1
|
Suzuki S, Chosa K, Barillà C, Yao M, Zuffardi O, Kai H, Shuto T, Suico MA, Kan YW, Sargent RG, Gruenert DC. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed 2022; 4:843885. [PMID: 35465025 PMCID: PMC9019469 DOI: 10.3389/fgeed.2022.843885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Keisuke Chosa
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cristina Barillà
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Michael Yao
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuet W. Kan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - R. Geoffrey Sargent
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- GeneTether Inc., San Lorenzo, CA, United States
| | - Dieter C. Gruenert
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, VT, United States
| |
Collapse
|
2
|
Asuri P, Bartel MA, Vazin T, Jang JH, Wong TB, Schaffer DV. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther 2012; 20:329-38. [PMID: 22108859 PMCID: PMC3277219 DOI: 10.1038/mt.2011.255] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/27/2011] [Indexed: 12/12/2022] Open
Abstract
Efficient approaches for the precise genetic engineering of human pluripotent stem cells (hPSCs) can enhance both basic and applied stem cell research. Adeno- associated virus (AAV) vectors are of particular interest for their capacity to mediate efficient gene delivery to and gene targeting in various cells. However, natural AAV serotypes offer only modest transduction of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), which limits their utility for efficiently manipulating the hPSC genome. Directed evolution is a powerful means to generate viral vectors with novel capabilities, and we have applied this approach to create a novel AAV variant with high gene delivery efficiencies (~50%) to hPSCs, which are importantly accompanied by a considerable increase in gene-targeting frequencies, up to 0.12%. While this level is likely sufficient for numerous applications, we also show that the gene-targeting efficiency mediated by an evolved AAV variant can be further enhanced (>1%) in the presence of targeted double- stranded breaks (DSBs) generated by the co-delivery of artificial zinc finger nucleases (ZFNs). Thus, this study demonstrates that under appropriate selective pressures, AAV vectors can be created to mediate efficient gene targeting in hPSCs, alone or in the presence of ZFN- mediated double-stranded DNA breaks.
Collapse
Affiliation(s)
- Prashanth Asuri
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, USA
| | | | | | | | | | | |
Collapse
|
3
|
Generation of an inducible mouse ES cell lines deficient for Argonaute proteins. Methods Mol Biol 2011. [PMID: 21528461 DOI: 10.1007/978-1-61779-046-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Argonautes (Agos) are core effectors of RNA silencing. In several nonmammalian organisms, multiple Agos are known to exhibit specialized functions for distinct RNA silencing pathway. Mammals have four closely related Agos. To examine the functions of mammalian Agos in the microRNA silencing pathway, we generated mouse embryonic stem (ES) cells that are nullizygous for all Agos. This chapter describes a variety of techniques including BAC recombineering, gene targeting, and inducible Cre-loxP recombination, used to generate inducible Ago knock-out ES cells. The Ago-deficient ES cells provide an important tool for the study of mammalian RNA silencing.
Collapse
|
4
|
Tewari R, Straschil U, Bateman A, Böhme U, Cherevach I, Gong P, Pain A, Billker O. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 2011; 8:377-87. [PMID: 20951971 PMCID: PMC2977076 DOI: 10.1016/j.chom.2010.09.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 12/23/2022]
Abstract
Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified.
Collapse
Affiliation(s)
- Rita Tewari
- Institute of Genetics, QMC, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 2010; 87:1065-76. [DOI: 10.1007/s00253-010-2566-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/12/2010] [Accepted: 03/14/2010] [Indexed: 12/11/2022]
|
6
|
Davis RP, Grandela C, Sourris K, Hatzistavrou T, Dottori M, Elefanty AG, Stanley EG, Costa M. Generation of human embryonic stem cell reporter knock-in lines by homologous recombination. ACTA ACUST UNITED AC 2010; Chapter 5:Unit 5B.1 1.1-34. [PMID: 19885825 DOI: 10.1002/9780470151808.sc05b01s11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This unit describes a series of technical procedures to form clonal human embryonic stem cell (hESC) lines that are genetically modified by homologous recombination. To develop a reporter knock-in hESC line, a vector is configured to contain a reporter gene adjacent to a positive selection cassette. These core elements are flanked by homologous sequences that, following electroporation into hESCs, promote the integration of the vector into the appropriate genomic locus. The positive selection cassette facilitates the enrichment and isolation of genetically modified hESC colonies that are then screened by PCR to identify correctly targeted lines. The selection cassette, flanked by loxP sites, is subsequently excised from the positively targeted hESCs via the transient expression of Cre recombinase. This is necessary because the continued presence of the cassette may interfere with the regulation of the reporter or neighboring genes. Finally, these genetically modified hESCs are clonally isolated using single-cell deposition flow cytometry. Reporter knock-in hESC lines are valuable tools that allow easy and rapid identification and isolation of specific hESC derivatives.
Collapse
Affiliation(s)
- Richard P Davis
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Construction of an Insertion Vector for Gene Targeting of Chicken Lens-specific Gene. J Poult Sci 2010. [DOI: 10.2141/jpsa.010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 2007; 45:68-75. [PMID: 17716934 DOI: 10.1016/j.fgb.2007.06.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/11/2007] [Accepted: 06/19/2007] [Indexed: 02/04/2023]
Abstract
The ascomycete Magnaporthe grisea is a model species for the study of plant fungal interactions. As in many filamentous fungi, targeted gene replacement occurs at low frequency in M. grisea (average 7%). mus52/KU80 is a gene essential for non-homologous end joining (NHEJ) of DNA double-strand breaks. Its deletion increases the frequency of targeted gene replacement in fungi [Ninomiya, Y., Suzuki, K., Ishii, C., Inoue, H., 2004. Highly efficient gene replacements in Neurospora strains deficient for non-homologous end joining. Proc. Natl. Acad. Sci. USA 101(33), 12248-53]. M. grisea KU80 deletion mutants were constructed and displayed wild-type phenotypes regarding pathogenicity, growth, sporulation and mating. MgADE4 targeted gene replacement frequency was increased in Deltaku80 mutants (80% vs 5%) and high frequencies (>80%) were observed at seven other loci. However, the deletion of MgKU80 did not increase the frequency of ACE1 replacement indicating that this locus has an intrinsic reduced ability for gene replacement. These results open the way to large-scale reverse genetics experiments in M. grisea facilitating the study of the infection process.
Collapse
|
9
|
Costa M, Dottori M, Sourris K, Jamshidi P, Hatzistavrou T, Davis R, Azzola L, Jackson S, Lim SM, Pera M, Elefanty AG, Stanley EG. A method for genetic modification of human embryonic stem cells using electroporation. Nat Protoc 2007; 2:792-6. [PMID: 17446878 DOI: 10.1038/nprot.2007.105] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ability to genetically modify human embryonic stem cells (HESCs) will be critical for their widespread use as a tool for understanding fundamental aspects of human biology and pathology and for their development as a platform for pharmaceutical discovery. Here, we describe a method for the genetic modification of HESCs using electroporation, the preferred method for introduction of DNA into cells in which the desired outcome is gene targeting. This report provides methods for cell amplification, electroporation, colony selection and screening. The protocol we describe has been tested on four different HESC lines, and takes approximately 4 weeks from electroporation to PCR screening of G418-resistant clones.
Collapse
Affiliation(s)
- Magdaline Costa
- Monash Immunology and Stem Cell Laboratories, STRIP 1, West Ring Road, Monash University Campus, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adams DJ, Biggs PJ, Cox T, Davies R, van der Weyden L, Jonkers J, Smith J, Plumb B, Taylor R, Nishijima I, Yu Y, Rogers J, Bradley A. Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 2004; 36:867-71. [PMID: 15235602 DOI: 10.1038/ng1388] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 05/06/2004] [Indexed: 11/09/2022]
Abstract
Embryonic stem cell technology revolutionized biology by providing a means to assess mammalian gene function in vivo. Although it is now routine to generate mice from embryonic stem cells, one of the principal methods used to create mutations, gene targeting, is a cumbersome process. Here we describe the indexing of 93,960 ready-made insertional targeting vectors from two libraries. 5,925 of these vectors can be used directly to inactivate genes with an average targeting efficiency of 28%. Combinations of vectors from the two libraries can be used to disrupt both alleles of a gene or engineer larger genomic changes such as deletions, duplications, translocations or inversions. These indexed vectors constitute a public resource (Mutagenic Insertion and Chromosome Engineering Resource; MICER) for high-throughput, targeted manipulation of the mouse genome.
Collapse
Affiliation(s)
- David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs, CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Denning C, Dickinson P, Burl S, Wylie D, Fletcher J, Clark AJ. Gene targeting in primary fetal fibroblasts from sheep and pig. CLONING AND STEM CELLS 2002; 3:221-31. [PMID: 11945232 DOI: 10.1089/15362300152725945] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear transfer offers a new cell-based route for introducing precise genetic modifications in a range of animal species. However, significant challenges, such as establishment of somatic gene targeting techniques, must be overcome before the technology can be applied routinely. In this report, we describe targeted deletion at the GGTA1 (alpha 1,3-galactosyl transferase) and PrP (prion protein) loci in primary fibroblasts from livestock. We place particular emphasis on the growth characteristics of the primary cell cultures, since these are key to determining success.
Collapse
Affiliation(s)
- C Denning
- Roslin Institute, Roslin, Midlothian, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Ng P, Baker MD. The molecular basis of multiple vector insertion by gene targeting in mammalian cells. Genetics 1999; 151:1143-55. [PMID: 10049930 PMCID: PMC1460523 DOI: 10.1093/genetics/151.3.1143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration.
Collapse
Affiliation(s)
- P Ng
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
13
|
Abstract
Gene targeting in embryonic stem (ES) cells has been employed to investigate the role of the retinoid receptors and binding proteins both in the mouse as well as in embryocarcinoma cells. It is a powerful technique for the modification of the mouse genome. With more recent refinements in gene targeting technology, it is now possible to introduce more subtle mutations in the murine genome, as well as to investigate gene function in a tissue and temporally-restricted manner. It should also be possible to modify genes in diverse diploid cell lines, to generate diverse model systems for analysis of retinoid receptor function. In this article, some of the basic principles for gene targeting are described.
Collapse
Affiliation(s)
- D Lohnes
- Institut de Rechercheo Cliniques, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Picciotto MR, Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 1998; 78:1131-63. [PMID: 9790572 DOI: 10.1152/physrev.1998.78.4.1131] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reverse genetics, in which detailed knowledge of a gene of interest permits in vivo modification of its expression or function, provides a powerful method for examining the physiological relevance of any protein. Transgenic and knockout mouse models are particularly useful for studies of complex neurobiological problems. The primary aims of this review are to familiarize the nonspecialist with the techniques and limitations of mouse mutagenesis, to describe new technologies that may overcome these limitations, and to illustrate, using representative examples from the literature, some of the ways in which genetically altered mice have been used to analyze central nervous system function. The goal is to provide the information necessary to evaluate critically studies in which mutant mice have been used to study neurobiological problems.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
15
|
Papadopoulou B, Dumas C. Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Res 1997; 25:4278-86. [PMID: 9336458 PMCID: PMC147044 DOI: 10.1093/nar/25.21.4278] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we investigated the role of several parameters governing the efficiency of gene targeting mediated by homologous recombination in the protozoan parasite Leishmania. We evaluated the relative targeting frequencies of different replacement vectors designed to target several sequences within the parasite genome. We found that a decrease in the length of homologous sequences <1 kb on one arm of the vector linearly influences the targeting frequency. No homologous recombination was detected, however, when the flanking homologous regions were <180 bp. A requirement for a very high degree of homology between donor and target sequences was found necessary for efficient gene targeting in Leishmania , as targeted recombination was strongly affected by base pair mismatches. Targeting frequency increased proportionally with copy number of the target only when the target was part of a linear amplicon, but remained unchanged when it was present on circles. Different chromosomal locations were found to be targeted with significantly variable levels of efficiency. Finally, different strains of the same species showed differences in gene targeting frequency. Overall, gene targeting mediated by homologous recombination in Leishmania shares similarities to both the yeast and the mammalian recombination systems.
Collapse
Affiliation(s)
- B Papadopoulou
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval and Département de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | |
Collapse
|
16
|
Abstract
In classical gene inactivation approaches by homologous recombination in embryonic stem cells, the resulting knockout mice are genotypically homogeneous. The inactivation of a gene in the complete organism may sometimes lead to early embryonic lethality. The observation that bacterial recombinases can drive site-specific recombination in mammalian cells has allowed for spatiotemporally controlled genetic modifications. Thus, conditional gene inactivation can be achieved in a specific subset of cells, leaving the rest of the organism genotypically unchanged. Another application of bacterial recombinases is the generation of exon-specific knockout mice, allowing for the analysis of the role of tissue-specific splice variants. A combination of the above-mentioned bacterial recombinase technique with inducible promoter systems permits the investigator to choose precisely the onset of recombination. An extension of the above-mentioned techniques is the combination of the bacterial recombinase technique with adenovirus-based technology, which would open vast possibilities of tissue-specific genetic modifications in a controlled time frame.
Collapse
Affiliation(s)
- R van der Neut
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam.
| |
Collapse
|
17
|
Mitani K, Wakamiya M, Hasty P, Graham FL, Bradley A, Caskey CT. Gene targeting in mouse embryonic stem cells with an adenoviral vector. SOMATIC CELL AND MOLECULAR GENETICS 1995; 21:221-31. [PMID: 8525428 DOI: 10.1007/bf02255777] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the ability of an E1, E3-defective adenoviral vector to act as a substrate for homologous recombination with chromosomal DNA by including host chromosomal sequence from the mouse Fgr locus that also contained a selectable marker. After infection of mouse embryonic stem cells, stable integration was selected for neomycin resistance and the efficiency of homologous recombination was evaluated. The adenoviral vector was capable of infecting mouse embryonic stem cells efficiently. Between 30-50% of the input virus reached the nuclei after 24 hours of infection. Surprisingly, even without negative selection, 25-40% of the integration resulted from homologous recombination at m.o.i. 10 and 100, although the absolute efficiency of integration was low. Our results suggest that it is possible to modify the structure of an adenoviral vector to achieve a high gene targeting efficiency, resulting in regulated and long-term expression of an introduced gene.
Collapse
Affiliation(s)
- K Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|