1
|
Luong XG, Daldello EM, Rajkovic G, Yang CR, Conti M. Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption. Nucleic Acids Res 2020; 48:3257-3276. [PMID: 31970406 PMCID: PMC7102970 DOI: 10.1093/nar/gkaa010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
During oocyte maturation, changes in gene expression depend exclusively on translation and degradation of maternal mRNAs rather than transcription. Execution of this translation program is essential for assembling the molecular machinery required for meiotic progression, fertilization, and embryo development. With the present study, we used a RiboTag/RNA-Seq approach to explore the timing of maternal mRNA translation in quiescent oocytes as well as in oocytes progressing through the first meiotic division. This genome-wide analysis reveals a global switch in maternal mRNA translation coinciding with oocyte re-entry into the meiotic cell cycle. Messenger RNAs whose translation is highly active in quiescent oocytes invariably become repressed during meiotic re-entry, whereas transcripts repressed in quiescent oocytes become activated. Experimentally, we have defined the exact timing of the switch and the repressive function of CPE elements, and identified a novel role for CPEB1 in maintaining constitutive translation of a large group of maternal mRNAs during maturation.
Collapse
Affiliation(s)
- Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Gabriel Rajkovic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:49-82. [PMID: 27975270 DOI: 10.1007/978-3-319-46095-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.
Collapse
|
3
|
Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size--does this protein make my tail look big? Semin Cell Dev Biol 2014; 34:24-32. [PMID: 24910447 DOI: 10.1016/j.semcdb.2014.05.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
Abstract
While the phenomenon of polyadenylation has been well-studied, the dynamics of poly(A) tail size and its impact on transcript function and cell biology are less well-appreciated. The goal of this review is to encourage readers to view the poly(A) tail as a dynamic, changeable aspect of a transcript rather than a simple static entity that marks the 3' end of an mRNA. This could open up new angles of regulation in the post-transcriptional control of gene expression throughout development, differentiation and cancer.
Collapse
Affiliation(s)
- Aimee L Jalkanen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Stephen J Coleman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
4
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
5
|
Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SGP, Lim AYM, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 2011; 21:1328-38. [PMID: 21555364 DOI: 10.1101/gr.116012.110] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50%-60%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.
Collapse
Affiliation(s)
- Håvard Aanes
- BasAM, Norwegian School of Veterinary Science, 0033 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Potireddy S, Midic U, Liang CG, Obradovic Z, Latham KE. Positive and negative cis-regulatory elements directing postfertilization maternal mRNA translational control in mouse embryos. Am J Physiol Cell Physiol 2010; 299:C818-27. [PMID: 20573994 DOI: 10.1152/ajpcell.00166.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms providing for temporally complex patterns of maternal mRNA translation after fertilization are poorly understood. We employed bioinformatics analysis to compare populations of mRNAs enriched specifically on polysomes at the metaphase II (MII) stage oocyte and late one-cell stages and a detailed deletion/truncation series to identify elements that regulate translation. We used the Bag4 3' untranslated region (UTR) as a model. Bioinformatics analysis revealed one conserved motif, subsequently confirmed by functional studies to be a key translation repressor element. The deletion/truncation studies revealed additional regulatory motifs, most notably a strong translation activator element of <30 nt. Analysis of mRNA secondary structure suggests that secondary structure plays a key role in translation repression. Additional bioinformatics analysis of the regulated mRNA population revealed a diverse collection of regulatory motifs found in small numbers of mRNAs, highlighting a high degree of sequence diversity and combinatorial complexity in the overall control of the maternal mRNA population. We conclude that translational control after fertilization is driven primarily by negative regulatory mechanisms opposing strong translational activators, with stage-specific release of the inhibitory influences to permit recruitment. The combination of bioinformatics analysis and deletion/truncation studies provides the necessary approach for dissecting postfertilization translation regulatory mechanisms.
Collapse
Affiliation(s)
- Santhi Potireddy
- Fels Institute for Cancer Research and Molecular Biology, Information Science and Technology Center, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
7
|
Murai S, Stein P, Buffone MG, Yamashita S, Schultz RM. Recruitment of Orc6l, a dormant maternal mRNA in mouse oocytes, is essential for DNA replication in 1-cell embryos. Dev Biol 2010; 341:205-12. [PMID: 20219456 PMCID: PMC2854205 DOI: 10.1016/j.ydbio.2010.02.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 01/08/2023]
Abstract
Mouse oocytes acquire the ability to replicate DNA during meiotic maturation, presumably to ensure that DNA replication does not occur precociously between MI and MII and only after fertilization. Acquisition of DNA replication competence requires protein synthesis, but the identity of the proteins required for DNA replication is poorly described. In Xenopus, the only component missing for DNA replication competence is CDC6, which is synthesized from a dormant maternal mRNA recruited during oocyte maturation, and a similar situation also occurs during mouse oocyte maturation. We report that ORC6L is another component required for acquisition of DNA replication competence that is absent in mouse oocytes. The dormant maternal Orc6l mRNA is recruited during maturation via a CPE present in its 3' UTR. RNAi-mediated ablation of maternal Orc6l mRNA prevents the maturation-associated increase in ORC6L protein and inhibits DNA replication in 1-cell embryos. These results suggest that mammalian oocytes have more complex mechanisms to establish DNA replication competence when compared to their Xenopus counterparts.
Collapse
Affiliation(s)
- Shin Murai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | | | | | |
Collapse
|
8
|
Lin AC, Tan CL, Lin CL, Strochlic L, Huang YS, Richter JD, Holt CE. Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev 2009; 4:8. [PMID: 19254368 PMCID: PMC2661069 DOI: 10.1186/1749-8104-4-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/02/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Translation in axons is required for growth cone chemotropic responses to many guidance cues. Although locally synthesized proteins are beginning to be identified, how specific mRNAs are selected for translation remains unclear. Control of poly(A) tail length by cytoplasmic polyadenylation element (CPE) binding protein 1 (CPEB1) is a conserved mechanism for mRNA-specific translational regulation that could be involved in regulating translation in axons. RESULTS We show that cytoplasmic polyadenylation is required in Xenopus retinal ganglion cell (RGC) growth cones for translation-dependent, but not translation-independent, chemotropic responses in vitro, and that inhibition of CPE binding through dominant-negative interference severely reduces axon outgrowth in vivo. CPEB1 mRNA transcripts are present at low levels in RGCs but, surprisingly, CPEB1 protein was not detected in eye or brain tissue, and CPEB1 loss-of-function does not affect chemotropic responses or pathfinding in vivo. UV cross-linking experiments suggest that CPE-binding proteins other than CPEB1 in the retina regulate retinal axon development. CONCLUSION These results indicate that cytoplasmic polyadenylation and CPE-mediated translational regulation are involved in retinal axon development, but that CPEB1 may not be the key regulator of polyadenylation in the developing retina.
Collapse
Affiliation(s)
- Andrew C Lin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Chin Lik Tan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 2PY, UK
| | - Chien-Ling Lin
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
| | - Laure Strochlic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Institut National de la Santé et de la Recherche Médicale, Biologie des Jonctions Neuromusculaires, Université Paris V, Paris, France
| | - Yi-Shuian Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2 Academia Road, Taipei 11529, Taiwan
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
9
|
Translational control by cytoplasmic polyadenylation in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:217-29. [PMID: 18316045 PMCID: PMC2323027 DOI: 10.1016/j.bbagrm.2008.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 01/30/2008] [Accepted: 02/04/2008] [Indexed: 12/21/2022]
Abstract
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3′ untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows:The cytoplasmic polyadenylation machinery such as CPEB, the subunits of cleavage and polyadenylation specificity factor (CPSF), symplekin, Gld-2 and poly(A) polymerase (PAP). The signal transduction that leads to the activation of CPE-mediated polyadenylation during oocyte maturation, including the potential roles of kinases such as MAPK, Aurora A, CamKII, cdk1/Ringo and cdk1/cyclin B. The role of deadenylation and translational repression, including the potential involvement of PARN, CCR4/NOT, maskin, pumilio, Xp54 (Ddx6, Rck), other P-body components and isoforms of the cap binding initiation factor eIF4E.
Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.
Collapse
|
10
|
Winter J, Kunath M, Roepcke S, Krause S, Schneider R, Schweiger S. Alternative polyadenylation signals and promoters act in concert to control tissue-specific expression of the Opitz Syndrome gene MID1. BMC Mol Biol 2007; 8:105. [PMID: 18005432 PMCID: PMC2248598 DOI: 10.1186/1471-2199-8-105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 11/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in the X-linked MID1 gene are responsible for Opitz G/BBB syndrome, a malformation disorder of developing midline structures. Previous Northern blot analyses revealed the existence of at least three MID1 transcripts of differing lengths. RESULTS Here we show that alternative polyadenylation generates the size differences observed in the Northern blot analyses. Analysis of EST data together with additional Northern blot analyses proved tissue-specific usage of the alternative polyadenylation sites. Bioinformatic characterization of the different 3'UTRs of MID1 revealed numerous RNA-protein interaction motifs, several of which turned out to be conserved between different species. Furthermore, our data suggest that mRNA termination at different polyadenylation sites is predetermined by the choice of alternative 5'UTRs and promoters of the MID1 gene, a mechanism that efficiently allows synergistic function of 5' and 3'UTRs. CONCLUSION MID1 expression is tightly regulated through concerted action of alternative promoters and alternative polyadenylation signals both during embryonic development and in the adult.
Collapse
Affiliation(s)
- Jennifer Winter
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | - Melanie Kunath
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | - Stefan Roepcke
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
- ALTANA Pharma AG, Preclinical Research Bioinformatics, Konstanz, Germany
| | - Sven Krause
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | | | - Susann Schweiger
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany
- Department of Dermatology, Charité-Hospital, Berlin, Germany
- Department of Neuroscience and Pathology, College of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Slevin MK, Gourronc F, Hartley RS. ElrA binding to the 3'UTR of cyclin E1 mRNA requires polyadenylation elements. Nucleic Acids Res 2007; 35:2167-76. [PMID: 17355986 PMCID: PMC1874641 DOI: 10.1093/nar/gkm084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 01/02/2023] Open
Abstract
The early cell divisions of Xenopus laevis and other metazoan embryos occur in the presence of constitutively high levels of the cell cycle regulator cyclin E1. Upon completion of the 12th cell division, a time at which many maternal proteins are downregulated by deadenylation and destabilization of their encoding mRNAs, maternal cyclin E1 protein is downregulated while its mRNA is polyadenylated and stable. We report here that stable polyadenylation of cyclin E1 mRNA requires three cis-acting elements in the 3' untranslated region; the nuclear polyadenylation sequence, a contiguous cytoplasmic polyadenylation element and an upstream AU-rich element. ElrA, the Xenopus homolog of HuR and a member of the ELAV gene family binds the cyclin E1 3'UTR with high affinity. Deletion of these elements dramatically reduces the affinity of ElrA for the cyclin E1 3'UTR, abolishes polyadenylation and destabilizes the mRNA. Together, these findings provide compelling evidence that ElrA functions in polyadenylation and stabilization of cyclin E1 mRNA via binding these elements.
Collapse
Affiliation(s)
- Michael K. Slevin
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Francoise Gourronc
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rebecca S. Hartley
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Graindorge A, Thuret R, Pollet N, Osborne HB, Audic Y. Identification of post-transcriptionally regulated Xenopus tropicalis maternal mRNAs by microarray. Nucleic Acids Res 2006; 34:986-95. [PMID: 16464828 PMCID: PMC1361620 DOI: 10.1093/nar/gkj492] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytoplasmic control of the adenylation state of mRNAs is a critical post-transcriptional process involved in the regulation of mRNAs stability and translational efficiency. The early development of Xenopus laevis has been a major model for the study of such regulations. We describe here a microarray analysis to identify mRNAs that are regulated by changes in their adenylation state during oogenesis and early development of the diploid frog Xenopus tropicalis. The microarray data were validated using qRT–PCR and direct analysis of the adenylation state of endogenous maternal mRNAs during the period studied. We identified more than 500 mRNAs regulated at the post-transcriptional level among the 3000 mRNAs potentially detected by the microarray. The mRNAs were classified into nine different adenylation behavior categories. The various adenylation profiles observed during oocyte maturation and early development and the analyses of 3′-untranslated region sequences suggest that previously uncharacterized sequence elements control the adenylation behavior of the newly identified mRNAs. These data should prove useful in identifying mRNAs with important functions during oocyte maturation and early development.
Collapse
Affiliation(s)
| | | | | | | | - Yann Audic
- To whom correspondence should be addressed at UMR 6061, Faculté de Médecine, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, CS 34317, 35043 Rennes cedex, France. Tel: +33 2 2323 4475; Fax: +33 2 2323 4478;
| |
Collapse
|
13
|
Abstract
Maternal mRNA translation is regulated in large part by cytoplasmic polyadenylation. This process, which occurs in both vertebrates and invertebrates, is essential for meiosis and body patterning. In spite of the evolutionary conservation of cytoplasmic polyadenylation, many of the cis elements and trans-acting factors appear to have some species specificity. With the recent isolation and cloning of factors involved in both poly(A) elongation and deadenylation, the underlying biochemistry of these reactions is beginning to be elucidated. In addition to early development, cytoplasmic polyadenylation is now known to occur in the adult brain, and there is circumstantial evidence that this process occurs at synapses, where it could mediate the long-lasting phase of long-term potentiation, which is probably the basis of learning and memory. Finally, there may be multiple mechanisms by which polyadenylation promotes translation. Important questions yet to be answered in the field of cytoplasmic polyadenylation are addressed.
Collapse
Affiliation(s)
- J D Richter
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
14
|
de Moor CH, Richter JD. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J 1999; 18:2294-303. [PMID: 10205182 PMCID: PMC1171312 DOI: 10.1093/emboj/18.8.2294] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
15
|
Audic Y, Omilli F, Osborne HB. Embryo deadenylation element-dependent deadenylation is enhanced by a cis element containing AUU repeats. Mol Cell Biol 1998; 18:6879-84. [PMID: 9819376 PMCID: PMC109271 DOI: 10.1128/mcb.18.12.6879] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deadenylation of maternal mRNAs in the Xenopus embryo is a sequence-specific process. One cis element that targets maternal mRNAs for deadenylation after fertilization is the embryo deadenylation element (EDEN). This element, composed of U/R repeats, is specifically bound by a protein, EDEN-BP. In the present study we show that the rate at which an RNA containing an EDEN is deadenylated can be increased by the presence of an additional cis element composed of three AUU repeats. This effect was observed for a natural EDEN (c-mos) and two synthetic EDENs. Hence, the enhancement of EDEN-dependent deadenylation conferred by the (AUU)3 motif is not due to an interaction with a particular EDEN sequence. Mutation of the (AUU)3 motif abrogated the enhancement of EDEN-dependent deadenylation. These data indicate that the rate at which a specific maternal mRNA is deadenylated in Xenopus embryos is probably defined by a cross talk between multiple cis elements.
Collapse
Affiliation(s)
- Y Audic
- CNRS UPR 41, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | |
Collapse
|
16
|
Stutz A, Conne B, Huarte J, Gubler P, Völkel V, Flandin P, Vassalli JD. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev 1998; 12:2535-48. [PMID: 9716406 PMCID: PMC317088 DOI: 10.1101/gad.12.16.2535] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1997] [Accepted: 05/26/1998] [Indexed: 11/24/2022]
Abstract
The mechanisms responsible for translational silencing of certain mRNAs in growing oocytes, and for their awakening during meiotic maturation, are not completely elucidated. We show that binding of a approximately 80-kD protein to a UA-rich element in the 3' UTR of tissue-type plasminogen activator mRNA, a mouse oocyte mRNA that is translated during meiotic maturation, silences the mRNA in primary oocytes. Translation can be triggered by injecting a competitor transcript that displaces this silencing factor, without elongation of a pre-existing short poly(A) tail, the presence of which is mandatory. During meiotic maturation, cytoplasmic polyadenylation is necessary to maintain a poly(A) tail, but the determining event for translational activation appears to be the modification or displacement of the silencing factor.
Collapse
Affiliation(s)
- A Stutz
- Department of Morphology, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Paillard L, Omilli F, Legagneux V, Bassez T, Maniey D, Osborne HB. EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J 1998; 17:278-87. [PMID: 9427761 PMCID: PMC1170378 DOI: 10.1093/emboj/17.1.278] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During Xenopus early development, gene expression is regulated mainly at the translational level by the length of the poly(A) tail of mRNAs. The Eg family and c-mos maternal mRNAs are deadenylated rapidly and translationally repressed after fertilization. Here, we characterize a short sequence element (EDEN) responsible for the rapid deadenylation of Eg5 mRNA. Determining the core EDEN sequence permitted us to localize the c-mos EDEN sequence. The c-mos EDEN confered a rapid deadenylation to a reporter gene. The EDEN-specific RNA-binding protein (EDEN-BP) was purified and a cDNA obtained. EDEN-BP is highly homologous to a human protein possibly involved in myotonic dystrophy. Immunodepleting EDEN-BP from an egg extract totally abolished the EDEN-mediated deadenylation activity, but did not affect the default deadenylation activity. Therefore, EDEN-BP constitutes the first trans-acting factor for which an essential role in the specificity of mRNA deadenylation has been directly demonstrated.
Collapse
Affiliation(s)
- L Paillard
- CNRS UPR 41, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Wu L, Good PJ, Richter JD. The 36-kilodalton embryonic-type cytoplasmic polyadenylation element-binding protein in Xenopus laevis is ElrA, a member of the ELAV family of RNA-binding proteins. Mol Cell Biol 1997; 17:6402-9. [PMID: 9343402 PMCID: PMC232492 DOI: 10.1128/mcb.17.11.6402] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The translational activation of several maternal mRNAs in Xenopus laevis is dependent on cytoplasmic poly(A) elongation. Messages harboring the UUUUUAU-type cytoplasmic polyadenylation element (CPE) in their 3' untranslated regions (UTRs) undergo polyadenylation and translation during oocyte maturation. This CPE is bound by the protein CPEB, which is essential for polyadenylation. mRNAs that have the poly(U)12-27 embryonic-type CPE (eCPE) in their 3' UTRs undergo polyadenylation and translation during the early cleavage and blastula stages. A 36-kDa eCPE-binding protein in oocytes and embryos has been identified by UV cross-linking. We now report that this 36-kDa protein is ElrA, a member of the ELAV family of RNA-binding proteins. The proteins are identical in size, antibody directed against ElrA immunoprecipitates the 36-kDa protein, and the two proteins have the same RNA binding specificity in vitro. C12 and activin receptor mRNAs, both of which contain eCPEs, are detected in immunoprecipitated ElrA-mRNP complexes from eggs and embryos. In addition, this in vivo interaction requires the eCPE. Although a number of experiments failed to define a role for ElrA in cytoplasmic polyadenylation, the expression of a dominant negative ElrA protein in embryos results in an exogastrulation phenotype. The possible functions of ElrA in gastrulation are discussed.
Collapse
Affiliation(s)
- L Wu
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | |
Collapse
|
19
|
Tian J, Thomsen GH, Gong H, Lennarz WJ. Xenopus Cdc6 confers sperm binding competence to oocytes without inducing their maturation. Proc Natl Acad Sci U S A 1997; 94:10729-34. [PMID: 9380703 PMCID: PMC23465 DOI: 10.1073/pnas.94.20.10729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/1997] [Indexed: 02/05/2023] Open
Abstract
Amphibian eggs normally require meiotic maturation to be competent for fertilization. A necessary prerequisite for this event is sperm binding, and we show that under normal physiological conditions this property is acquired at, but not before, meiotic maturation. Immature oocytes do not bind sperm, but injection of total egg poly(A)+ mRNA into immature oocytes confers sperm binding in the absence of meiotic maturation. Using an expression cloning approach we have isolated a single cDNA from egg poly(A)+ mRNA that can induce sperm binding in immature oocytes. The cDNA was found to encode Xenopus Cdc6, a protein that previously has been shown to function in initiation of DNA replication and cell cycle control. This unanticipated finding provides evidence of a link between a regulator of the cell cycle and alterations in cell surface properties that affect gamete binding.
Collapse
Affiliation(s)
- J Tian
- Department of Biochemistry and Cell Biology and the Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
20
|
Gebauer F, Richter JD. Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc Natl Acad Sci U S A 1996; 93:14602-7. [PMID: 8962099 PMCID: PMC26180 DOI: 10.1073/pnas.93.25.14602] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1996] [Accepted: 10/01/1996] [Indexed: 02/03/2023] Open
Abstract
Cytoplasmic polyadenylylation is an essential process that controls the translation of maternal mRNAs during early development and depends on two cis elements in the 3' untranslated region: the polyadenylylation hexanucleotide AAUAAA and a U-rich cytoplasmic polyadenylylation element (CPE). In searching for factors that could mediate cytoplasmic polyadenylylation of mouse c-mos mRNA, which encodes a serine/threonine kinase necessary for oocyte maturation, we have isolated the mouse homolog of CPEB, a protein that binds to the CPEs of a number of mRNAs in Xenopus oocytes and is required for their polyadenylylation. Mouse CPEB (mCPEB) is a 62-kDa protein that binds to the CPEs of c-mos mRNA. mCPEB mRNA is present in the ovary, testis, and kidney; within the ovary, this RNA is restricted to oocytes. mCPEB shows 80% overall identity with its Xenopus counterpart, with a higher homology in the carboxyl-terminal portion, which contains two RNA recognition motifs and a cysteine/histidine repeat. Proteins from arthropods and nematodes are also similar to this region, suggesting an ancient and widely used mechanism to control polyadenylylation and translation.
Collapse
Affiliation(s)
- F Gebauer
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
21
|
Verrotti AC, Thompson SR, Wreden C, Strickland S, Wickens M. Evolutionary conservation of sequence elements controlling cytoplasmic polyadenylylation. Proc Natl Acad Sci U S A 1996; 93:9027-32. [PMID: 8799148 PMCID: PMC38589 DOI: 10.1073/pnas.93.17.9027] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cytoplasmic polyadenylylation is an evolutionarily conserved mechanism involved in the translational activation of a set of maternal messenger RNAs (mRNAs) during early development. In this report, we show by interspecies injections that Xenopus and mouse use the same regulatory sequences to control cytoplasmic poly(A) addition during meiotic maturation. Similarly, Xenopus and Drosophila embryos exploit functionally conserved signals to regulate polyadenylylation during early post-fertilization development. These experiments demonstrate that the sequence elements that govern cytoplasmic polyadenylylation, and hence one form of translational activation, function across species. We infer that the requisite regulatory sequence elements, and likely the trans-acting components with which they interact, have been conserved since the divergence of vertebrates and arthropods.
Collapse
Affiliation(s)
- A C Verrotti
- Department of Molecular Pharmacology, University Medical Center at Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
During oocyte maturation and early embryogenesis in Xenopus laevis, the translation of several mRNAs is regulated by cytoplasmic poly(A) elongation, a reaction catalyzed by poly(A) polymerase (PAP). We have cloned, sequenced, and examined several biochemical properties of a Xenopus PAP. This protein is 87% identical to the amino-terminal portion of bovine PAP, which catalyzes the nuclear polyadenylation reaction, but lacks a large region of the corresponding carboxy terminus, which contains the nuclear localization signal. When injected into oocytes, the Xenopus PAP remains concentrated in the cytoplasm, suggesting that it is a specifically cytoplasmic enzyme. Oocytes contain several PAP mRNA-related transcripts, and the levels of at least the one encoding the putative cytoplasmic enzyme are relatively constant in oocytes and early embryos but decline after blastulation. When expressed in bacteria and purified by affinity and MonoQ-Sepharose chromatography, the protein has enzymatic activity and adds poly(A) to a model substrate. Importantly, affinity-purified antibodies directed against Xenopus PAP inhibit cytoplasmic polyadenylation in egg extracts. These data suggest that the PAP described here could participate in cytoplasmic polyadenylation during Xenopus oocyte maturation.
Collapse
Affiliation(s)
- F Gebauer
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|