1
|
Ramasubramanyan S, Osborn K, Al-Mohammad R, Naranjo Perez-Fernandez IB, Zuo J, Balan N, Godfrey A, Patel H, Peters G, Rowe M, Jenner RG, Sinclair AJ. Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. Nucleic Acids Res 2015; 43:3563-77. [PMID: 25779048 PMCID: PMC4402532 DOI: 10.1093/nar/gkv212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements.
Collapse
Affiliation(s)
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | - Jianmin Zuo
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Harshil Patel
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Gordon Peters
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Martin Rowe
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Richard G Jenner
- UCL Cancer Institute and MRC Centre for Medical Molecular Virology, Paul O'Gorman Building, University College London, London W1CE 6BT, UK
| | | |
Collapse
|
2
|
Yang YC, Chang LK. Role of TAF4 in transcriptional activation by Rta of Epstein-Barr Virus. PLoS One 2013; 8:e54075. [PMID: 23326574 PMCID: PMC3542328 DOI: 10.1371/journal.pone.0054075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes. This protein usually binds to Rta-response elements or interacts with Sp1 or Zta via a mediator protein, MCAF1, to activate transcription. Rta is also known to interact with TBP and TFIIB to activate transcription. This study finds that Rta interacts with TAF4, a component of TFIID complex, in vitro and in vivo, and on the TATA sequence in the BcLF1 promoter. Rta also interacts with TAF4 and Sp1 on Sp1-binding sequences on TATA-less promoters, including those of BNLF1, BALF5, and the human androgen receptor. These interactions are important to the transcriptional activation of these genes by Rta since introducing TAF4 shRNA substantially reduces the ability of Rta to activate these promoters. This investigation reveals how Rta interacts with TFIID to stimulate transcription.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
3
|
A subset of replication proteins enhances origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein. PLoS Pathog 2010; 6:e1001054. [PMID: 20808903 PMCID: PMC2924361 DOI: 10.1371/journal.ppat.1001054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A), at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E), Z(R187K) and Z(K188A), were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1), the single-stranded DNA-binding protein (BALF2) and the DNA polymerase processivity factor (BMRF1), partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication. Epstein-Barr virus encodes a protein, ZEBRA, which plays an essential role in the switch between viral latency and the viral lytic cycle. ZEBRA activates transcription of early viral genes and also promotes lytic viral DNA replication. It is not understood how these two functions are discriminated. We studied five ZEBRA mutants that are impaired in activation of replication but are wild-type in the capacity to induce transcription of early viral genes. We demonstrate that these five mutants are impaired in binding to viral DNA regulatory sites. Therefore, replication required stronger interactions between ZEBRA and viral DNA than did transcription. Three components of the EBV-encoded replication machinery, including the single-stranded DNA binding protein, the polymerase processivity factor and the primase markedly enhanced the interaction of ZEBRA with viral DNA. These three components partially rescued the defect in ZEBRA mutants that were impaired in replication. The results suggest that through protein-protein interaction, replication proteins play a role in enhancing ZEBRA's association with the origin of DNA replication and other regulatory sites.
Collapse
|
4
|
Zhou H, Spicuglia S, Hsieh JJD, Mitsiou DJ, Høiby T, Veenstra GJC, Korsmeyer SJ, Stunnenberg HG. Uncleaved TFIIA is a substrate for taspase 1 and active in transcription. Mol Cell Biol 2006; 26:2728-35. [PMID: 16537915 PMCID: PMC1430320 DOI: 10.1128/mcb.26.7.2728-2735.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In higher eukaryotes, the large subunit of the general transcription factor TFIIA is encoded by the single TFIIAalphabeta gene and posttranslationally cleaved into alpha and beta subunits. The molecular mechanisms and biological significance of this proteolytic process have remained obscure. Here, we show that TFIIA is a substrate of taspase 1 as reported for the trithorax group mixed-lineage leukemia protein. We demonstrate that recombinant taspase 1 cleaves TFIIA in vitro. Transfected taspase 1 enhances cleavage of TFIIA, and RNA interference knockdown of endogenous taspase 1 diminishes cleavage of TFIIA in vivo. In taspase 1-/- MEF cells, only uncleaved TFIIA is detected. In Xenopus laevis embryos, knockdown of TFIIA results in phenotype and expression defects. Both defects can be rescued by expression of an uncleavable TFIIA mutant. Our study shows that uncleaved TFIIA is transcriptionally active and that cleavage of TFIIA does not serve to render TFIIA competent for transcription. We propose that cleavage fine tunes the transcription regulation of a subset of genes during differentiation and development.
Collapse
Affiliation(s)
- Huiqing Zhou
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Johnson KM, Wang J, Smallwood A, Arayata C, Carey M. TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev 2002; 16:1852-63. [PMID: 12130544 PMCID: PMC186393 DOI: 10.1101/gad.995702] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activator-mediated transcription complex assembly on templates lacking chromatin requires the interaction of activators with two major coactivator complexes: TFIID and mediator. Here we employed immobilized template assays to correlate transcriptional activation with mediator and TFIID recruitment. In reactions reconstituted with purified proteins, we found that activator, TFIID, and mediator engage in reciprocal cooperative interactions to form a complex on promoter DNA. Preassembly of the coactivator complex accelerates the rate of transcription in a cell-free system depleted of TFIID and mediator. Our data argue that this coactivator complex is an intermediate in the assembly of an active transcription complex. Furthermore, the reciprocity of the interactions demonstrates that the complex could in principle be nucleated with either TFIID or mediator, implying that alternative pathways could be utilized to generate diversity in the way activators function in vivo.
Collapse
Affiliation(s)
- Kristina M Johnson
- Department of Biological Chemistry, University of California, Los Angeles School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | |
Collapse
|
6
|
Deng Z, Chen CJ, Zerby D, Delecluse HJ, Lieberman PM. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation. J Virol 2001; 75:10334-47. [PMID: 11581402 PMCID: PMC114608 DOI: 10.1128/jvi.75.21.10334-10347.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.
Collapse
Affiliation(s)
- Z Deng
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
7
|
Ellwood K, Huang W, Johnson R, Carey M. Multiple layers of cooperativity regulate enhanceosome-responsive RNA polymerase II transcription complex assembly. Mol Cell Biol 1999; 19:2613-23. [PMID: 10082527 PMCID: PMC84054 DOI: 10.1128/mcb.19.4.2613] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two coordinate forms of transcriptional synergy mediate eukaryotic gene regulation: the greater-than-additive transcriptional response to multiple promoter-bound activators, and the sigmoidal response to increasing activator concentration. The mechanism underlying the sigmoidal response has not been elucidated but is almost certainly founded on the cooperative binding of activators and the general machinery to DNA. Here we explore that mechanism by using highly purified transcription factor preparations and a strong Epstein-Barr virus promoter, BHLF-1, regulated by the virally encoded activator ZEBRA. We demonstrate that two layers of cooperative binding govern transcription complex assembly. First, the architectural proteins HMG-1 and -2 mediate cooperative formation of an enhanceosome containing ZEBRA and cellular Sp1. This enhanceosome then recruits transcription factor IIA (TFIIA) and TFIID to the promoter to form the DA complex. The DA complex, however, stimulates assembly of the enhanceosome itself such that the entire reaction can occur in a highly concerted manner. The data reveal the importance of reciprocal cooperative interactions among activators and the general machinery in eukaryotic gene regulation.
Collapse
Affiliation(s)
- K Ellwood
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
8
|
Zerby D, Chen CJ, Poon E, Lee D, Shiekhattar R, Lieberman PM. The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. Mol Cell Biol 1999; 19:1617-26. [PMID: 10022850 PMCID: PMC83956 DOI: 10.1128/mcb.19.3.1617] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Accepted: 11/30/1998] [Indexed: 12/29/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) is maintained as a nucleosome-covered episome that can be transcriptionally activated by overexpression of the viral immediate-early protein, Zta. We show here that reactivation of latent EBV by Zta can be significantly enhanced by coexpression of the cellular coactivators CREB binding protein (CBP) and p300. A stable complex containing both Zta and CBP could be isolated from lytically stimulated, but not latently infected RAJI nuclear extracts. Zta-mediated viral reactivation and transcriptional activation were both significantly inhibited by coexpression of the E1A 12S protein but not by an N-terminal deletion mutation of E1A (E1ADelta2-36), which fails to bind CBP. Zta bound directly to two related cysteine- and histidine-rich domains of CBP, referred to as C/H1 and C/H3. These domains both interacted specifically with the transcriptional activation domain of Zta in an electrophoretic mobility shift assay. Interestingly, we found that the C/H3 domain was a potent dominant negative inhibitor of Zta transcriptional activation function. In contrast, an amino-terminal fragment containing the C/H1 domain was sufficient for coactivation of Zta transcription and viral reactivation function. Thus, CBP can stimulate the transcription of latent EBV in a histone acetyltransferase-independent manner mediated by the CBP amino-terminal C/H1-containing domain. We propose that CBP may regulate aspects of EBV latency and reactivation by integrating cellular signals mediated by competitive interactions between C/H1, C/H3, and the Zta activation domain.
Collapse
Affiliation(s)
- D Zerby
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
9
|
Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD. The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 1998; 72:8559-67. [PMID: 9765394 PMCID: PMC110266 DOI: 10.1128/jvi.72.11.8559-8567.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Accepted: 07/02/1998] [Indexed: 01/13/2023] Open
Abstract
The Epstein-Barr virus transactivator Zta triggers lytic gene expression and is essential for replication of the lytic origin, oriLyt. Previous analysis indicated that the Zta activation domain contributed a replication-specific function. We now show that the Zta activation domain interacts with components of the EBV helicase-primase complex. The three helicase-primase proteins BBLF4 (helicase), BSLF1 (primase), and BBLF2/3 (primase-associated factor) were expressed fused to the Myc epitope. When expression plasmids for BBLF4 or BBLF2/3 plus BSLF1 (primase subcomplex) were separately transfected, the proteins localized to the cytoplasm. Interaction between Zta and the components of the helicase-primase complex was tested by examining the ability of Zta to alter the intracellular localization of these proteins. Cotransfection of Zta with Myc-BBLF4 resulted in nuclear translocation of Myc-BBLF4; similarly, cotransfection of Zta with the primase subcomplex led to nuclear translocation of the Myc-BSLF1 and Myc-BBLF2/3 proteins. This relocalization provides evidence for an interaction between Zta and the helicase and Zta and the primase subcomplex. An affinity assay using glutathione S-transferase-Zta fusion proteins demonstrated that Myc-BBLF4 and Myc-BBLF2/3 plus BSLF1 bound to the Zta activation domain (amino acids 1 to 133). In the nuclear relocalization assay, the amino-terminal 25 amino acids of Zta were required for efficient interaction with the primase subcomplex but not for interaction with BBLF4. Evidence for interaction between oriLyt bound Zta and the helicase-primase complex was obtained in a superactivation assay using an oriLyt-chloramphenicol acetyltransferase (CAT) reporter. Zta activated expression from a CAT reporter containing the complete oriLyt region and regulated by the oriLyt BHLF1 promoter. Cotransfection of the helicase-primase proteins, one of which was fused to a heterologous activation domain, led to Zta-dependent superactivation of CAT expression. This assay also provided evidence for an interaction between the single-stranded DNA binding protein, BALF2, and the Zta-tethered helicase-primase complex. The helicase-primase interaction is consistent with a role for Zta in stabilizing the formation of an origin-bound replication complex.
Collapse
Affiliation(s)
- Z Gao
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Damania B, Lieberman P, Alwine JC. Simian virus 40 large T antigen stabilizes the TATA-binding protein-TFIIA complex on the TATA element. Mol Cell Biol 1998; 18:3926-35. [PMID: 9632777 PMCID: PMC108977 DOI: 10.1128/mcb.18.7.3926] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 04/21/1998] [Indexed: 02/07/2023] Open
Abstract
Large T antigen (T antigen), the early gene product of simian virus 40 (SV40), is a potent transcriptional activator of both cellular and viral genes. Recently we have shown that T antigen is tightly associated with TFIID and, in this position, performs a TATA-binding protein (TBP)-associated factor (TAF)-like function. Based on this observation, we asked whether T antigen affected steps in preinitiation complex assembly. Using purified components in in vitro complex assembly assays, we found that T antigen specifically enhances the formation of the TBP-TFIIA complex on the TATA element. T antigen accomplishes this by increasing the rate of formation of the TBP-TFIIA complex on the TATA element and by stabilizing the complexes after they are formed on the promoter. In addition, DNA immunoprecipitation experiments indicate that T antigen is associated with the stabilized TBP-TFIIA complexes bound to the DNA. In this regard, it has previously been shown that T antigen interacts with TBP; in the present study, we show that T antigen also interacts with TFIIA in vitro. In testing the ability of T antigen to stabilize the TBP-TFIIA complex, we found that stabilization is highly sensitive to the specific sequence context of the TATA element. Previous studies showed that T antigen could activate simple promoters containing the TATA elements from the hsp70 and c-fos gene promoters but failed to significantly activate similar promoters containing the TATA elements from the promoters of the SV40 early and adenovirus E2a genes. We find that the ability to stabilize the TBP-TFIIA complex on the hsp70 and c-fos TATA elements, and not on the SV40 early and E2A TATA elements, correlates with the ability or inability to activate promoters containing these TATA elements.
Collapse
Affiliation(s)
- B Damania
- Graduate Group of Cell and Molecular Biology, Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | |
Collapse
|
11
|
Lieberman PM, Ozer J, Gürsel DB. Requirement for transcription factor IIA (TFIIA)-TFIID recruitment by an activator depends on promoter structure and template competition. Mol Cell Biol 1997; 17:6624-32. [PMID: 9343426 PMCID: PMC232516 DOI: 10.1128/mcb.17.11.6624] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Different mechanisms of transcriptional activation may be required for distinct classes of promoters and cellular conditions. The Epstein-Barr virus (EBV)-encoded transcriptional activator Zta recruits the general transcription factors IID (TFIID) and IIA (TFIIA) to promoter DNA and induces a TATA box-binding protein (TBP)-associated factor-dependent footprint downstream of the transcriptional initiation site. In this study, we investigated the functional significance of TFIID-TFIIA (D-A complex) recruitment by Zta. Alanine substitution mutations in the Zta activation domain which eliminate the ability of Zta to stimulate the D-A complex were examined. These Zta mutants were defective in the ability to activate transcription from an EBV-derived promoter (BHLF1) but activated a highly responsive synthetic promoter (Z7E4T). Both the number of activator binding sites and the core promoter region contribute to the requirement for D-A complex recruitment. These functionally distinct core promoters had significant differences in affinity for TBP and TFIID binding. The D-A complex-recruiting activity of Zta was found to be important for promoter selection in the presence of a competitor template. Conditions which limit TFIID binding to the TATA element or compromise the ability of TFIIA to bind TBP required activator stimulation of the D-A complex. These results indicate that D-A complex recruitment is one of at least two activation pathways utilized by Zta and is the essential pathway for a subset of promoters and conditions which limit TFIID binding to the TATA element.
Collapse
Affiliation(s)
- P M Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
12
|
Meisterernst M, Stelzer G, Roeder RG. Poly(ADP-ribose) polymerase enhances activator-dependent transcription in vitro. Proc Natl Acad Sci U S A 1997; 94:2261-5. [PMID: 9122182 PMCID: PMC20075 DOI: 10.1073/pnas.94.6.2261] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/1997] [Indexed: 02/04/2023] Open
Abstract
Mammalian cells contain activities that amplify the effects of activators on class II gene transcription in vitro. The molecular identity of several of these cofactor activities is still unknown. Here we identify poly(ADP-ribose) polymerase (PARP) as one functional component of the positive cofactor 1 activity. PARP enhances transcription by acting during preinitiation complex formation, but at a step after binding of transcription factor IID. This transcriptional activation requires the amino-terminal DNA-binding domain, but not the carboxyl-terminal catalytic region. In purified systems, coactivator function requires a large molar excess of PARP over the number of templates, as reported for other DNA-binding cofactors such as topoisomerase I. PARP effects on supercoiled templates are DNA concentration-dependent and do not depend on damaged DNA. The PARP coactivator function is suppressed by NAD+, probably as a result of auto-ADP-ribosylation. These observations provide another example of the potentiation of trancription by certain DNA-binding cofactors and may point to interactions of PARP with RNA polymerase II-associated factors in special situations.
Collapse
Affiliation(s)
- M Meisterernst
- Laboratorium für Molekulare Biologie-Genzentrum, der Ludwig-Maximilians-Universitat Munchen, Munich, Germany.
| | | | | |
Collapse
|
13
|
Carrozza MJ, DeLuca NA. Interaction of the viral activator protein ICP4 with TFIID through TAF250. Mol Cell Biol 1996; 16:3085-93. [PMID: 8649420 PMCID: PMC231303 DOI: 10.1128/mcb.16.6.3085] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ICP4 of herpes simplex virus is responsible for the activation of viral transcription during infection. It also efficiently activates and represses transcription in vitro depending on the promoter context. The contacts made between ICP4 and the cellular proteins that result in activated transcription have not been identified. The inability of ICP4 to activate transcription with TATA-binding protein in place of TFIID and the requirement for an initiator element for efficient ICP-4-activated transcription suggest that coactivators, such as TBP-associated factors, are involved (B. Gu and N. DeLuca, J. Virol. 68:7953-7965, 1994). In this study we showed that ICP4 activates transcription in vitro using an immunopurified TFIID, indicating that TBP-associated factors may be a sufficient subset of coactivators for ICP4-activated transcription. Similar to results seen in vivo, the presence of the ICP4 C-terminal region (amino acids 774 to 1298) was important for activation in vitro. With epitope-tagged ICP4 molecules in immunoaffinity experiments, it was shown that the C-terminal region was also required for ICP4 to interact with TFIID present in a crude transcription factor fraction. In the same assay, ICP4 was unable to interact with the basal transcription factors, TFIIB, TFIIE, TFIIF, and TFIIH and RNA polymerase II. ICP4 could also interact with TBP, independent of the C-terminal region. However, reflective of the interaction between ICP4 and TFIID, the ICP4 C-terminal region was required for an interaction with FAF250-TBP complexes and with TAF250 alone. Therefore, the interfaces or conformation of TBP mediating the interaction between ICP4 and TBP in solution is probably masked when TBP is bound to TAF250. With a series of mutant ICP4 molecules purified from herpes simplex virus-infected cells, it was shown that ICP4 molecules that can bind DNA and interact with TAF250 could activate transcription. Taken together, these results demonstrate that ICP4 interaction with TFIID involves the TAF250 molecule and the C-terminal region of ICP4 and that this interaction is part of the mechanism by which ICP4 activates transcription.
Collapse
Affiliation(s)
- M J Carrozza
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | |
Collapse
|
14
|
Pfitzner E, Becker P, Rolke A, Schüle R. Functional antagonism between the retinoic acid receptor and the viral transactivator BZLF1 is mediated by protein-protein interactions. Proc Natl Acad Sci U S A 1995; 92:12265-9. [PMID: 8618882 PMCID: PMC40337 DOI: 10.1073/pnas.92.26.12265] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Epstein-Barr virus-encoded protein BZLF1 is a member of the basic leucine zipper (bZip) family of transcription factors. Like several other members of the bZip family, transcriptional activity of BZLF1 is modulated by retinoic acid receptors (RARs). We present evidence that the RAR alpha and BZLF1 can reciprocally repress each other's transcriptional activation by a newly discovered mechanism. Analysis of RAR alpha mutants in transfection studies reveals that the DNA binding domain is sufficient for inhibition of BZLF1 activity. Analysis of BZLF1 mutants indicates that both the coiled-coil dimerization domain and a region containing the transcriptional activation domain of BZLF1 are required for transrepression. Coimmunoprecipitation experiments demonstrate physical interactions between RAR alpha and BZLF1 in vivo. Furthermore, glutathione S-transferase-pulldown assays reveal that these protein-protein interactions are mediated by the coiled-coil dimerization domain of BZLF1 and the DNA binding domain of RAR alpha. While RAR alpha is unable to recognize BZLF1 binding sites, the RAR alpha can be tethered to the DNA by forming a heteromeric complex with BZLF1 bound to DNA. Tethering RARs via protein-protein interactions onto promoter DNA suggest a mechanism through which RARs might gain additional levels of transcriptional regulation.
Collapse
Affiliation(s)
- E Pfitzner
- Institut für Experimentelle Krebsforschung, Klinik für Tumorbiologie, Universität Freiburg, Germany
| | | | | | | |
Collapse
|