1
|
Abstract
Accurate translation of the genetic code is critical to ensure expression of proteins with correct amino acid sequences. Certain tRNAs can cause a shift out of frame (i.e., frameshifting) due to imbalances in tRNA concentrations, lack of tRNA modifications or insertions or deletions in tRNAs (called frameshift suppressors). Here, we determined the structural basis for how frameshift-suppressor tRNASufA6 (a derivative of tRNAPro) reprograms the mRNA frame to translate a 4-nt codon when bound to the bacterial ribosome. After decoding at the aminoacyl (A) site, the crystal structure of the anticodon stem-loop of tRNASufA6 bound in the peptidyl (P) site reveals ASL conformational changes that allow for recoding into the +1 mRNA frame. Furthermore, a crystal structure of full-length tRNASufA6 programmed in the P site shows extensive conformational rearrangements of the 30S head and body domains similar to what is observed in a translocation intermediate state containing elongation factor G (EF-G). The 30S movement positions tRNASufA6 toward the 30S exit (E) site disrupting key 16S rRNA-mRNA interactions that typically define the mRNA frame. In summary, this tRNA-induced 30S domain change in the absence of EF-G causes the ribosome to lose its grip on the mRNA and uncouples the canonical forward movement of the tRNAs during elongation.
Collapse
|
2
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
3
|
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3. Viruses 2016; 8:v8070193. [PMID: 27428991 PMCID: PMC4974528 DOI: 10.3390/v8070193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.
Collapse
|
4
|
Baranov PV, Atkins JF, Yordanova MM. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat Rev Genet 2015; 16:517-29. [PMID: 26260261 DOI: 10.1038/nrg3963] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The non-universality of the genetic code is now widely appreciated. Codes differ between organisms, and certain genes are known to alter the decoding rules in a site-specific manner. Recently discovered examples of decoding plasticity are particularly spectacular. These examples include organisms and organelles with disruptions of triplet continuity during the translation of many genes, viruses that alter the entire genetic code of their hosts and organisms that adjust their genetic code in response to changing environments. In this Review, we outline various modes of alternative genetic decoding and expand existing terminology to accommodate recently discovered manifestations of this seemingly sophisticated phenomenon.
Collapse
Affiliation(s)
- Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Ireland
| | - John F Atkins
- 1] School of Biochemistry and Cell Biology, University College Cork, Ireland. [2] Department of Human Genetics, University of Utah, 15 N 2030 E Rm. 7410, Salt Lake City, Utah 84112-5330, USA
| | | |
Collapse
|
5
|
Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA. Nat Commun 2015; 6:7226. [PMID: 26009254 PMCID: PMC4445466 DOI: 10.1038/ncomms8226] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/20/2015] [Indexed: 01/20/2023] Open
Abstract
Maintaining the translational reading frame poses difficulty for the ribosome. Slippery mRNA sequences such as CC[C/U]-[C/U], read by isoacceptors of tRNA(Pro), are highly prone to +1 frameshift (+1FS) errors. Here we show that +1FS errors occur by two mechanisms, a slow mechanism when tRNA(Pro) is stalled in the P-site next to an empty A-site and a fast mechanism during translocation of tRNA(Pro) into the P-site. Suppression of +1FS errors requires the m(1)G37 methylation of tRNA(Pro) on the 3' side of the anticodon and the translation factor EF-P. Importantly, both m(1)G37 and EF-P show the strongest suppression effect when CC[C/U]-[C/U] are placed at the second codon of a reading frame. This work demonstrates that maintaining the reading frame immediately after the initiation of translation by the ribosome is an essential aspect of protein synthesis.
Collapse
|
6
|
Qian W, Yang JR, Pearson NM, Maclean C, Zhang J. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet 2012; 8:e1002603. [PMID: 22479199 PMCID: PMC3315465 DOI: 10.1371/journal.pgen.1002603] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/05/2012] [Indexed: 11/18/2022] Open
Abstract
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. Although an amino acid can be encoded by multiple synonymous codons, these codons are not used equally frequently in a genome. Biased codon usage is believed to improve translational efficiency because it is thought that preferentially used codons are translated faster than unpreferred ones. Surprisingly, we find similar translational speeds among synonymous codons. We show that translational efficiency is optimized by a previously unknown mechanism that relies on proportional use of codons according to their cognate tRNA concentrations. Our results provide important molecular details of protein translation, answer why codon usage is unequal, demonstrate widespread natural selection for translational efficiency, and can guide designs of synthetic genomes and cells with efficient translation systems.
Collapse
Affiliation(s)
- Wenfeng Qian
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nathaniel M. Pearson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calum Maclean
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Türkel S, Kaplan G, Farabaugh PJ. Glucose signalling pathway controls the programmed ribosomal frameshift efficiency in retroviral-like element Ty3 in Saccharomyces cerevisiae. Yeast 2011; 28:799-808. [PMID: 21989811 PMCID: PMC7169698 DOI: 10.1002/yea.1906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/13/2011] [Accepted: 08/30/2011] [Indexed: 12/22/2022] Open
Abstract
Ty3 elements of S. cerevisiae contain two overlapping coding regions, GAG3 and POL3, which are functional homologues of retroviral gag and pol genes, respectively. Pol3 is translated as a Gag3‐Pol3 fusion protein dependent on a +1 programmed frameshift at a site with the overlap between the two genes. We show that the Ty3 frameshift frequency varies up to 10‐fold in S. cerevisiae cells depending on carbon source. Frameshift efficiency is significantly lower in cells growing on glucose as carbon source than in cells growing on poor alternative carbon sources (glycerol/lactate or galactose). Our results indicate that Ty3 programmed ribosomal frameshift efficiency in response to glucose signalling requires two protein kinases: Snf1p and cAMP‐dependent protein kinase A (PKA). Increased frameshifting on alternative carbon sources also appears to require cytoplasmic localization of Snf1p, mediated by the Sip2p protein. In addition to the two required protein kinases, our results implicate that Stm1p, a ribosome‐associated protein involved in nutrient sensing, is essential for the carbon source‐dependent regulation of Ty3 frameshifting. These data indicate that Ty3 programmed ribosomal frameshift is not a constitutive process but that it is regulated in response to the glucose‐signalling pathway. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sezai Türkel
- Uludag University, Faculty of Arts and Sciences, Department of Biology, 16059-, Bursa, Turkey.
| | | | | |
Collapse
|
8
|
Rato C, Amirova SR, Bates DG, Stansfield I, Wallace HM. Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 2011; 39:4587-97. [PMID: 21303766 PMCID: PMC3113565 DOI: 10.1093/nar/gkq1349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antizyme protein, Oaz1, regulates synthesis of the polyamines putrescine, spermidine and spermine by controlling stability of the polyamine biosynthetic enzyme, ornithine decarboxylase. Antizyme mRNA translation depends upon a polyamine-stimulated +1 ribosomal frameshift, forming a complex negative feedback system in which the translational frameshifting event may be viewed in engineering terms as a feedback controller for intracellular polyamine concentrations. In this article, we present the first systems level study of the characteristics of this feedback controller, using an integrated experimental and modeling approach. Quantitative analysis of mutant yeast strains in which polyamine synthesis and interconversion were blocked revealed marked variations in frameshift responses to the different polyamines. Putrescine and spermine, but not spermidine, showed evidence of co-operative stimulation of frameshifting and the existence of multiple ribosome binding sites. Combinatorial polyamine treatments showed polyamines compete for binding to common ribosome sites. Using concepts from enzyme kinetics and control engineering, a mathematical model of the translational controller was developed to describe these complex ribosomal responses to combinatorial polyamine effects. Each one of a range of model predictions was successfully validated against experimental frameshift frequencies measured in S-adenosylmethionine-decarboxylase and antizyme mutants, as well as in the wild-type genetic background.
Collapse
Affiliation(s)
- Claudia Rato
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
9
|
Masuda I, Matsuzaki M, Kita K. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata). Nucleic Acids Res 2010; 38:6186-94. [PMID: 20507907 PMCID: PMC2952869 DOI: 10.1093/nar/gkq449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
10
|
Zhang G, Fedyunin I, Miekley O, Valleriani A, Moura A, Ignatova Z. Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Res 2010; 38:4778-87. [PMID: 20360046 PMCID: PMC2919707 DOI: 10.1093/nar/gkq196] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The translation of genetic information according to the sequence of the mRNA template occurs with high accuracy and fidelity. Critical events in each single step of translation are selection of transfer RNA (tRNA), codon reading and tRNA-regeneration for a new cycle. We developed a model that accurately describes the dynamics of single elongation steps, thus providing a systematic insight into the sensitivity of the mRNA translation rate to dynamic environmental conditions. Alterations in the concentration of the aminoacylated tRNA can transiently stall the ribosomes during translation which results, as suggested by the model, in two outcomes: either stress-induced change in the tRNA availability triggers the premature termination of the translation and ribosomal dissociation, or extensive demand for one tRNA species results in a competition between frameshift to an aberrant open-reading frame and ribosomal drop-off. Using the bacterial Escherichia coli system, we experimentally draw parallels between these two possible mechanisms.
Collapse
Affiliation(s)
- Gong Zhang
- Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Russell RD, Beckenbach AT. Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. J Mol Evol 2009; 67:682-95. [PMID: 19030769 PMCID: PMC2706983 DOI: 10.1007/s00239-008-9179-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/24/2008] [Indexed: 12/02/2022]
Abstract
A +1 frameshift insertion has been documented in the mitochondrial gene nad3 in some birds and reptiles. By sequencing polyadenylated mRNA of the chicken (Gallus gallus), we have shown that the extra nucleotide is transcribed and is present in mature mRNA. Evidence from other animal mitochondrial genomes has led us to hypothesize that certain mitochondrial translation systems have the ability to tolerate frameshift insertions using programmed translational frameshifting. To investigate this, we sequenced the mitochondrial genome of the red-eared slider turtle (Trachemys scripta), where both the widespread nad3 frameshift insertion and a novel site in nad4l were found. Sequencing the region surrounding the insertion in nad3 in a number of other turtles and tortoises reveal general mitochondrial +1 programmed frameshift site features as well as the apparent redefinition of a stop codon in Parker’s snake-neck turtle (Chelodina parkeri), the first known example of this in vertebrate mitochondria.
Collapse
Affiliation(s)
- R David Russell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | |
Collapse
|
12
|
Henderson CM, Anderson CB, Howard MT. Antisense-induced ribosomal frameshifting. Nucleic Acids Res 2006; 34:4302-10. [PMID: 16920740 PMCID: PMC1616946 DOI: 10.1093/nar/gkl531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/07/2006] [Accepted: 07/07/2006] [Indexed: 11/25/2022] Open
Abstract
Programmed ribosomal frameshifting provides a mechanism to decode information located in two overlapping reading frames by diverting a proportion of translating ribosomes into a second open reading frame (ORF). The result is the production of two proteins: the product of standard translation from ORF1 and an ORF1-ORF2 fusion protein. Such programmed frameshifting is commonly utilized as a gene expression mechanism in viruses that infect eukaryotic cells and in a subset of cellular genes. RNA secondary structures, consisting of pseudoknots or stem-loops, located downstream of the shift site often act as cis-stimulators of frameshifting. Here, we demonstrate for the first time that antisense oligonucleotides can functionally mimic these RNA structures to induce +1 ribosomal frameshifting when annealed downstream of the frameshift site, UCC UGA. Antisense-induced shifting of the ribosome into the +1 reading frame is highly efficient in both rabbit reticulocyte lysate translation reactions and in cultured mammalian cells. The efficiency of antisense-induced frameshifting at this site is responsive to the sequence context 5' of the shift site and to polyamine levels.
Collapse
Affiliation(s)
- Clark M. Henderson
- Department of Human Genetics, University of Utah15 N 2030 E, Room 7410, Salt Lake City, UT 84112-5330, USA
| | - Christine B. Anderson
- Department of Human Genetics, University of Utah15 N 2030 E, Room 7410, Salt Lake City, UT 84112-5330, USA
| | - Michael T. Howard
- Department of Human Genetics, University of Utah15 N 2030 E, Room 7410, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
13
|
Beckenbach AT, Robson SKA, Crozier RH. Single nucleotide +1 frameshifts in an apparently functional mitochondrial cytochrome b gene in ants of the genus Polyrhachis. J Mol Evol 2005; 60:141-52. [PMID: 15785844 DOI: 10.1007/s00239-004-0178-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 10/01/2004] [Indexed: 11/25/2022]
Abstract
Twelve of 30 species examined in the ant genus Polyrhachis carry single nucleotide insertions at one or two positions within the mitochondrial cytochrome b (cytb) gene. Two of the sites are present in more than one species. Nucleotide substitutions in taxa carrying insertions show the strong codon position bias expected of functional protein coding genes, with substitutions concentrated in the third positions of the original reading frame. This pattern of evolution of the sequences strongly suggests that they are functional cytb sequences. This result is not the first report of +1 frameshift insertions in animal mitochondrial genes. A similar site was discovered in vertebrates, where single nucleotide frameshift insertions in many birds and a turtle were reported by Mindell et al. (Mol Biol Evol 15:1568, 1998). They hypothesized that the genes are correctly decoded by a programmed frameshift during translation. The discovery of four additional sites gives us the opportunity to look for common features that may explain how programmed frameshifts can arise. The common feature appears to be the presence of two consecutive rare codons at the insertion site. We hypothesize that the second of these codons is not efficiently translated, causing a pause in the translation process. During the stall the weak wobble pairing of the tRNA bound in the peptidyl site of the ribosome, together with an exact Watson-Crick codon-anticodon pairing in the +1 position, allows translation to continue in the +1 reading frame. The result of these events is an adequate level of translation of a full-length and fully functional protein. A model is presented for decoding of these mitochondrial genes, consistent with known features of programmed translational frameshifting in the yeast TY1 and TY3 retrotransposons.
Collapse
Affiliation(s)
- Andrew T Beckenbach
- Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6.
| | | | | |
Collapse
|
14
|
Abstract
Most missense errors have little effect on protein function, since they only exchange one amino acid for another. However, processivity errors, frameshifting or premature termination result in a synthesis of an incomplete peptide. There may be a connection between missense and processivity errors, since processivity errors now appear to result from a second error occurring after recruitment of an errant aminoacyl-tRNA, either spontaneous dissociation causing premature termination or translational frameshifting. This is clearest in programmed translational frameshifting where the mRNA programs errant reading by a near-cognate tRNA; this error promotes a second frameshifting error (a dual-error model of frameshifting). The same mechanism can explain frameshifting by suppressor tRNAs, even those with expanded anticodon loops. The previous model that suppressor tRNAs induce quadruplet translocation now appears incorrect for most, and perhaps for all of them. We suggest that the 'spontaneous' tRNA-induced frameshifting and 'programmed' mRNA-induced frameshifting use the same mechanism, although the frequency of frameshifting is very different. This new model of frameshifting suggests that the tRNA is not acting as the yardstick to measure out the length of the translocation step. Rather, the translocation of 3 nucleotides may be an inherent feature of the ribosome.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
16
|
Abstract
There are several ways that genes may encode alternative products. The most widely recognized mechanism is alternative splicing. However, genes may also employ noncanonical translational events to produce such products. Some of these mechanisms operate at the level of translational initiation. In prokaryotes, genes may include alternative ribosome-binding sites directing the synthesis of products that differ at the N terminus. In eukaryotes, in which ribosome-binding sites do not exist, leaky scanning allows the same kind of variation. Noncanonical elongation events can also generate products that differ at their C terminus (1–3). Such events include programmed readthrough of translational termination codons (4,5) translational frameshifts (6–9), and translational hops (10,11). In each case, the ribosome fails to follow normal rules of decoding, leading to the synthesis of a protein that is not encoded, in the normal sense, in the DNA. In this chapter, we will describe the methods employed in the identification and analysis of programmed translational frameshift sites, including their discovery, measurement of the efficiency of the events, and determination of the mechanism of the frameshift.
Collapse
Affiliation(s)
- A Vimaladithan
- Department of Biological Sciences, University of Maryland, Baltimore, USA
| | | |
Collapse
|
17
|
Horsburgh BC, Kollmus H, Hauser H, Coen DM. Translational recoding induced by G-rich mRNA sequences that form unusual structures. Cell 1996; 86:949-59. [PMID: 8808630 PMCID: PMC7126349 DOI: 10.1016/s0092-8674(00)80170-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated a herpesvirus mutant that contains a single base insertion in its thymidine kinase (tk) gene yet expresses low levels of TK via a net +1 translational recoding event. Within this mutant gene, we defined a G-rich signal that is sufficient to induce recoding. Unlike other translational recoding events, downstream RNA structures or termination codons did not stimulate recoding, and paused ribosomes were not detected. Mutational analysis indicated that specific tRNAs or codon-anticodon slippage were unlikely to account for recoding. Rather, recoding efficiency correlated with the G-richness of the signal and its ability to form unusual structures. These findings identify a mechanism of translational recoding with unique features and potential implications for clinical drug resistance and other biological systems.
Collapse
Affiliation(s)
- B C Horsburgh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Proper maintenance of translational reading frame by ribosomes is essential for cell growth and viability. In the last 10 years it has been shown that a number of viruses induce ribosomes to shift reading frame in order to regulate the expression of gene products having enzymatic functions. Studies on ribosomal frameshifting in viruses of yeast have been particularly enlightening. The roles of viral mRNA sequences and secondary structures have been elucidated and a picture of how these interact with host chromosomal gene products is beginning to emerge. The efficiency of ribosomal frameshifting is important for viral particle assembly, and has identified ribosomal frameshifting as a potential target for antiviral agents. The availability of mutants of host chromosomal gene products involved in maintaining the efficiency of ribosomal frameshifting bodes well for the use of yeast in future studies of ribosomal frameshifting.
Collapse
Affiliation(s)
- J D Dinman
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Pande S, Vimaladithan A, Zhao H, Farabaugh PJ. Pulling the ribosome out of frame by +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Mol Cell Biol 1995; 15:298-304. [PMID: 7799937 PMCID: PMC231956 DOI: 10.1128/mcb.15.1.298] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Programmed translational frameshifts efficiently alter a translational reading frame by shifting the reading frame during translation. A +1 frameshift has two simultaneous requirements: a translational pause which occurs when either an inefficiently recognized sense or termination codon occupies the A site, and the presence of a special peptidyl-tRNA occupying the P site during the pause. The special nature of the peptidyl-tRNA reflects its ability to slip +1 on the mRNA or to facilitate binding of an incoming aminoacyl-tRNA out of frame in the A site. This second mechanism suggested that in some cases the first +1 frame tRNA could have an active role in frameshifting. We found that overproducing this tRNA can drive frameshifting, surprisingly regardless of whether frameshifting occurs by peptidyl-tRNA slippage or out-of-frame binding of aminoacyl-tRNA. This finding suggests that in both cases, the shift in reading frame occurs coincident with formation of a cognate codon-anticodon interaction in the shifted frame.
Collapse
Affiliation(s)
- S Pande
- Department of Biological Sciences, University of Maryland, Baltimore 21228
| | | | | | | |
Collapse
|