) were associated with HCC risk. For all investigated genes, the level of mRNA was significantly lower in HCC cancer tissue than in non-cancerous liver tissue. Seven of the investigated polymorphisms were statistically related to gene expression in cancer tissues. The disruption of DDR genes may be responsible for hepatocellular transformation in HCV-infected patients.
Collapse
Affiliation(s)
- Renata Krupa
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| | - Piotr Czarny
- 2 Department of Medical Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Paulina Wigner
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| | - Joanna Wozny
- 3 Department of Infectious and Liver Diseases, Medical University of Lodz , Lodz, Poland
| | - Maciej Jablkowski
- 3 Department of Infectious and Liver Diseases, Medical University of Lodz , Lodz, Poland
| | - Radzislaw Kordek
- 4 Department of Pathology, Medical University of Lodz , Lodz, Poland
| | - Janusz Szemraj
- 2 Department of Medical Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Tomasz Sliwinski
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| |
Collapse
|
38
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
39
|
Abbotts R, Wilson DM. Coordination of DNA single strand break repair. Free Radic Biol Med 2017; 107:228-244. [PMID: 27890643 PMCID: PMC5443707 DOI: 10.1016/j.freeradbiomed.2016.11.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
The genetic material of all organisms is susceptible to modification. In some instances, these changes are programmed, such as the formation of DNA double strand breaks during meiotic recombination to generate gamete variety or class switch recombination to create antibody diversity. However, in most cases, genomic damage is potentially harmful to the health of the organism, contributing to disease and aging by promoting deleterious cellular outcomes. A proportion of DNA modifications are caused by exogenous agents, both physical (namely ultraviolet sunlight and ionizing radiation) and chemical (such as benzopyrene, alkylating agents, platinum compounds and psoralens), which can produce numerous forms of DNA damage, including a range of "simple" and helix-distorting base lesions, abasic sites, crosslinks and various types of phosphodiester strand breaks. More significant in terms of frequency are endogenous mechanisms of modification, which include hydrolytic disintegration of DNA chemical bonds, attack by reactive oxygen species and other byproducts of normal cellular metabolism, or incomplete or necessary enzymatic reactions (such as topoisomerases or repair nucleases). Both exogenous and endogenous mechanisms are associated with a high risk of single strand breakage, either produced directly or generated as intermediates of DNA repair. This review will focus upon the creation, consequences and resolution of single strand breaks, with a particular focus on two major coordinating repair proteins: poly(ADP-ribose) polymerase 1 (PARP1) and X-ray repair cross-complementing protein 1 (XRCC1).
Collapse
Affiliation(s)
- Rachel Abbotts
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
40
|
Valdez BC, Li Y, Murray D, Liu Y, Nieto Y, Champlin RE, Andersson BS. The PARP inhibitor olaparib enhances the cytotoxicity of combined gemcitabine, busulfan and melphalan in lymphoma cells. Leuk Lymphoma 2017; 58:2705-2716. [PMID: 28394191 DOI: 10.1080/10428194.2017.1306647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The combination of gemcitabine (Gem), busulfan (Bu), and melphalan (Mel) is a promising regimen for autologous stem-cell transplantation (SCT) for lymphomas. To further improve the efficacy of [Gem + Bu + Mel], we added poly(ADP-ribose) polymerase (PARP) inhibitor olaparib (Ola). We hypothesized that Ola would inhibit the repair of damaged DNA caused by [Gem + Bu + Mel]. Exposure of J45.01 and Toledo cell lines to IC10-20 of individual drug inhibited proliferation by 6-16%; [Gem + Bu + Mel] by 20-27%; and [Gem + Bu + Mel + Ola] by 61-67%. The synergistic cytotoxicity of the four-drug combination may be attributed to activation of the DNA-damage response, inhibition of PARP activity and DNA repair, decreased mitochondrial membrane potential, increased production of reactive oxygen species, and activation of the SAPK/JNK stress signaling pathway, all of which may enhance apoptosis. Similar observations were obtained using mononuclear cells isolated from patients with T-cell lymphocytic leukemia. Our results provide a rationale for undertaking clinical trials of this drug combination for lymphoma patients undergoing SCT.
Collapse
Affiliation(s)
- Benigno C Valdez
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yang Li
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - David Murray
- b Department of Experimental Oncology , Cross Cancer Institute , Edmonton , Canada
| | - Yan Liu
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yago Nieto
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Richard E Champlin
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Borje S Andersson
- a Department of Stem Cell Transplantation and Cellular Therapy , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
41
|
Halim NHA, Chong ETJ, Goh LPW, Chuah JA, See EUH, Chua KH, Lee PC. Variant Alleles in XRCC1 Arg194Trp and Arg399Gln Polymorphisms Increase Risk of Gastrointestinal Cancer in Sabah, North Borneo. Asian Pac J Cancer Prev 2017; 17:1925-31. [PMID: 27221877 DOI: 10.7314/apjcp.2016.17.4.1925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The XRCC1 protein facilitates various DNA repair pathways; single-nucleotide polymorphisms (SNPs) in this gene are associated with a risk of gastrointestinal cancer (GIC) with inconsistent results, but no data have been previously reported for the Sabah, North Borneo, population. We accordingly investigated the XRCC1 Arg194Trp and Arg399Gln SNPs in terms of GIC risk in Sabah. MATERIALS AND METHODS We performed genotyping for both SNPs for 250 GIC patients and 572 healthy volunteers using a polymerase chain reaction- restriction fragment length polymorphism approach. We validated heterozygosity and homozygosity for both SNPs using direct sequencing. RESULTS The presence of a variant 194Trp allele in the Arg194Trp SNP was significantly associated with a higher risk of GIC, especially with gastric and colorectal cancers. We additionally found that the variant 399Gln allele in Arg399Gln SNP was associated with a greater risk of developing gastric cancer. Our combined analysis revealed that inheritance of variant alleles in both SNPs increased the GIC risk in Sabah population. Based on our etiological analysis, we found that subjects ≥50 years and males who carrying the variant 194Trp allele, and Bajau subjects carrying the 399Gln allele had a significantly increased risk of GIC. CONCLUSIONS Our findings suggest that inheritance of variant alleles in XRCC1 Arg194Trp and Arg399Gln SNPs may act as biomarkers for the early detection of GIC, especially for gastric and colorectal cancers in the Sabah population.
Collapse
Affiliation(s)
- Noor Hanis Abu Halim
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Malaysia E-mail :
| | | | | | | | | | | | | |
Collapse
|
42
|
Sawant A, Floyd AM, Dangeti M, Lei W, Sobol RW, Patrick SM. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity. DNA Repair (Amst) 2017; 51:46-59. [PMID: 28110804 DOI: 10.1016/j.dnarep.2017.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 02/04/2023]
Abstract
Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions.
Collapse
Affiliation(s)
- Akshada Sawant
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Ashley M Floyd
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Mohan Dangeti
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, United States
| | - Wen Lei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Robert W Sobol
- Department of Oncologic Sciences, Molecular & Metabolic Oncology Program, Mitchell Cancer Institute, University of South Alabama,1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Steve M Patrick
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
43
|
Grindel A, Guggenberger B, Eichberger L, Pöppelmeyer C, Gschaider M, Tosevska A, Mare G, Briskey D, Brath H, Wagner KH. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2. PLoS One 2016; 11:e0162082. [PMID: 27598300 PMCID: PMC5012603 DOI: 10.1371/journal.pone.0162082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. METHODS Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. RESULTS No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. CONCLUSION BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment with regular health checks in T2DM patients in Austria.
Collapse
Affiliation(s)
- Annemarie Grindel
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Bianca Guggenberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Lukas Eichberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Christina Pöppelmeyer
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Michaela Gschaider
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Anela Tosevska
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - George Mare
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Helmut Brath
- Diabetes Outpatient Clinic, Health Centre South, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Kubota Y, Shimizu S, Yasuhira S, Horiuchi S. SNF2H interacts with XRCC1 and is involved in repair of H2O2-induced DNA damage. DNA Repair (Amst) 2016; 43:69-77. [PMID: 27268481 DOI: 10.1016/j.dnarep.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 11/28/2022]
Abstract
The protein XRCC1 has no inherent enzymatic activity, and is believed to function in base excision repair as a dedicated scaffold component that coordinates other DNA repair factors. Repair foci clearly represent the recruitment and accumulation of DNA repair factors at sites of damage; however, uncertainties remain regarding their organization in the context of nuclear architecture and their biological significance. Here we identified the chromatin remodeling factor SNF2H/SMARCA5 as a novel binding partner of XRCC1, with their interaction dependent on the casein kinase 2-mediated constitutive phosphorylation of XRCC1. The proficiency of repairing H2O2-induced damage was strongly impaired by SNF2H knock-down, and similar impairment was observed with knock-down of both XRCC1 and SNF2H simultaneously, suggesting their role in a common repair pathway. Most SNF2H exists in the nuclear matrix fraction, forming salt extraction-resistant foci-like structures in unchallenged nuclei. Remarkably, damage-induced formation of both PAR and XRCC1 foci depended on SNF2H, and the PAR and XRCC1 foci co-localized with the SNF2H foci. We propose a model in which a base excision repair complex containing damaged chromatin is recruited to specific locations in the nuclear matrix for repair, with this recruitment mediated by XRCC1-SNF2H interaction.
Collapse
Affiliation(s)
- Yoshiko Kubota
- Department of Molecular Biochemistry, School of Medicine, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan.
| | - Shinji Shimizu
- Department of Molecular Biochemistry, School of Medicine, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, School of Medicine, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Saburo Horiuchi
- Department of Molecular Biochemistry, School of Medicine, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| |
Collapse
|
45
|
Genetic Polymorphisms of X-ray Repair Cross-Complementing Group 1 and Apurinic/Apyrimidinic Endonuclease-1 in Chronic Obstructive Pulmonary Disease. Inflammation 2016; 39:1198-204. [PMID: 27107596 DOI: 10.1007/s10753-016-0355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous collection of conditions characterized by irreversible expiratory airflow limitation. The disease is interspersed with exacerbations; periods of acute symptomatic, physiological, and functional deterioration. The present study was designed to investigate the role of X-ray cross-complementing group 1 (XRCC1) and apurinic/apyrimidinic endonuclease 1 (APE1) polymorphisms and the risk of COPD. Blood samples from 354 unrelated subject (age range 18-60 years; 156 with COPD, 198 healthy controls) were collected. Genomic DNA was isolated and genotyped for XRCC1 Arg399Gln and APE1 Asp148Glu using a confronting two pair primers polymerase chain reaction. GA genotype of XRCC1 gene was found to be predominant in the COPD group compared to controls with 1.86-fold increased risk for COPD (OR 1.86, 95 % CI 1.20-2.88, p = 0.0013). TG genotype of APE1 was found to be predominant in COPD group compared to controls with the difference being statistically significant (OR 1.68, 95 % CI 1.08-2.61, p = 0.0043). The GA haplotype was found to be predominant in COPD than controls with a 2.19-fold significant increase (OR 2.19, 95 % CI 1.46-3.28, p = 0.003). Polymorphism in XRCC1 and APE1 gene is associated with an increased risk of COPD.
Collapse
|
46
|
Bee L, Nasca A, Zanolini A, Cendron F, d'Adamo P, Costa R, Lamperti C, Celotti L, Ghezzi D, Zeviani M. A nonsense mutation of human XRCC4 is associated with adult-onset progressive encephalocardiomyopathy. EMBO Mol Med 2016; 7:918-29. [PMID: 25872942 PMCID: PMC4520657 DOI: 10.15252/emmm.201404803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We studied two monozygotic twins, born to first cousins, affected by a multisystem disease. At birth, they both presented with bilateral cryptorchidism and malformations. Since early adulthood, they developed a slowly progressive neurological syndrome, with cerebellar and pyramidal signs, cognitive impairment, and depression. Dilating cardiomyopathy is also present in both. By whole-exome sequencing, we found a homozygous nucleotide change in XRCC4 (c.673C>T), predicted to introduce a premature stop codon (p.R225*). XRCC4 transcript levels were profoundly reduced, and the protein was undetectable in patients' skin fibroblasts. XRCC4 plays an important role in non-homologous end joining of DNA double-strand breaks (DSB), a system that is involved in repairing DNA damage from, for example, ionizing radiations. Gamma-irradiated mutant cells demonstrated reduction, but not abolition, of DSB repair. In contrast with embryonic lethality of the Xrcc4 KO mouse, nonsense mutations in human XRCC4 have recently been associated with primordial dwarfism and, in our cases, with adult-onset neurological impairment, suggesting an important role for DNA repair in the brain. Surprisingly, neither immunodeficiency nor predisposition to malignancy was reported in these patients.
Collapse
Affiliation(s)
- Leonardo Bee
- Department of Biology, University of Padua, Padua, Italy
| | - Alessia Nasca
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Alice Zanolini
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | | | - Pio d'Adamo
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | - Costanza Lamperti
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Lucia Celotti
- Department of Biology, University of Padua, Padua, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy MRC Mitochondrial Biology Unit, CB2 0XY, Cambridge, UK
| |
Collapse
|
47
|
Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair". DNA Repair (Amst) 2015; 36:86-90. [PMID: 26596511 DOI: 10.1016/j.dnarep.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER.
Collapse
|
48
|
Cherry AL, Nott TJ, Kelly G, Rulten SL, Caldecott KW, Smerdon SJ. Versatility in phospho-dependent molecular recognition of the XRCC1 and XRCC4 DNA-damage scaffolds by aprataxin-family FHA domains. DNA Repair (Amst) 2015; 35:116-25. [PMID: 26519825 PMCID: PMC4655838 DOI: 10.1016/j.dnarep.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 11/11/2022]
Abstract
Aprataxin, aprataxin and PNKP-like factor (APLF) and polynucleotide kinase phosphatase (PNKP) are key DNA-repair proteins with diverse functions but which all contain a homologous forkhead-associated (FHA) domain. Their primary binding targets are casein kinase 2-phosphorylated forms of the XRCC1 and XRCC4 scaffold molecules which respectively coordinate single-stranded and double-stranded DNA break repair pathways. Here, we present the high-resolution X-ray structure of a complex of phosphorylated XRCC4 with APLF, the most divergent of the three FHA domain family members. This, combined with NMR and biochemical analysis of aprataxin and APLF binding to singly and multiply-phosphorylated forms of XRCC1 and XRCC4, and comparison with PNKP reveals a pattern of distinct but overlapping binding specificities that are differentially modulated by multi-site phosphorylation. Together, our data illuminate important differences between activities of the three phospho-binding domains, in spite of a close evolutionary relationship between them.
Collapse
Affiliation(s)
- Amy L Cherry
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Timothy J Nott
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Geoffrey Kelly
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Stuart L Rulten
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Keith W Caldecott
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Stephen J Smerdon
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
49
|
Wójcik KA, Synowiec E, Polakowski P, Błasiak J, Szaflik J, Szaflik JP. Variation in DNA Base Excision Repair Genes in Fuchs Endothelial Corneal Dystrophy. Med Sci Monit 2015; 21:2809-27. [PMID: 26388025 PMCID: PMC4582917 DOI: 10.12659/msm.894273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fuchs endothelial corneal dystrophy (FECD) is a corneal disease characterized by abnormalities in the Descemet membrane and the corneal endothelium. The etiology of this disease is poorly understood. An increased level of oxidative DNA damage reported in FECD corneas suggests a role of DNA base excision repair (BER) genes in its pathogenesis. In this work, we searched for the association between variation of the PARP-1, NEIL1, POLG, and XRCC1 genes and FECD occurrence. MATERIAL AND METHODS This study was conducted on 250 FECD patients and 353 controls using polymerase chain reaction-restriction fragment length polymorphism, high-resolution melting analysis, and the TaqMan® SNP Genotyping Assay. RESULTS We observed that the A/A genotype and the A allele of the c.1196A>G polymorphism of the XRCC1 gene were positively correlated with an increased FECD occurrence, whereas the G allele had the opposite effect. A weak association between the C/G genotype of the g.46438521G>C polymorphism of the NEIL1 gene and an increased incidence of FECD was also detected. Haplotypes of both polymorphisms of the XRCC1 were associated with FECD occurrence. No association of the c.2285T>C, c.-1370T>A and c.580C>T polymorphisms of the PARP-1, POLG and XRCC1 genes, respectively, with FECD occurrence was observed. CONCLUSIONS Our results suggest that the c.1196A>G polymorphism in the XRCC1 gene may be an independent genetic risk factor for FECD.
Collapse
Affiliation(s)
| | - Ewelina Synowiec
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| | - Piotr Polakowski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
50
|
Balliano AJ, Hayes JJ. Base excision repair in chromatin: Insights from reconstituted systems. DNA Repair (Amst) 2015; 36:77-85. [PMID: 26411876 DOI: 10.1016/j.dnarep.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The process of base excision repair has been completely reconstituted in vitro and structural and biochemical properties of the component enzymes thoroughly studied on naked DNA templates. More recent work in this field aims to understand how BER operates on the natural substrate, chromatin [1,2]. Toward this end, a number of researchers, including the Smerdon group, have focused attention to understand how individual enzymes and reconstituted BER operate on nucleosome substrates. While nucleosomes were once thought to completely restrict access of DNA-dependent factors, the surprising finding from these studies suggests that at least some BER components can utilize target DNA bound within nucleosomes as substrates for their enzymatic processes. This data correlates well with both structural studies of these enzymes and our developing understanding of nucleosome conformation and dynamics. While more needs to be learned, these studies highlight the utility of reconstituted BER and chromatin systems to inform our understanding of in vivo biological processes.
Collapse
Affiliation(s)
- Angela J Balliano
- University of Rochester Medical Center, 601 Elmwood Ave., Box 712, Rochester, NY 14642, United States
| | - Jeffrey J Hayes
- University of Rochester Medical Center, 601 Elmwood Ave., Box 712, Rochester, NY 14642, United States.
| |
Collapse
|