1
|
Lim R, Banerjee A, Biswas R, Chari AN, Raghavan S. Mechanotransduction through adhesion molecules: Emerging roles in regulating the stem cell niche. Front Cell Dev Biol 2022; 10:966662. [PMID: 36172276 PMCID: PMC9511051 DOI: 10.3389/fcell.2022.966662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells have been shown to play an important role in regenerative medicine due to their proliferative and differentiation potential. The challenge, however, lies in regulating and controlling their potential for this purpose. Stem cells are regulated by growth factors as well as an array of biochemical and mechanical signals. While the role of biochemical signals and growth factors in regulating stem cell homeostasis is well explored, the role of mechanical signals has only just started to be investigated. Stem cells interact with their niche or to other stem cells via adhesion molecules that eventually transduce mechanical cues to maintain their homeostatic function. Here, we present a comprehensive review on our current understanding of the influence of the forces perceived by cell adhesion molecules on the regulation of stem cells. Additionally, we provide insights on how this deeper understanding of mechanobiology of stem cells has translated toward therapeutics.
Collapse
Affiliation(s)
- Ryan Lim
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Avinanda Banerjee
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
- Sastra University, Thanjavur, TN, India
| | - Anana Nandakumar Chari
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Srikala Raghavan
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| |
Collapse
|
2
|
Bernegger S, Vidmar R, Fonovic M, Posselt G, Turk B, Wessler S. Identification of Desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Commun Signal 2021; 19:108. [PMID: 34742300 PMCID: PMC8571890 DOI: 10.1186/s12964-021-00788-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND High temperature requirement A (HtrA) is an active serine protease secreted by the group-I carcinogen Helicobacter pylori (H. pylori). The human cell adhesion protein and tumor suppressor E-cadherin (hCdh1) expressed on the surface of gastric epithelial cells was identified as the first HtrA substrate. HtrA-mediated hCdh1 cleavage and subsequent disruption of intercellular adhesions are considered as important steps in H. pylori pathogenesis. In this study, we performed a proteomic profiling of H. pylori HtrA (HpHtrA) to decipher the complex mechanism of H. pylori interference with the epithelial barrier integrity. RESULTS Using a proteomic approach we identified human desmoglein-2 (hDsg2), neuropilin-1, ephrin-B2, and semaphorin-4D as novel extracellular HpHtrA substrates and confirmed the well characterized target hCdh1. HpHtrA-mediated hDsg2 cleavage was further analyzed by in vitro cleavage assays using recombinant proteins. In infection experiments, we demonstrated hDsg2 shedding from H. pylori-colonized MKN28 and NCI-N87 cells independently of pathogen-induced matrix-metalloproteases or ADAM10 and ADAM17. CONCLUSIONS Characterizing the substrate specificity of HpHtrA revealed efficient hDsg2 cleavage underlining the importance of HpHtrA in opening intercellular junctions. Video Abstract.
Collapse
Affiliation(s)
- Sabine Bernegger
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Marko Fonovic
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA, Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ. Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. Hum Mol Genet 2021; 29:1900-1921. [PMID: 32196547 PMCID: PMC7372553 DOI: 10.1093/hmg/ddaa050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell–cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.
Collapse
Affiliation(s)
- Reham Alharatani
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Athina Ververi
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ana Beleza-Meireles
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quinten T Patterson
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - John N Griffin
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nabina Bhujel
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Caitlin A Chang
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Abhijit Dixit
- Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sumayyah Hannan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Natsuko Neo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.,Tokyo Medical and Dental University, Tokyo, Japan
| | - Alex Cash
- South Thames Cleft Service, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth Bhoj
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruth Cleaver
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Meriel McEntagart
- Department of Clinical Genetics, St George's Hospital, London SW17 0RE, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospital Bristol NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Richard Scott
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Jane A Hurst
- Department of Clinical Genetics, Great Ormond Street Hospital Trust, London WC1N 3JH, UK
| | - Ping Yee Billie Au
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, AB, Canada
| | - Marie Therese Hosey
- Paediatric Dentistry, Centre of Oral, Clinical and Translational Science, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE5 9RS, UK
| | - Mustafa Khokha
- Pediatric Genomics Discovery Program, Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Denise K Marciano
- Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
4
|
Specific substrates composed of collagen and fibronectin support the formation of epithelial cell sheets by MDCK cells lacking α-catenin or classical cadherins. Cell Tissue Res 2021; 385:127-148. [PMID: 33864500 DOI: 10.1007/s00441-021-03448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The effect of the extracellular matrix substrates on the formation of epithelial cell sheets was studied using MDCK cells in which the α-catenin gene was disrupted. Although the mutant cells did not form an epithelial cell sheet in conventional cell culture, the cells formed an epithelial cell sheet when they were cultured on or in a collagen gel; the same results were not observed when cells were cultured on collagen-coated cover glasses or culture dishes. Moreover, the cells cultured on the cell culture inserts coated with fibronectin, Matrigel, or vitronectin formed epithelial cell sheets, whereas the cells cultured on cover glasses coated with these proteins did not form the structure, implying that the physical and chemical features of the substrates exert a profound effect on the formation of epithelial cell sheets. MDCK cells lacking the expression of E- and K-cadherins displayed similar properties. When the mutant MDCK cells were cultured in the presence of blebbistatin, they formed epithelial cell sheets, suggesting that myosin II was involved in the formation of these sheets. These cell sheets showed intimate cell-cell adhesion, and electron microscopy confirmed the formation of cell junctions. We propose that specific ECM substrates organize the formation of basic epithelial cell sheets, whereas classical cadherins stabilize cell-cell contacts and promote the formation of structures.
Collapse
|
5
|
Weber P, Baltus D, Jatho A, Drews O, Zelarayan LC, Wieland T, Lutz S. RhoGEF17-An Essential Regulator of Endothelial Cell Death and Growth. Cells 2021; 10:cells10040741. [PMID: 33801779 PMCID: PMC8067313 DOI: 10.3390/cells10040741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/18/2022] Open
Abstract
The Rho guanine nucleotide exchange factor RhoGEF17 was described to reside in adherens junctions (AJ) in endothelial cells (EC) and to play a critical role in the regulation of cell adhesion and barrier function. The purpose of this study was to analyze signal cascades and processes occurring subsequent to AJ disruption induced by RhoGEF17 knockdown. Primary human and immortalized rat EC were used to demonstrate that an adenoviral-mediated knockdown of RhoGEF17 resulted in cell rounding and an impairment in spheroid formation due to an enhanced proteasomal degradation of AJ components. In contrast, β-catenin degradation was impaired, which resulted in an induction of the β-catenin-target genes cyclin D1 and survivin. RhoGEF17 depletion additionally inhibited cell adhesion and sheet migration. The RhoGEF17 knockdown prevented the cells with impeded cell–cell and cell–matrix contacts from apoptosis, which was in line with a reduction in pro-caspase 3 expression and an increase in Akt phosphorylation. Nevertheless, the cells were not able to proliferate as a cell cycle block occurred. In summary, we demonstrate that a loss of RhoGEF17 disturbs cell–cell and cell–substrate interaction in EC. Moreover, it prevents the EC from cell death and blocks cell proliferation. Non-canonical β-catenin signaling and Akt activation could be identified as a potential mechanism.
Collapse
Affiliation(s)
- Pamina Weber
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany; (P.W.); (D.B.)
| | - Doris Baltus
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany; (P.W.); (D.B.)
| | - Aline Jatho
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (A.J.); (L.C.Z.)
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Oliver Drews
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Laura C. Zelarayan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (A.J.); (L.C.Z.)
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany; (P.W.); (D.B.)
- DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Correspondence: (T.W.); (S.L.)
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (A.J.); (L.C.Z.)
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
- Correspondence: (T.W.); (S.L.)
| |
Collapse
|
6
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
van der Wal T, van Amerongen R. Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin. Open Biol 2020; 10:200267. [PMID: 33292105 PMCID: PMC7776579 DOI: 10.1098/rsob.200267] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
CTNNB1 (catenin β-1, also known as β-catenin) plays a dual role in the cell. It is the key effector of WNT/CTNNB1 signalling, acting as a transcriptional co-activator of TCF/LEF target genes. It is also crucial for cell adhesion and a critical component of cadherin-based adherens junctions. Two functional pools of CTNNB1, a transcriptionally active and an adhesive pool, can therefore be distinguished. Whether cells merely balance the distribution of available CTNNB1 between these functional pools or whether interplay occurs between them has long been studied and debated. While interplay has been indicated upon artificial modulation of cadherin expression levels and during epithelial-mesenchymal transition, it is unclear to what extent CTNNB1 exchange occurs under physiological conditions and in response to WNT stimulation. Here, we review the available evidence for both of these models, discuss how CTNNB1 binding to its many interaction partners is controlled and propose avenues for future studies.
Collapse
Affiliation(s)
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Röth S, Macartney TJ, Konopacka A, Chan KH, Zhou H, Queisser MA, Sapkota GP. Targeting Endogenous K-RAS for Degradation through the Affinity-Directed Protein Missile System. Cell Chem Biol 2020; 27:1151-1163.e6. [PMID: 32668202 PMCID: PMC7505679 DOI: 10.1016/j.chembiol.2020.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/12/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
K-RAS is known as the most frequently mutated oncogene. However, the development of conventional K-RAS inhibitors has been extremely challenging, with a mutation-specific inhibitor reaching clinical trials only recently. Targeted proteolysis has emerged as a new modality in drug discovery to tackle undruggable targets. Our laboratory has developed a system for targeted proteolysis using peptidic high-affinity binders, called “AdPROM.” Here, we used CRISPR/Cas9 technology to knock in a GFP tag on the native K-RAS gene in A549 adenocarcinoma (A549GFPKRAS) cells and constructed AdPROMs containing high-affinity GFP or H/K-RAS binders. Expression of GFP-targeting AdPROM in A549GFPKRAS led to robust proteasomal degradation of endogenous GFP-K-RAS, while expression of anti-HRAS-targeting AdPROM in different cell lines resulted in the degradation of both GFP-tagged and untagged K-RAS, and untagged H-RAS. Our findings imply that endogenous RAS proteins can be targeted for proteolysis, supporting the idea of an alternative therapeutic approach to these undruggable targets. Generation of A549 cells with a homozygous knockin of GFP tag on the KRAS gene Proteasomal degradation of endogenous GFP-K-RAS using a VHL-GFP-nanobody fusion Proteasomal degradation of endogenous H/K-RAS using VHL-H/K-RAS-monobody fusion
Collapse
Affiliation(s)
- Sascha Röth
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Agnieszka Konopacka
- GlaxoSmithKline, Protein Degradation Group, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | - Kwok-Ho Chan
- GlaxoSmithKline, Protein Degradation Group, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | - Houjiang Zhou
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Markus A Queisser
- GlaxoSmithKline, Protein Degradation Group, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
9
|
Venhuizen JH, Span PN, van den Dries K, Sommer S, Friedl P, Zegers MM. P120 Catenin Isoforms Differentially Associate with Breast Cancer Invasion and Metastasis. Cancers (Basel) 2019; 11:cancers11101459. [PMID: 31569498 PMCID: PMC6826419 DOI: 10.3390/cancers11101459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is the endpoint of tumor progression and depends on the ability of tumor cells to locally invade tissue, transit through the bloodstream and ultimately to colonize secondary organs at distant sites. P120 catenin (p120) has been implicated as an important regulator of metastatic dissemination because of its roles in cell–cell junctional stability, cytoskeletal dynamics, growth and survival. However, conflicting roles for p120 in different tumor models and steps of metastasis have been reported, and the understanding of p120 functions is confounded by the differential expression of p120 isoforms, which differ in N-terminal length, tissue localization and, likely, function. Here, we used in silico exon expression analyses, in vitro invasion assays and both RT-PCR and immunofluorescence of human tumors. We show that alternative exon usage favors expression of short isoform p120-3 in 1098 breast tumors and correlates with poor prognosis. P120-3 is upregulated at the invasive front of breast cancer cells migrating as collective groups in vitro. Furthermore, we demonstrate in histological sections of 54 human breast cancer patients that p120-3 expression is maintained throughout the metastatic cascade, whereas p120-1 is differentially expressed and diminished during invasion and in metastases. These data suggest specific regulation and functions of p120-3 in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Sebastian Sommer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Cancer Genomic Centre, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA.
| | - Mirjam M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Focus on Cdc42 in Breast Cancer: New Insights, Target Therapy Development and Non-Coding RNAs. Cells 2019; 8:cells8020146. [PMID: 30754684 PMCID: PMC6406589 DOI: 10.3390/cells8020146] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common malignant tumors in females. Although the conventional treatment has demonstrated a certain effect, some limitations still exist. The Rho guanosine triphosphatase (GTPase) Cdc42 (Cell division control protein 42 homolog) is often upregulated by some cell surface receptors and oncogenes in breast cancer. Cdc42 switches from inactive guanosine diphosphate (GDP)-bound to active GTP-bound though guanine-nucleotide-exchange factors (GEFs), results in activation of signaling cascades that regulate various cellular processes such as cytoskeletal changes, proliferation and polarity establishment. Targeting Cdc42 also provides a strategy for precise breast cancer therapy. In addition, Cdc42 is a potential target for several types of non-coding RNAs including microRNAs and lncRNAs. These non-coding RNAs is extensively involved in Cdc42-induced tumor processes, while many of them are aberrantly expressed. Here, we focus on the role of Cdc42 in cell morphogenesis, proliferation, motility, angiogenesis and survival, introduce the Cdc42-targeted non-coding RNAs, as well as present current development of effective Cdc42-targeted inhibitors in breast cancer.
Collapse
|
11
|
Filimonow K, Saiz N, Suwińska A, Wyszomirski T, Grabarek JB, Ferretti E, Piliszek A, Plusa B, Maleszewski M. No evidence of involvement of E-cadherin in cell fate specification or the segregation of Epi and PrE in mouse blastocysts. PLoS One 2019; 14:e0212109. [PMID: 30735538 PMCID: PMC6368326 DOI: 10.1371/journal.pone.0212109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
During preimplantation mouse development stages, emerging pluripotent epiblast (Epi) and extraembryonic primitive endoderm (PrE) cells are first distributed in the blastocyst in a "salt-and-pepper" manner before they segregate into separate layers. As a result of segregation, PrE cells become localised on the surface of the inner cell mass (ICM), and the Epi is enclosed by the PrE on one side and by the trophectoderm on the other. During later development, a subpopulation of PrE cells migrates away from the ICM and forms the parietal endoderm (PE), while cells remaining in contact with the Epi form the visceral endoderm (VE). Here, we asked: what are the mechanisms mediating Epi and PrE cell segregation and the subsequent VE vs PE specification? Differences in cell adhesion have been proposed; however, we demonstrate that the levels of plasma membrane-bound E-cadherin (CDH1, cadherin 1) in Epi and PrE cells only differ after the segregation of these lineages within the ICM. Moreover, manipulating E-cadherin levels did not affect lineage specification or segregation, thus failing to confirm its role during these processes. Rather, we report changes in E-cadherin localisation during later PrE-to-PE transition which are accompanied by the presence of Vimentin and Twist, supporting the hypothesis that an epithelial-to-mesenchymal transition process occurs in the mouse peri-implantation blastocyst.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Embryology, Faculty of Biology, The University of Warsaw, I. Miecznikowa, Warsaw, Poland
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, Poland
| | - Nestor Saiz
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Aneta Suwińska
- Department of Embryology, Faculty of Biology, The University of Warsaw, I. Miecznikowa, Warsaw, Poland
| | - Tomasz Wyszomirski
- Faculty of Biology, Biological and Chemical Research Centre, The University of Warsaw, Zwirki i Wigury, Warsaw, Poland
| | - Joanna B. Grabarek
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Elisabetta Ferretti
- The Danish Stem Cell Centre (DanStem), University of Copenhagen, Blegdamsvej, Copenhagen N, Denmark
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36a, Jastrzębiec, Poland
| | - Berenika Plusa
- Division of Developmental Biology and Medicine, The University of Manchester, Oxford Road, Manchester, United Kingdom
- * E-mail: (MM); (BP)
| | - Marek Maleszewski
- Department of Embryology, Faculty of Biology, The University of Warsaw, I. Miecznikowa, Warsaw, Poland
- * E-mail: (MM); (BP)
| |
Collapse
|
12
|
Bruner HC, Derksen PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol 2018; 10:a029330. [PMID: 28507022 PMCID: PMC5830899 DOI: 10.1101/cshperspect.a029330] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.
Collapse
Affiliation(s)
- Heather C Bruner
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
13
|
Gayrard C, Bernaudin C, Déjardin T, Seiler C, Borghi N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J Cell Biol 2018; 217:1063-1077. [PMID: 29311227 PMCID: PMC5839785 DOI: 10.1083/jcb.201706013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
β-Catenin is a transcription cofactor proposed to be released from E-cadherin upon mechanically induced phosphorylation. However, evidence for this mechanism is lacking. Gayrard et al. show instead that during epithelial-to-mesenchymal transition, Src- and multicellular confinement–dependent FAK-induced cytoskeleton remodeling causes E-cadherin tension relaxation and phosphorylation-independent β-catenin nuclear translocation from the membrane. In epithelia, E-cadherin cytoplasmic tail is under cytoskeleton-generated tension via a link that contains β-catenin. A cotranscription factor, β-catenin, is also active in morphogenetic processes associated with epithelial-to-mesenchymal transition. β-Catenin signaling appears mechanically inducible and was proposed to follow phosphorylation-induced β-catenin release from E-cadherin. Evidence for this mechanism is lacking, and whether E-cadherin tension is involved is unknown. To test this, we combined quantitative fluorescence microscopies with genetic and pharmacological perturbations of epithelial-to-mesenchymal transition–induced cells in culture. We showed that β-catenin nuclear activity follows a substantial release from the membrane specific to migrating cells and requires multicellular deconfinement and Src activity. Selective nuclear translocation occurs downstream of focal adhesion kinase activation, which targets E-cadherin tension relaxation through actomyosin remodeling. In contrast, phosphorylations of the cadherin/catenin complex are not substantially required. These data demonstrate that E-cadherin acts as a sensor of intracellular mechanics in a crosstalk with cell-substrate adhesions that target β-catenin signaling.
Collapse
Affiliation(s)
- Charlène Gayrard
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Clément Bernaudin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Théophile Déjardin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Cynthia Seiler
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Nicolas Borghi
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| |
Collapse
|
14
|
Abstract
Lobular carcinoma in situ (LCIS) is a risk factor and a nonobligate precursor of breast carcinoma. The relative risk of invasive carcinoma after classic LCIS diagnosis is approximately 9 to 10 times that of the general population. Classic LCIS diagnosed on core biopsy with concordant imaging and pathologic findings does not mandate surgical excision, and margin status is not reported. The identification of variant LCIS in a needle core biopsy specimen mandates surgical excision, regardless of radiologic-pathologic concordance. The presence of variant LCIS close to the surgical margin of a resection specimen is reported, and reexcision should be considered.
Collapse
Affiliation(s)
- Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
15
|
Idoux-Gillet Y, Nassour M, Lakis E, Bonini F, Theillet C, Du Manoir S, Savagner P. Slug/Pcad pathway controls epithelial cell dynamics in mammary gland and breast carcinoma. Oncogene 2017; 37:578-588. [PMID: 28991231 DOI: 10.1038/onc.2017.355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022]
Abstract
Mammary gland morphogenesis results from the coordination of proliferation, cohort migration, apoptosis and stem/progenitor cell dynamics. We showed earlier that the transcription repressor Slug is involved in these functions during mammary tubulogenesis. Slug is expressed by a subpopulation of basal epithelial cells, co-expressed with P-cadherin (Pcad). Slug-knockout mammary glands showed excessive branching, similarly to Pcad-knockout. Here, we found that Slug unexpectedly binds and activates Pcad promoter through E-boxes, inducing Pcad expression. We determined that Pcad can mediate several functions of Slug: Pcad promoted clonal mammosphere growth, basal epithelial differentiation, cell-cell dissociation and cell migration, rescuing Slug depletion. Pcad also promoted cell migration in isolated cells, in association with Src activation, focal adhesion reorganization and cell polarization. Pcad, similarly to Slug, was required for in vitro 3D tubulogenesis. Therefore, Pcad appears to be responsible for epithelial-mesenchymal transition-linked plasticity in mammary epithelial cells. In addition, we found that genes from the Slug/Pcad pathway components were co-expressed and specifically correlated in human breast carcinomas subtypes, carrying pathophysiological significance.
Collapse
Affiliation(s)
- Y Idoux-Gillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - M Nassour
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - E Lakis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - F Bonini
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - C Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - S Du Manoir
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - P Savagner
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
16
|
RORα2 requires LSD1 to enhance tumor progression in breast cancer. Sci Rep 2017; 7:11994. [PMID: 28931919 PMCID: PMC5607251 DOI: 10.1038/s41598-017-12344-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/07/2017] [Indexed: 11/30/2022] Open
Abstract
Retinoic acid-related orphan receptor α (RORα) regulates diverse physiological processes, including inflammatory responses, lipid metabolism, circadian rhythm, and cancer biology. RORα has four different isoforms which have distinct N-terminal domains but share identical DNA binding domain and ligand binding domain in human. However, lack of specific antibody against each RORα isoform makes biochemical studies on each RORα isoform remain unclear. Here, we generate RORα2-specific antibody and characterize the role of RORα2 in promoting tumor progression in breast cancer. RORα2 requires lysine specific demethylase 1 (LSD1/KDM1A) as a coactivator for transcriptional activation of RORα2 target genes, exemplified by CTNND1. Intriguingly, RORα2 and LSD1 protein levels are dramatically elevated in human breast cancer specimens compared to normal counterparts. Taken together, our studies indicate that LSD1-mediated RORα2 transcriptional activity is important to promote tumor cell migration in human breast cancer as well as breast cancer cell lines. Therefore, our data establish that suppression of LSD1-mediated RORα2 transcriptional activity may be potent therapeutic strategy to attenuate tumor cell migration in human breast cancer.
Collapse
|
17
|
Kourtidis A, Necela B, Lin WH, Lu R, Feathers RW, Asmann YW, Thompson EA, Anastasiadis PZ. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling. J Cell Biol 2017; 216:3073-3085. [PMID: 28877994 PMCID: PMC5626537 DOI: 10.1083/jcb.201612125] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 06/15/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Brian Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | | | | |
Collapse
|
18
|
Uechi H, Kuranaga E. Mechanisms of collective cell movement lacking a leading or free front edge in vivo. Cell Mol Life Sci 2017; 74:2709-2722. [PMID: 28243700 PMCID: PMC11107506 DOI: 10.1007/s00018-017-2489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
19
|
Mège RM, Ishiyama N. Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028738. [PMID: 28096263 DOI: 10.1101/cshperspect.a028738] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cadherin-catenin adhesion complex is the key component of the intercellular adherens junction (AJ) that contributes both to tissue stability and dynamic cell movements in epithelial and nonepithelial tissues. The cadherin adhesion complex bridges neighboring cells and the actin-myosin cytoskeleton, and thereby contributes to mechanical coupling between cells which drives many morphogenetic events and tissue repair. Mechanotransduction at cadherin adhesions enables cells to sense, signal, and respond to physical changes in their environment. Central to this process is the dynamic link of the complex to actin filaments (F-actin), themselves structurally dynamic and subject to tension generated by myosin II motors. We discuss in this review recent breakthroughs in understanding molecular and cellular aspects of the organization of the core cadherin-catenin complex in adherens junctions, its association to F-actin, its mechanosensitive regulation, and dynamics.
Collapse
Affiliation(s)
- René Marc Mège
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, TMDT 4-902, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Izaguirre MF, Casco VH. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence. Cell Commun Signal 2016; 14:27. [PMID: 27814736 PMCID: PMC5097364 DOI: 10.1186/s12964-016-0150-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023] Open
Abstract
The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).
Collapse
Affiliation(s)
- María Fernanda Izaguirre
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina
| | - Victor Hugo Casco
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina.
| |
Collapse
|
21
|
Polusani SR, Kalmykov EA, Chandrasekhar A, Zucker SN, Nicholson BJ. Cell coupling mediated by connexin 26 selectively contributes to reduced adhesivity and increased migration. J Cell Sci 2016; 129:4399-4410. [PMID: 27777264 DOI: 10.1242/jcs.185017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022] Open
Abstract
Gap junction proteins (connexins) have crucial effects on cell motility in many systems, from migration of neural crest cells to promotion of metastatic invasiveness. Here, we show that expression of Cx26 (also known as GJB2) in HeLa cells specifically enhances cell motility in scrape wounding and sparse culture models. This effect is dependent on gap junction channels and is isotype specific [Cx26 enhances motility, whereas Cx43 (also known as GJA1) does not and Cx32 (also known as GJB1) has an intermediate effect]. The increased motility is associated with reduced cell adhesiveness, caused by loss of N-cadherin protein and RNA at the wound edge. This in turn causes a redistribution of N-cadherin-binding proteins (p120 catenin and β-catenin) to the cytosol and nucleus, respectively. The former activates Rac-1, which mediates cytoskeletal rearrangements needed for filopod extension. The latter is associated with increased expression of urokinase plasminogen activating receptor (an activator of extracellular proteases) and secretion of extracellular matrix components like collagen. Although these effects were dependent on Cx26-mediated coupling of the cells, they are not mediated by the same signal (i.e. cAMP) through which Cx26 has been shown to suppress proliferation in the same system.
Collapse
Affiliation(s)
- Srikanth R Polusani
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Edward A Kalmykov
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Anjana Chandrasekhar
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shoshanna N Zucker
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bruce J Nicholson
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
22
|
Pieters T, Goossens S, Haenebalcke L, Andries V, Stryjewska A, De Rycke R, Lemeire K, Hochepied T, Huylebroeck D, Berx G, Stemmler MP, Wirth D, Haigh JJ, van Hengel J, van Roy F. p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification. PLoS Genet 2016; 12:e1006243. [PMID: 27556156 PMCID: PMC4996431 DOI: 10.1371/journal.pgen.1006243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.
Collapse
Affiliation(s)
- Tim Pieters
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Steven Goossens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lieven Haenebalcke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
| | - Vanessa Andries
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
| | - Agata Stryjewska
- Department of Development and Regeneration, Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
| | - Kelly Lemeire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
| | - Danny Huylebroeck
- Department of Development and Regeneration, Laboratory of Molecular Biology (Celgen), University of Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Geert Berx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Marc P. Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Freiburg, Germany
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Jody J. Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Alfred Centre, Melbourne, Victoria, Australia
| | - Jolanda van Hengel
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail: (JvH); (FvR)
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- * E-mail: (JvH); (FvR)
| |
Collapse
|
23
|
Peng H, Park JK, Katsnelson J, Kaplan N, Yang W, Getsios S, Lavker RM. microRNA-103/107 Family Regulates Multiple Epithelial Stem Cell Characteristics. Stem Cells 2016; 33:1642-56. [PMID: 25639731 DOI: 10.1002/stem.1962] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/14/2015] [Indexed: 12/28/2022]
Abstract
The stem cell niche is thought to affect cell cycle quiescence, proliferative capacity, and communication between stem cells and their neighbors. How these activities are controlled is not completely understood. Here we define a microRNA family (miRs-103/107) preferentially expressed in the stem cell-enriched limbal epithelium that regulates and integrates these stem cell characteristics. miRs-103/107 target the ribosomal kinase p90RSK2, thereby arresting cells in G0/G1 and contributing to a slow-cycling phenotype. Furthermore, miRs-103/107 increase the proliferative capacity of keratinocytes by targeting Wnt3a, which enhances Sox9 and YAP1 levels and thus promotes a stem cell phenotype. This miRNA family also regulates keratinocyte cell-cell communication by targeting: (a) the scaffolding protein NEDD9, preserving E-cadherin-mediated cell adhesion; and (b) the tyrosine phosphatase PTPRM, which negatively regulates connexin 43-based gap junctions. We propose that such regulation of cell communication and adhesion molecules maintains the integrity of the stem cell niche ultimately preserving self-renewal, a hallmark of epithelial stem cells.
Collapse
Affiliation(s)
- Han Peng
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kannan N, Tang VW. Synaptopodin couples epithelial contractility to α-actinin-4-dependent junction maturation. J Cell Biol 2016; 211:407-34. [PMID: 26504173 PMCID: PMC4621826 DOI: 10.1083/jcb.201412003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel tension-sensitive junctional protein, synaptopodin, can relay biophysical input from cellular actomyosin contractility to induce biochemical changes at cell–cell contacts, resulting in structural reorganization of the junctional complex and epithelial barrier maturation. The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components.
Collapse
Affiliation(s)
- Nivetha Kannan
- Program in Global Public Health, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| |
Collapse
|
25
|
Interaction of EGFR to δ-catenin leads to δ-catenin phosphorylation and enhances EGFR signaling. Sci Rep 2016; 6:21207. [PMID: 26883159 PMCID: PMC4756308 DOI: 10.1038/srep21207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 11/21/2022] Open
Abstract
Expression of δ-catenin reportedly increases during late stage prostate cancer. Furthermore, it has been demonstrated that expression of EGFR is enhanced in hormone refractory prostate cancer. In this study, we investigated the possible correlation between EGFR and δ-catenin in prostate cancer cells. We found that EGFR interacted with δ-catenin and the interaction decreased in the presence of EGF. We also demonstrated that, on one hand, EGFR phosphorylated δ-catenin in a Src independent manner in the presence of EGF and on the other hand, δ-catenin enhanced protein stability of EGFR and strengthened the EGFR/Erk1/2 signaling pathway. Our findings added a new perspective to the interaction of EGFR to the E-cadherin complex. They also provided novel insights to the roles of δ-catenin in prostate cancer cells.
Collapse
|
26
|
Maiden SL, Petrova YI, Gumbiner BM. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS One 2016; 11:e0148574. [PMID: 26845024 PMCID: PMC4742228 DOI: 10.1371/journal.pone.0148574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/19/2016] [Indexed: 01/06/2023] Open
Abstract
Tight regulation of cadherin-mediated intercellular adhesions is critical to both tissue morphogenesis during development and tissue homeostasis in adults. Cell surface expression of the cadherin-catenin complex is often directly correlated with the level of adhesion, however, examples exist where cadherin appears to be inactive and cells are completely non-adhesive. The state of p120-catenin phosphorylation has been implicated in regulating the adhesive activity of E-cadherin but the mechanism is currently unclear. We have found that destabilization of the microtubule cytoskeleton, independent of microtubule plus-end dynamics, dephosphorylates p120-catenin and activates E-cadherin adhesion in Colo 205 cells. Through chemical screening, we have also identified several kinases as potential regulators of E-cadherin adhesive activity. Analysis of several p120-catenin phosphomutants suggests that gross dephosphorylation of p120-catenin rather than that of specific amino acids may trigger E-cadherin adhesion. Uncoupling p120-catenin binding to E-cadherin at the membrane causes constitutive adhesion in Colo 205 cells, further supporting an inhibitory role of phosphorylated p120-catenin on E-cadherin activity.
Collapse
Affiliation(s)
- Stephanie L. Maiden
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Biology, Truman State University, Kirksville, Missouri, United States of America
| | - Yuliya I. Petrova
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Barry M. Gumbiner
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Seattle Children’s Research Institute and University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med 2016; 37:623-30. [PMID: 26848040 PMCID: PMC4771121 DOI: 10.3892/ijmm.2016.2476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Hypertension Hypertension impairs the morphological and functional integrity of circulation. Previous research has shown that the loss of endothelial cells (ECs) is a common event in many cardiovascular diseases. p120 catenin (p120ctn) plays an important role in the regulation of inflammatory responses in ECs. However, the functional significance of p120ctn in angiotensin II (AngII)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) had not previously received much scholarly attention. In the present study, using western blot analysis and RT-PCR, we found that AngII-induced cell apoptosis was correlated with a significant decrease in p120ctn expression. The effect of AngII on cell viability was measured by CCK-8 assay. Knockdown of p120ctn with small hairpin RNA (shRNA) increased AngII-induced apoptosis of HUVECs, as demonstrated by Annexin V/PI staining and flow cytometric analysis. Knockdown of p120ctn with shRNA also increased cytochrome c release into the cytoplasm, and cleaved caspase-3 and -9 protein expression. These were accompanied by a decrease in the Bcl-2/Bax ratio (Bcl-2 and Bax protein expression were measured by western blot analysis), and in mitochondrial membrane potential, as measured using JC-1. Overexpression of p120ctn with adenovirus produced opposite effects. In the present study, we demonstrated that p120ctn attenuated AngII-induced apoptosis of HUVECs through the mitochondria-dependent pathway, suggesting that p120ctn plays a critical role in protecting ECs against apoptosis during hypertension.
Collapse
Affiliation(s)
- Yan Zhang
- Department of VIP Medical Service, Beijing Hospital, Beijing 100730, P.R. China
| | - Chenshuang Zou
- Editorial Department of Chinese Journal of Neuroimmunology and Neurology, Beijing Hospital, Beijing 100730, P.R. China
| | - Shuwen Yang
- Department of VIP Medical Service, Beijing Hospital, Beijing 100730, P.R. China
| | - Jing Fu
- Department of VIP Medical Service, Beijing Hospital, Beijing 100730, P.R. China
| |
Collapse
|
28
|
Yu HH, Dohn MR, Markham NO, Coffey RJ, Reynolds AB. p120-catenin controls contractility along the vertical axis of epithelial lateral membranes. J Cell Sci 2015; 129:80-94. [PMID: 26585313 DOI: 10.1242/jcs.177550] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/12/2015] [Indexed: 12/26/2022] Open
Abstract
In vertebrate epithelia, p120-catenin (hereafter referred to as p120; also known as CTNND1) mediates E-cadherin stability and suppression of RhoA. Genetic ablation of p120 in various epithelial tissues typically causes striking alterations in tissue function and morphology. Although these effects could very well involve p120's activity towards Rho, ascertaining the impact of this relationship has been complicated by the fact that p120 is also required for cell-cell adhesion. Here, we have molecularly uncoupled p120's cadherin-stabilizing and RhoA-suppressing activites. Unexpectedly, removing p120's Rho-suppressing activity dramatically disrupted the integrity of the apical surface, irrespective of E-cadherin stability. The physical defect was tracked to excessive actomyosin contractility along the vertical axis of lateral membranes. Thus, we suggest that p120's distinct activities towards E-cadherin and Rho are molecularly and functionally coupled and this, in turn, enables the maintenance of cell shape in the larger context of an epithelial monolayer. Importantly, local suppression of contractility by cadherin-bound p120 appears to go beyond regulating cell shape, as loss of this activity also leads to major defects in epithelial lumenogenesis.
Collapse
Affiliation(s)
- Huapeng H Yu
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA
| | - Michael R Dohn
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA Department of Pharmacology, Vanderbilt University, 37232 Nashville, TN, USA
| | - Nicholas O Markham
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA School of Medicine, Vanderbilt University, 37232 Nashville, TN, USA
| | - Robert J Coffey
- School of Medicine, Vanderbilt University, 37232 Nashville, TN, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA
| |
Collapse
|
29
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Klinke DJ, Horvath N, Cuppett V, Wu Y, Deng W, Kanj R. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway. Mol Biol Cell 2015. [PMID: 26224311 PMCID: PMC4710243 DOI: 10.1091/mbc.e15-02-0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein-protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin-induced gene expression.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506 )
| | - Nicholas Horvath
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Vanessa Cuppett
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Yueting Wu
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Wentao Deng
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Rania Kanj
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
31
|
Kourtidis A, Yanagisawa M, Huveldt D, Copland JA, Anastasiadis PZ. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS One 2015; 10:e0129964. [PMID: 26067913 PMCID: PMC4466266 DOI: 10.1371/journal.pone.0129964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
Altered protein expression and phosphorylation are common events during malignant transformation. These perturbations have been widely explored in the context of E-cadherin cell-cell adhesion complexes, which are central in the maintenance of the normal epithelial phenotype. A major component of these complexes is p120 catenin (p120), which binds and stabilizes E-cadherin to promote its adhesive and tumor suppressing function. However, p120 is also an essential mediator of pro-tumorigenic signals driven by oncogenes, such as Src, and can be phosphorylated at multiple sites. Although alterations in p120 expression have been extensively studied by immunohistochemistry (IHC) in the context of tumor progression, little is known about the status and role of p120 phosphorylation in cancer. Here we show that tyrosine and threonine phosphorylation of p120 in two sites, Y228 and T916, is elevated in renal and breast tumor tissue samples. We also show that tyrosine phosphorylation of p120 at its N-terminus, including at the Y228 site is required for its pro-tumorigenic potential. In contrast, phosphorylation of p120 at T916 does not affect this p120 function. However, phosphorylation of p120 at T916 interferes with epitope recognition of the most commonly used p120 antibody, namely pp120. As a result, this antibody selectively underrepresents p120 levels in tumor tissues, where p120 is phosphorylated. Overall, our data support a role of p120 phosphorylation as a marker and mediator of tumor transformation. Importantly, they also argue that the level and localization of p120 in human cancer tissues immunostained with pp120 needs to be re-evaluated.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Masahiro Yanagisawa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Deborah Huveldt
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Panos Z. Anastasiadis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chen T, Wang C, Wu F, Zhang X, Yang H, Deng X, He Q, Li W, Li G. Altered localization of p120 catenin in the cytoplasm rather than the membrane correlates with poor prognosis in esophageal squamous cell carcinoma. PLoS One 2015; 10:e0118645. [PMID: 25785604 PMCID: PMC4364898 DOI: 10.1371/journal.pone.0118645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND P120 catenin (p120ctn), a regulator of cell adhesion, has previously been found in many malignancies, and suggested a role in invasion, metastasis and survival. The aim of this study was to investigate correlations between altered localization of p120ctn and clinical-pathological characteristics in esophageal squamous cell carcinoma (ESCC). METHODS Immunohistochemical staining for p120ctn was performed on tissue samples from 118 patients with ESCC. The expression of p120ctn was scored for intensity and cellular localization by Image-pro Plus 6.0. Correlations between immunohistochemical staining of p120ctn and pathological characteristics and clinical prognosis were determined using SPSS 18.0 software. RESULTS Membrane expression of p120ctn in ESCCs was lower than that in adjacentnormal esophageal epithelial tissues (P = 0.041), while overall cellular expression of p120ctn was not different between the two tissue types (P = 0.787). Furthermore, neither overall cellular expression nor localized membrane expression was associated with histological and clinical variables. The high ratio of membrane expression to overall cellular expression (M/C) of p120ctn was inversely associated with lymph node invasion (P = 0.001), tumor differentiation (P = 0.012) and advanced tumor stage (P = 0.005); however, it was poorly associated with T stage (P = 0.274). The high M/C ratio of p120ctn was inversely correlated with poor survival; the 5-year OS (overall survival) and the 5-year DFS (disease free survival) for the high M/C ratio group were significantly higher than those of the low M/C ratio group (41.0% vs. 6.7%, P = 0.000; 44.1% vs. 24.9%, P = 0.007). Both the M/C ratio of p120ctn and N status were independent variables for the prediction of overall survival (P = 0.007 and P = 0.027). The M/C of p120ctn predicted a 0.49-fold risk of ESCC death (p = 0.007, 95% CI 0.29-0.83). CONCLUSIONS The reduced M/C ratio of p120ctn acted as an independent prognostic factor for ESCC patient survival and for the migration and invasive behavior of the disease.
Collapse
Affiliation(s)
- Tian Chen
- Department of Radiotherapy, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, P.R. China
| | - Chen Wang
- Department of Gastroenterology, Taizhou Enze Medical Center Luqiao Hospital, Taizhou, Zhejiang, P.R. China
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xuebang Zhang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Han Yang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xia Deng
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Qiancheng He
- Department of General Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Gang Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
33
|
Kim Y, Han D, Min H, Jin J, Yi EC, Kim Y. Comparative proteomic profiling of pancreatic ductal adenocarcinoma cell lines. Mol Cells 2014; 37:888-98. [PMID: 25518923 PMCID: PMC4275706 DOI: 10.14348/molcells.2014.0207] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Yikwon Kim
- Departments of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799
Korea
| | - Dohyun Han
- Departments of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799
Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799
Korea
| | - Hophil Min
- Departments of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799
Korea
| | - Jonghwa Jin
- Departments of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799
Korea
| | - Eugene C. Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 110-799,
Korea
| | - Youngsoo Kim
- Departments of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799
Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799
Korea
| |
Collapse
|
34
|
Quiros M, Nusrat A. RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex. Semin Cell Dev Biol 2014; 36:194-203. [PMID: 25223584 DOI: 10.1016/j.semcdb.2014.09.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022]
Abstract
Epithelial cells form regulated and selective barriers between distinct tissue compartments. The Apical Junctional Complex (AJC) consisting of the tight junction (TJ) and adherens junction (AJ) control epithelial homeostasis, paracellular permeability and barrier properties. The AJC is composed of mutliprotein complexes consisting of transmembrane proteins that affiliate with an underlying perijunctional F-actin myosin ring through cytoplasmic scaffold proteins. AJC protein associations with the apical actin-myosin cytoskeleton are tightly controlled by a number of signaling proteins including the Rho family of GTPases that orchestrate junctional biology, epithelial homeostasis and barrier function. This review highlights the vital relationship of Rho GTPases and AJCs in controlling the epithelial barrier. The pathophysiologic relationship of Rho GTPases, AJC, apical actomyosin cytoskeleton and epithelial barrier function is discussed.
Collapse
Affiliation(s)
- Miguel Quiros
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Lee M, Ji H, Furuta Y, Park JI, McCrea PD. p120-catenin regulates REST and CoREST, and modulates mouse embryonic stem cell differentiation. J Cell Sci 2014; 127:4037-51. [PMID: 25074806 DOI: 10.1242/jcs.151944] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the canonical Wnt pathway and β-catenin have been extensively studied, less is known about the role of p120-catenin (also known as δ1-catenin) in the nuclear compartment. Here, we report that p120-catenin binds and negatively regulates REST and CoREST (also known as Rcor1), a repressive transcriptional complex that has diverse developmental and pathological roles. Using mouse embryonic stem cells (mESCs), mammalian cell lines, Xenopus embryos and in vitro systems, we find that p120-catenin directly binds the REST-CoREST complex, displacing it from established gene targets to permit their transcriptional activation. Importantly, p120-catenin levels further modulate the mRNA and protein levels of Oct4 (also known as POU5F1), Nanog and Sox2, and have an impact upon the differentiation of mESCs towards neural fates. In assessing potential upstream inputs to this new p120-catenin-REST-CoREST pathway, REST gene targets were found to respond to the level of E-cadherin, with evidence suggesting that p120-catenin transduces signals between E-cadherin and the nucleus. In summary, we provide the first evidence for a direct upstream modulator and/or pathway regulating REST-CoREST, and reveal a substantial role for p120-catenin in the modulation of stem cell differentiation.
Collapse
Affiliation(s)
- Moonsup Lee
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Program in Genes and Development, The University of Texas Graduate School of Biomedical Science-Houston, Houston, TX 77030, USA
| | - Hong Ji
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jae-il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Pierre D McCrea
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Program in Genes and Development, The University of Texas Graduate School of Biomedical Science-Houston, Houston, TX 77030, USA
| |
Collapse
|
36
|
Liu X, Caffrey TC, Steele MM, Mohr A, Singh PK, Radhakrishnan P, Kelly DL, Wen Y, Hollingsworth MA. MUC1 regulates cyclin D1 gene expression through p120 catenin and β-catenin. Oncogenesis 2014; 3:e107. [PMID: 24979278 PMCID: PMC4150213 DOI: 10.1038/oncsis.2014.19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
MUC1 interacts with β-catenin and p120 catenin to modulate WNT signaling. We investigated the effect of overexpressing MUC1 on the regulation of cyclin D1, a downstream target for the WNT/β-catenin signaling pathway, in two human pancreatic cancer cell lines, Panc-1 and S2-013. We observed a significant enhancement in the activation of cyclin D1 promoter-reporter activity in poorly differentiated Panc1.MUC1F cells that overexpress recombinant MUC1 relative to Panc-1.NEO cells, which express very low levels of endogenous MUC1. In stark contrast, cyclin D1 promoter activity was not affected in moderately differentiated S2-013.MUC1F cells that overexpressed recombinant MUC1 relative to S2-013.NEO cells that expressed low levels of endogenous MUC1. The S2-013 cell line was recently shown to be deficient in p120 catenin. MUC1 is known to interact with P120 catenin. We show here that re-expression of different isoforms of p120 catenin restored cyclin D1 promoter activity. Further, MUC1 affected subcellular localization of p120 catenin in association with one of the main effectors of P120 catenin, the transcriptional repressor Kaiso, supporting the hypothesis that p120 catenin relieved transcriptional repression by Kaiso. Thus, full activation of cyclin D1 promoter activity requires β-catenin activation of TCF-lef and stabilization of specific p120 catenin isoforms to relieve the repression of KAISO. Our data show MUC1 enhances the activities of both β-catenin and p120 catenin.
Collapse
Affiliation(s)
- X Liu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - T C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - M M Steele
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Mohr
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - P K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - P Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - D L Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Y Wen
- Department of Gynecologic Oncology and Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M A Hollingsworth
- 1] Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA [2] Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
37
|
Stapleton SC, Chopra A, Chen CS. Force measurement tools to explore cadherin mechanotransduction. ACTA ACUST UNITED AC 2014; 21:193-205. [PMID: 24754475 DOI: 10.3109/15419061.2014.905929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell adhesions serve to mechanically couple cells, allowing for long-range transmission of forces across cells in development, disease, and homeostasis. Recent work has shown that such contacts also play a role in transducing mechanical cues into a wide variety of cellular behaviors important to tissue function. As such, understanding the mechanical regulation of cells through their adhesion molecules has become a point of intense focus. This review will highlight the existing and emerging technologies and models that allow for exploration of cadherin-based adhesions as sites of mechanotransduction.
Collapse
Affiliation(s)
- Sarah C Stapleton
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, PA , USA
| | | | | |
Collapse
|
38
|
Liu X, Yi C, Wen Y, Radhakrishnan P, Tremayne JR, Dao T, Johnson KR, Hollingsworth MA. Interactions between MUC1 and p120 catenin regulate dynamic features of cell adhesion, motility, and metastasis. Cancer Res 2013; 74:1609-20. [PMID: 24371222 DOI: 10.1158/0008-5472.can-13-2444] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms by which MUC1 and p120 catenin contribute to progression of cancers from early transformation to metastasis are poorly understood. Here we show that p120 catenin ARM domains 1, 3-5, and 8 mediate interactions between p120 catenin and MUC1, and that these interactions modulate dynamic properties of cell adhesion, motility, and metastasis of pancreatic cancer cells. We also show that different isoforms of p120 catenin, when coexpressed with MUC1, create cells that exhibit distinct patterns of motility in culture (motility independent of cell adhesion, motility within a monolayer while exchanging contacts with other cells, and unified motility while maintaining static epithelial contacts) and patterns of metastasis. The results provide new insight into the dynamic interplay between cell adhesion and motility and the relationship of these to the metastatic process.
Collapse
Affiliation(s)
- Xiang Liu
- Authors' Affiliations: Eppley Institute for Research in Cancer and Allied Disease; Department of Oral Biology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Gynecologic Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Stefanatos RK, Bauer C, Vidal M. p120 catenin is required for the stress response in Drosophila. PLoS One 2013; 8:e83942. [PMID: 24349561 PMCID: PMC3861524 DOI: 10.1371/journal.pone.0083942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
p120ctn is a ubiquitously expressed core component of cadherin junctions and essential for vertebrate development. Surprisingly, Drosophila p120ctn (dp120ctn) is dispensable for adherens junctions and development, which has discouraged Drosophila researchers from further pursuing the biological role of dp120ctn. Here we demonstrate that dp120ctn loss results in increased heat shock sensitivity and reduced animal lifespan, which are completely rescued by ectopic expression of a dp120ctn-GFP transgene. Transcriptomic analysis revealed multiple relish/NF-κB target genes differentially expressed upon loss of dp120ctn. Importantly, this aberrant gene expression was rescued by overexpression of dp120ctn-GFP or heterozygosity for relish. Our results uncover a novel role for dp120ctn in the regulation of animal stress response and immune signalling. This may represent an ancient role of p120ctn and can influence further studies in Drosophila and mammals.
Collapse
Affiliation(s)
- Rhoda K. Stefanatos
- Drosophila Approaches to Cancer Laboratory, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Christin Bauer
- Drosophila Approaches to Cancer Laboratory, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Marcos Vidal
- Drosophila Approaches to Cancer Laboratory, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Espejo R, Jeng Y, Paulucci-Holthauzen A, Rengifo-Cam W, Honkus K, Anastasiadis PZ, Sastry SK. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity. J Cell Sci 2013; 127:497-508. [PMID: 24284071 PMCID: PMC4007762 DOI: 10.1242/jcs.120154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.
Collapse
Affiliation(s)
- Rosario Espejo
- Sealy Center for Cancer Biology and UTMB Comprehensive Cancer Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:409-32. [PMID: 23481205 DOI: 10.1016/b978-0-12-394311-8.00018-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
p120 catenin is the best studied member of a subfamily of proteins that associate with the cadherin juxtamembrane domain to suppress cadherin endocytosis. p120 also recruits the minus ends of microtubules to the cadherin complex, leading to junction maturation. In addition, p120 regulates the activity of Rho family GTPases through multiple interactions with Rho GEFs, GAPs, Rho GTPases, and their effectors. Nuclear signaling is affected by the interaction of p120 with Kaiso, a transcription factor regulating Wnt-responsive genes as well as transcriptionally repressing methylated promoters. Multiple alternatively spliced p120 isoforms and complex phosphorylation events affect these p120 functions. In cancer, reduced p120 expression correlates with reduced E-cadherin function and with tumor progression. In contrast, in tumor cells that have lost E-cadherin expression, p120 promotes cell invasion and anchorage-independent growth. Furthermore, p120 is required for Src-induced oncogenic transformation and provides a potential target for future therapeutic interventions.
Collapse
|
42
|
Peglion F, Etienne-Manneville S. p120catenin alteration in cancer and its role in tumour invasion. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130015. [PMID: 24062585 DOI: 10.1098/rstb.2013.0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since its discovery in 1989 as a substrate of the Src oncogene, p120catenin has been revealed as an important player in cancer initiation and tumour dissemination. p120catenin regulates a wide range of cellular processes such as cell-cell adhesion, cell polarity and cell proliferation and plays a pivotal role in morphogenesis, inflammation and innate immunity. The pleiotropic effects of p120catenin rely on its interactions with numerous partners such as classical cadherins at the plasma membrane, Rho-GTPases and microtubules in the cytosol and transcriptional modulators in the nucleus. Alterations of p120catenin in cancer not only concern its expression level but also its intracellular localization and can lead to both pro-invasive and anti-invasive effects. This review focuses on the p120catenin-mediated pathways involved in cell migration and invasion and discusses the potential consequences of major cancer-related p120catenin alterations with respect to tumour spread.
Collapse
Affiliation(s)
- Florent Peglion
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS URA 2582, , 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
43
|
Affiliation(s)
- Margaret C Frame
- Edinburgh Cancer Research Centre, College of Medicine and Veterinary Medicine, University of Edinburgh, UK.
| |
Collapse
|
44
|
Mukai A, Hashimoto N. Regulation of pre-fusion events: recruitment of M-cadherin to microrafts organized at fusion-competent sites of myogenic cells. BMC Cell Biol 2013; 14:37. [PMID: 23978243 PMCID: PMC3846853 DOI: 10.1186/1471-2121-14-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/22/2013] [Indexed: 01/16/2023] Open
Abstract
Background Previous research indicates that the membrane ruffles and leading edge of lamellipodia of myogenic cells contain presumptive fusion sites. A micrometer-sized lipid raft (microraft) is organized at the presumptive fusion site of mouse myogenic cells in a cell-contact independent way and serves as a platform tethering adhesion proteins that are relevant to cell fusion. However, the mechanisms underlying recruitment of adhesion proteins to lipid rafts and microraft organization remain unknown. Results Here we show that small G-protein Rac1 was required for microraft organization and subsequent cell fusion. However, Rac1 activity was unnecessary for recruitment of M-cadherin to lipid rafts. We found that p120 catenin (p120) binds to M-cadherin exclusively in lipid rafts of differentiating myogenic cells. The Src kinase inhibitor SU6656 prevented p120 binding to M-cadherin and their recruitment to lipid rafts, then suppressed microraft organization, membrane ruffling, and myogenic cell fusion. Suppression of membrane ruffling in SU6656-treated cells was partially restored by pretreatment with the protein tyrosine phosphatase inhibitor vanadate. The present analyses using an antibody to tyrosine phosphorylated p120 suggest that Src family kinases play a role in binding of p120 to M-cadherin and the recruitment of M-cadherin to lipid rafts through phosphorylation of putative substrates other than p120. Conclusions The present study showed that the procedure establishing fusion-competent sites consists of two sequential events: recruitment of adhesion complexes to lipid rafts and organization of microrafts. The recruitment of M-cadherin to lipid rafts depended on interaction with p120 catenin, whereas the organization of microrafts was controlled by a small G protein, Rac1.
Collapse
Affiliation(s)
- Atsushi Mukai
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522, Japan.
| | | |
Collapse
|
45
|
Aparicio LA, Abella V, Valladares M, Figueroa A. Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cell Mol Life Sci 2013; 70:4463-77. [PMID: 23715860 PMCID: PMC3827902 DOI: 10.1007/s00018-013-1379-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), one of the crucial steps for carcinoma cells to acquire invasive capacity, results from the disruption of cell–cell contacts and the acquisition of a motile mesenchymal phenotype. Although the transcriptional events controlling EMT have been extensively studied, in recent years, several posttranscriptional mechanisms have emerged as critical in the regulation of EMT during tumor progression. In this review, we highlight the regulation of posttranscriptional events in EMT by RNA-binding proteins (RBPs). RBPs are responsible for controlling pre-mRNA splicing, capping, and polyadenylation, as well as mRNA export, turnover, localization, and translation. We discuss the most relevant aspects of RBPs controlling the metabolism of EMT-related mRNAs, and describe the implication of novel posttranscriptional mechanisms regulating EMT in response to different signaling pathways. Novel insight into posttranscriptional regulation of EMT by RBPs is uncovering new therapeutic targets in cancer invasion and metastasis.
Collapse
Affiliation(s)
- Luis A Aparicio
- Servizo de Oncología Médica, Complejo Hospitalario Universitario A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | | | | | | |
Collapse
|
46
|
Abstract
Members of the p120-catenin family associate with cadherins and regulate their stability at the plasma membrane. How p120-catenin limits cadherin endocytosis has long remained a mystery. In this issue, Nanes et al. (2012. J. Cell Biol. doi:10.1083/jcb.201205029) identify a conserved acidic motif within cadherins that acts as a physical platform for p120-catenin binding. However, in the absence of p120-catenin, the motif acts as an endocytic signal. These results provide new insight into p120-catenin's role as guardian of intercellular junction dynamics.
Collapse
Affiliation(s)
- Mirna Perez-Moreno
- BBVA Foundation-Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28019, Spain.
| | | |
Collapse
|
47
|
Maiden SL, Harrison N, Keegan J, Cain B, Lynch AM, Pettitt J, Hardin J. Specific conserved C-terminal amino acids of Caenorhabditis elegans HMP-1/α-catenin modulate F-actin binding independently of vinculin. J Biol Chem 2012; 288:5694-706. [PMID: 23271732 DOI: 10.1074/jbc.m112.438093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stable intercellular adhesions formed through the cadherin-catenin complex are important determinants of proper tissue architecture and help maintain tissue integrity during morphogenetic movements in developing embryos. A key regulator of this stability is α-catenin, which connects the cadherin-catenin complex to the actin cytoskeleton. Although the C-terminal F-actin-binding domain of α-catenin has been shown to be crucial for its function, a more detailed in vivo analysis of discrete regions and residues required for actin binding has not been performed. Using Caenorhabditis elegans as a model system, we have characterized mutations in hmp-1/α-catenin that identify HMP-1 residues 687-742 and 826-927, as well as amino acid 802, as critical to the localization of junctional proximal actin during epidermal morphogenesis. We also find that the S823F transition in a hypomorphic allele, hmp-1(fe4), decreases actin binding in vitro. Using hmp-1(fe4) animals in a mutagenesis screen, we were then able to identify 11 intragenic suppressors of hmp-1(fe4) that revert actin binding to wild-type levels. Using homology modeling, we show that these amino acids are positioned at key conserved sites within predicted α-helices in the C terminus. Through the use of transgenic animals, we also demonstrate that HMP-1 residues 315-494, which correspond to a putative mechanotransduction domain that binds vinculin in vertebrate αE-catenin, are not required during epidermal morphogenesis but may aid efficient recruitment of HMP-1 to the junction. Our studies are the first to identify key conserved amino acids in the C terminus of α-catenin that modulate F-actin binding in living embryos of a simple metazoan.
Collapse
Affiliation(s)
- Stephanie L Maiden
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA, Neish AS, Nusrat A. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 2012; 123:443-54. [PMID: 23241962 DOI: 10.1172/jci65831] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/18/2012] [Indexed: 01/05/2023] Open
Abstract
N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.
Collapse
Affiliation(s)
- Giovanna Leoni
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lohia M, Qin Y, Macara IG. The Scribble polarity protein stabilizes E-cadherin/p120-catenin binding and blocks retrieval of E-cadherin to the Golgi. PLoS One 2012; 7:e51130. [PMID: 23226478 PMCID: PMC3511384 DOI: 10.1371/journal.pone.0051130] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Several polarity proteins, including Scribble (Scrb) have been implicated in control of vesicle traffic, and in particular the endocytosis of E-cadherin, but through unknown mechanisms. We now show that depletion of Scrb enhances endocytosis of E-cadherin by weakening the E-cadherin-p120catenin interaction. Unexpectedly, however, the internalized E-cadherin is not degraded but accumulates in the Golgi apparatus. Silencing p120-catenin causes degradation of E-cadherin in lysosomes, but degradation is blocked by the co-depletion of Scrb, which diverts the internalized E-cadherin to the Golgi. Loss of Scrb also enhances E-cadherin binding to retromer components, and retromer is required for Golgi accumulation of Scrb, and E-cadherin stability. These data identify a novel and unanticipated function for Scrb in blocking retromer-mediated diversion of E-cadherin to the Golgi. They provide evidence that polarity proteins can modify the intracellular itinerary for endocytosed membrane proteins.
Collapse
Affiliation(s)
- Madhura Lohia
- Department of Microbiology, Ctr for Cell Signaling, University of Virginia School of Medicine Charlottesville, Virginia, United States of America
| | - Yi Qin
- Department of Microbiology, Ctr for Cell Signaling, University of Virginia School of Medicine Charlottesville, Virginia, United States of America
| | - Ian G. Macara
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States of America
| |
Collapse
|
50
|
Naydenov NG, Brown B, Harris G, Dohn MR, Morales VM, Baranwal S, Reynolds AB, Ivanov AI. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions. PLoS One 2012; 7:e34320. [PMID: 22485163 PMCID: PMC3317505 DOI: 10.1371/journal.pone.0034320] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 12/31/2022] Open
Abstract
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Bryan Brown
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Gianni Harris
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Michael R. Dohn
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Victor M. Morales
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Somesh Baranwal
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrei I. Ivanov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|