1
|
IRC3 regulates mitochondrial translation in response to metabolic cues in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0023321. [PMID: 34398681 DOI: 10.1128/mcb.00233-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) enzymes are made up of dual genetic origin. Mechanisms regulating the expression of nuclear-encoded OXPHOS subunits in response to metabolic cues (glucose vs. glycerol), is significantly understood while regulation of mitochondrially encoded OXPHOS subunits is poorly defined. Here, we show that IRC3 a DEAD/H box helicase, previously implicated in mitochondrial DNA maintenance, is central to integrating metabolic cues with mitochondrial translation. Irc3 associates with mitochondrial small ribosomal subunit in cells consistent with its role in regulating translation elongation based on Arg8m reporter system. IRC3 deleted cells retained mitochondrial DNA despite growth defect on glycerol plates. Glucose grown Δirc3ρ+ and irc3 temperature-sensitive cells at 370C have reduced translation rates from majority of mRNAs. In contrast, when galactose was the carbon source, reduction in mitochondrial translation was observed predominantly from Cox1 mRNA in Δirc3ρ+ but no defect was observed in irc3 temperature-sensitive cells, at 370C. In support, of a model whereby IRC3 responds to metabolic cues to regulate mitochondrial translation, suppressors of Δirc3 isolated for restoration of growth on glycerol media restore mitochondrial protein synthesis differentially in presence of glucose vs. glycerol.
Collapse
|
2
|
Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021; 22:307-325. [PMID: 33594280 DOI: 10.1038/s41580-021-00332-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
Collapse
|
3
|
García-Villegas R, Camacho-Villasana Y, Shingú-Vázquez MÁ, Cabrera-Orefice A, Uribe-Carvajal S, Fox TD, Pérez-Martínez X. The Cox1 C-terminal domain is a central regulator of cytochrome c oxidase biogenesis in yeast mitochondria. J Biol Chem 2017; 292:10912-10925. [PMID: 28490636 DOI: 10.1074/jbc.m116.773077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Cytochrome c oxidase (CcO) is the last electron acceptor in the respiratory chain. The CcO core is formed by mitochondrial DNA-encoded Cox1, Cox2, and Cox3 subunits. Cox1 synthesis is highly regulated; for example, if CcO assembly is blocked, Cox1 synthesis decreases. Mss51 activates translation of COX1 mRNA and interacts with Cox1 protein in high-molecular-weight complexes (COA complexes) to form the Cox1 intermediary assembly module. Thus, Mss51 coordinates both Cox1 synthesis and assembly. We previously reported that the last 15 residues of the Cox1 C terminus regulate Cox1 synthesis by modulating an interaction of Mss51 with Cox14, another component of the COA complexes. Here, using site-directed mutagenesis of the mitochondrial COX1 gene from Saccharomyces cerevisiae, we demonstrate that mutations P521A/P522A and V524E disrupt the regulatory role of the Cox1 C terminus. These mutations, as well as C terminus deletion (Cox1ΔC15), reduced binding of Mss51 and Cox14 to COA complexes. Mss51 was enriched in a translationally active form that maintains full Cox1 synthesis even if CcO assembly is blocked in these mutants. Moreover, Cox1ΔC15, but not Cox1-P521A/P522A and Cox1-V524E, promoted formation of aberrant supercomplexes in CcO assembly mutants lacking Cox2 or Cox4 subunits. The aberrant supercomplex formation depended on the presence of cytochrome b and Cox3, supporting the idea that supercomplex assembly factors associate with Cox3 and demonstrating that supercomplexes can be formed even if CcO is inactive and not fully assembled. Our results indicate that the Cox1 C-terminal end is a key regulator of CcO biogenesis and that it is important for supercomplex formation/stability.
Collapse
Affiliation(s)
- Rodolfo García-Villegas
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Yolanda Camacho-Villasana
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Miguel Ángel Shingú-Vázquez
- the Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Alfredo Cabrera-Orefice
- the Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Salvador Uribe-Carvajal
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Thomas D Fox
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Xochitl Pérez-Martínez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico,
| |
Collapse
|
4
|
Mayorga JP, Camacho-Villasana Y, Shingú-Vázquez M, García-Villegas R, Zamudio-Ochoa A, García-Guerrero AE, Hernández G, Pérez-Martínez X. A Novel Function of Pet54 in Regulation of Cox1 Synthesis in Saccharomyces cerevisiae Mitochondria. J Biol Chem 2016; 291:9343-55. [PMID: 26929411 DOI: 10.1074/jbc.m116.721985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Cytochrome c oxidase assembly requires the synthesis of the mitochondria-encoded core subunits, Cox1, Cox2, and Cox3. In yeast, Pet54 protein is required to activate translation of the COX3 mRNA and to process the aI5β intron on the COX1 transcript. Here we report a third, novel function of Pet54 on Cox1 synthesis. We observed that Pet54 is necessary to achieve an efficient Cox1 synthesis. Translation of the COX1 mRNA is coupled to the assembly of cytochrome c oxidase by a mechanism that involves Mss51. This protein activates translation of the COX1 mRNA by acting on the COX1 5'-UTR, and, in addition, it interacts with the newly synthesized Cox1 protein in high molecular weight complexes that include the factors Coa3 and Cox14. Deletion of Pet54 decreased Cox1 synthesis, and, in contrast to what is commonly observed for other assembly mutants, double deletion of cox14 or coa3 did not recover Cox1 synthesis. Our results show that Pet54 is a positive regulator of Cox1 synthesis that renders Mss51 competent as a translational activator of the COX1 mRNA and that this role is independent of the assembly feedback regulatory loop of Cox1 synthesis. Pet54 may play a role in Mss51 hemylation/conformational change necessary for translational activity. Moreover, Pet54 physically interacts with the COX1 mRNA, and this binding was independent of the presence of Mss51.
Collapse
Affiliation(s)
- Juan Pablo Mayorga
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yolanda Camacho-Villasana
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Miguel Shingú-Vázquez
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences Monash University, Clayton, Victoria 3800, Australia, and
| | - Rodolfo García-Villegas
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Angélica Zamudio-Ochoa
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aldo E García-Guerrero
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Greco Hernández
- the Division of Basic Research, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Xochitl Pérez-Martínez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico,
| |
Collapse
|
5
|
Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2013; 100:132-40. [PMID: 23954798 PMCID: PMC3978653 DOI: 10.1016/j.biochi.2013.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Mitochondrially-encoded proteins are mostly respiratory chain components. The mitochondrial translation system is thus organized in a very specific way. Initiation involves mRNA-specific activators and bacteria-like initiation factors. We show that Saccharomyces cerevisiae Aim23p is a functional ortholog of bacterial IF3. We review the lineage specific features of mitochondrial translation initiation.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Sergey Levitskii
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
6
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
7
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
8
|
Kaspar BJ, Bifano AL, Caprara MG. A shared RNA-binding site in the Pet54 protein is required for translational activation and group I intron splicing in yeast mitochondria. Nucleic Acids Res 2008; 36:2958-68. [PMID: 18388132 PMCID: PMC2396411 DOI: 10.1093/nar/gkn045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Pet54p protein is an archetypical example of a dual functioning ('moonlighting') protein: it is required for translational activation of the COX3 mRNA and splicing of the aI5beta group I intron in the COX1 pre-mRNA in Saccharomyces cerevisiae mitochondria (mt). Genetic and biochemical analyses in yeast are consistent with Pet54p forming a complex with other translational activators that, in an unknown way, associates with the 5' untranslated leader (UTL) of COX3 mRNA. Likewise, genetic analysis suggests that Pet54p along with another distinct set of proteins facilitate splicing of the aI5beta intron, but the function of Pet54 is, also, obscure. In particular, it remains unknown whether Pet54p is a primary RNA-binding protein that specifically recognizes the 5' UTL and intron RNAs or whether its functional specificity is governed in other ways. Using recombinant protein, we show that Pet54p binds with high specificity and affinity to the aI5beta intron and facilitates exon ligation in vitro. In addition, Pet54p binds with similar affinity to the COX3 5' UTL RNA. Competition experiments show that the COX3 5'UTL and aI5beta intron RNAs bind to the same or overlapping surface on Pet54p. Delineation of the Pet54p-binding sites by RNA deletions and RNase footprinting show that Pet54p binds across a similar length sequence in both RNAs. Alignment of the sequences shows significant (56%) similarity and overlap between the binding sites. Given that its role in splicing is likely an acquired function, these data support a model in which Pet54p's splicing function may have resulted from a fortuitous association with the aI5beta intron. This association may have lead to the selection of Pet54p variants that increased the efficiency of aI5beta splicing and provided a possible means to coregulate COX1 and COX3 expression.
Collapse
Affiliation(s)
- Benjamin J Kaspar
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4960, USA
| | | | | |
Collapse
|
9
|
Zambrano A, Fontanesi F, Solans A, de Oliveira RL, Fox TD, Tzagoloff A, Barrientos A. Aberrant translation of cytochrome c oxidase subunit 1 mRNA species in the absence of Mss51p in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:523-35. [PMID: 17135289 PMCID: PMC1783774 DOI: 10.1091/mbc.e06-09-0803] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/03/2006] [Accepted: 11/20/2006] [Indexed: 11/11/2022] Open
Abstract
Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.
Collapse
Affiliation(s)
- Andrea Zambrano
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Flavia Fontanesi
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Asun Solans
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Rodrigo Leite de Oliveira
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Thomas D. Fox
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703; and
| | | | - Antoni Barrientos
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
10
|
Demlow CM, Fox TD. Activity of mitochondrially synthesized reporter proteins is lower than that of imported proteins and is increased by lowering cAMP in glucose-grown Saccharomyces cerevisiae cells. Genetics 2004; 165:961-74. [PMID: 14668357 PMCID: PMC1462836 DOI: 10.1093/genetics/165.3.961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We selected for increased phenotypic expression of a synthetic cox2::arg8m-G66S reporter gene inserted into Saccharomyces cerevisiae mtDNA in place of COX2. Recessive mutations in ras2 and cyr1, as well as elevated dosage of PDE2, allowed cox2::arg8m-G66S to support Arg prototrophy. Each of these genetic alterations should decrease cellular cAMP levels. The resulting signal was transduced through redundant action of the three cAMP-dependent protein kinases, TPK1, TPK2, and TPK3. ras2 had little or no effect on the level of wild-type Arg8p encoded by cox2::ARG8m, but did increase Arg8p activity, as judged by growth phenotype. ras2 also caused increased fluorescence in cells carrying the synthetic cox3::GFPm reporter in mtDNA, but had little effect on the steady-state level of GFP polypeptide detected immunologically. Thus, decreased cAMP levels did not affect the synthesis of mitochondrially coded protein reporters in glucose-grown cells, but rather elevated activities in the matrix that promote efficient folding. Furthermore, we show that when Arg8p is synthesized in the cytoplasm and imported into mitochondria, it has greater activity than when it is synthesized in the matrix. Thus, mitochondrially synthesized proteins may not have the same access to matrix chaperones as cytoplasmically synthesized proteins emerging from the import apparatus.
Collapse
Affiliation(s)
- Christina M Demlow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
11
|
Kucejová B, Foury F. Search for protein partners of mitochondrial single-stranded DNA-binding protein Rim1p using a yeast two-hybrid system. Folia Microbiol (Praha) 2003; 48:183-8. [PMID: 12807077 DOI: 10.1007/bf02930953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.
Collapse
Affiliation(s)
- B Kucejová
- Department of Biochemistry, Faculty of Science, Comenius University, 842 15 Bratislava, Slovakia.
| | | |
Collapse
|
12
|
Naithani S, Saracco SA, Butler CA, Fox TD. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:324-33. [PMID: 12529447 PMCID: PMC140248 DOI: 10.1091/mbc.e02-08-0490] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Accepted: 09/20/2002] [Indexed: 11/11/2022] Open
Abstract
The core of the cytochrome c oxidase complex is composed of its three largest subunits, Cox1p, Cox2p, and Cox3p, which are encoded in mitochondrial DNA of Saccharomyces cerevisiae and inserted into the inner membrane from the inside. Mitochondrial translation of the COX1, COX2, and COX3 mRNAs is activated mRNA specifically by the nuclearly coded proteins Pet309p, Pet111p, and the concerted action of Pet54p, Pet122p, and Pet494p, respectively. Because the translational activators recognize sites in the 5'-untranslated leaders of these mRNAs and because untranslated mRNA sequences contain information for targeting their protein products, the activators are likely to play a role in localizing translation. Herein, we report physical associations among the mRNA-specific translational activator proteins, located on the matrix side of the inner membrane. These interactions, detected by coimmune precipitation and by two-hybrid experiments, suggest that the translational activator proteins could be organized on the surface of the inner membrane such that synthesis of Cox1p, Cox2p, and Cox3p would be colocalized in a way that facilitates assembly of the core of the cytochrome c oxidase complex. In addition, we found interactions between Nam1p/Mtf2p and the translational activators, suggesting an organized delivery of mitochondrial mRNAs to the translation system.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
13
|
Tyagi S, Jameel S, Lal SK. Self-association and mapping of the interaction domain of hepatitis E virus ORF3 protein. J Virol 2001; 75:2493-8. [PMID: 11160756 PMCID: PMC114836 DOI: 10.1128/jvi.75.5.2493-2498.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hepatitis E virus (HEV) is a major human pathogen in the developing world. In the absence of an in vitro culture system, very little information on the basic biology of the virus exists. A small protein (approximately 13.5 kDa) of unknown function, pORF3, is encoded by the third open reading frame of HEV. The N-terminal region of pORF3 is associated with the cytoskeleton using one of its hydrophobic domains. The C-terminal half of pORF3 is rich in proline residues and contains a putative src homology 3 (SH3) binding domain and a mitogen-activated protein kinase phosphorylation site. In this study, we demonstrate that pORF3 can homodimerize in vivo, using the yeast two-hybrid system. We have isolated a 43-amino-acid interaction domain of pORF3 which is capable of self-association in vivo and in vitro. The overlap of the dimerization domain with the SH3 binding and phosphorylation domains suggests that pORF3 may have a dimerization-dependent regulatory role to play in the signal transduction pathway.
Collapse
Affiliation(s)
- S Tyagi
- Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
14
|
Fisk DG, Walker MB, Barkan A. Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J 1999; 18:2621-30. [PMID: 10228173 PMCID: PMC1171341 DOI: 10.1093/emboj/18.9.2621] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The maize nuclear gene crp1 is required for the translation of the chloroplast petA and petD mRNAs and for the processing of the petD mRNA from a polycistronic precursor. In order to understand the biochemical role of the crp1 gene product and the interconnections between chloroplast translation and RNA metabolism, the crp1 gene and cDNA were cloned. The predicted crp1 gene product (CRP1) is related to nuclear genes in fungi that play an analogous role in mitochondrial gene expression, suggesting an underlying mechanistic similarity. Analysis of double mutants that lack both chloroplast ribosomes and crp1 function indicated that CRP1 activates a site-specific endoribonuclease independently of any role it plays in translation. Antibodies prepared to recombinant CRP1 were used to demonstrate that CRP1 is localized to the chloroplast stroma and that it is a component of a multisubunit complex. The CRP1 complex is not associated detectably with either chloroplast membranes or chloroplast ribosomes. Models for CRP1 function and its relationship to other activators of organellar translation are discussed.
Collapse
Affiliation(s)
- D G Fisk
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | |
Collapse
|
15
|
Sanchirico ME, Fox TD, Mason TL. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J 1998; 17:5796-804. [PMID: 9755179 PMCID: PMC1170907 DOI: 10.1093/emboj/17.19.5796] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The essential products of the yeast mitochondrial translation system are seven hydrophobic membrane proteins and Var1p, a hydrophilic protein in the small ribosomal subunit. Translation of the membrane proteins depends on nuclearly encoded, mRNA-specific translational activators that recognize the 5'-untranslated leaders of their target mRNAs. These translational activators are themselves membrane associated and could therefore tether translation to the inner membrane. In this study, we tested whether chimeric mRNAs with the untranslated sequences normally present on the mRNA encoding soluble Var1p, can direct functional expression of coding sequences specifying the integral membrane proteins Cox2p and Cox3p. DNA sequences specifying these chimeric mRNAs were inserted into mtDNA at the VAR1 locus and expressed in strains containing a nuclearly localized plasmid that supplies a functional form of Var1p, imported from the cytoplasm. Although cells expressing these chimeric mRNAs actively synthesized both membrane proteins, they were severely deficient in cytochrome c oxidase activity and in the accumulation of Cox2p and Cox3p, respectively. These data strongly support the physiological importance of interactions between membrane-bound mRNA-specific translational activators and the native 5'-untranslated leaders of the COX2 and COX3 mRNAs for localizing productive synthesis of Cox2p and Cox3p to the inner membrane.
Collapse
Affiliation(s)
- M E Sanchirico
- Department of Biochemistry and Molecular Biology and The Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003-4505, USA
| | | | | |
Collapse
|
16
|
Yohn CB, Cohen A, Rosch C, Kuchka MR, Mayfield SP. Translation of the chloroplast psbA mRNA requires the nuclear-encoded poly(A)-binding protein, RB47. J Cell Biol 1998; 142:435-42. [PMID: 9679142 PMCID: PMC2133045 DOI: 10.1083/jcb.142.2.435] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A set of nuclear mutants of C. reinhardtii were identified that specifically lack translation of the chloroplast-encoded psbA mRNA, which encodes the photosystem II reaction center polypeptide D1. Two of these mutants are deficient in the 47-kD member (RB47) of the psbA RNA-binding complex, which has previously been identified both genetically and biochemically as a putative translational activator of the chloroplast psbA mRNA. RB47 is a member of the poly(A)-binding protein family, and binds with high affinity and specificity to the 5' untranslated region of the psbA mRNA. The results presented here confirm RB47's role as a message-specific translational activator in the chloroplast, and bring together genetic and biochemical data to form a cohesive model for light- activated translational regulation in the chloroplast.
Collapse
Affiliation(s)
- C B Yohn
- Department of Cell Biology, and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
17
|
Goldberg M, Lu H, Stuurman N, Ashery-Padan R, Weiss AM, Yu J, Bhattacharyya D, Fisher PA, Gruenbaum Y, Wolfner MF. Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol Cell Biol 1998; 18:4315-23. [PMID: 9632815 PMCID: PMC109015 DOI: 10.1128/mcb.18.7.4315] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear envelope plays many roles, including organizing nuclear structure and regulating nuclear events. Molecular associations of nuclear envelope proteins may contribute to the implementation of these functions. Lamin, otefin, and YA are the three Drosophila nuclear envelope proteins known in early embryos. We used the yeast two-hybrid system to explore the interactions between pairs of these proteins. The ubiquitous major lamina protein, lamin Dm, interacts with both otefin, a peripheral protein of the inner nuclear membrane, and YA, an essential, developmentally regulated protein of the nuclear lamina. In agreement with this interaction, lamin and otefin can be coimmunoprecipitated from the vesicle fraction of Drosophila embryos and colocalize in nuclear envelopes of Drosophila larval salivary gland nuclei. The two-hybrid system was further used to map the domains of interaction among lamin, otefin, and YA. Lamin's rod domain interacts with the complete otefin protein, with otefin's hydrophilic NH2-terminal domain, and with two different fragments derived from this domain. Analogous probing of the interaction between lamin and YA showed that the lamin rod and tail plus part of its head domain are needed for interaction with full-length YA in the two-hybrid system. YA's COOH-terminal region is necessary and sufficient for interaction with lamin. Our results suggest that interactions with lamin might mediate or stabilize the localization of otefin and YA in the nuclear lamina. They also suggest that the need for both otefin and lamin in mediating association of vesicles with chromatin might reflect the function of a protein complex that includes these two proteins.
Collapse
Affiliation(s)
- M Goldberg
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van Dyck L, Neupert W, Langer T. The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 1998; 12:1515-24. [PMID: 9585511 PMCID: PMC316837 DOI: 10.1101/gad.12.10.1515] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ATP-dependent PIM1 protease, a Lon-like protease localized in the mitochondrial matrix, is required for mitochondrial genome integrity in yeast. Cells lacking PIM1 accumulate lesions in the mitochondrial DNA (mtDNA) and therefore lose respiratory competence. The identification of a multicopy suppressor, which stabilizes mtDNA in the absence of PIM1, enabled us to characterize novel functions of PIM1 protease during mitochondrial biogenesis. The synthesis of mitochondrially encoded cytochrome c oxidase subunit I (CoxI) and cytochrome b (Cob) is impaired in pim1 mutants containing mtDNA. PIM1-mediated proteolysis is required for the translation of mature COXI mRNA. Moreover, deficiencies in the splicing of COXI and COB transcripts, which appear to be restricted to introns encoding mRNA maturases, were observed in cells lacking the PIM1 gene. Transcripts of COXI and COB genes harboring multiple introns are degraded in the absence of PIM1. These results establish multiple, essential functions of the ATP-dependent PIM1 protease during mitochondrial gene expression.
Collapse
Affiliation(s)
- L van Dyck
- Institut für Physiologische Chemie der Universität München, 80336 München, Germany.
| | | | | |
Collapse
|
19
|
Green-Willms NS, Fox TD, Costanzo MC. Functional interactions between yeast mitochondrial ribosomes and mRNA 5' untranslated leaders. Mol Cell Biol 1998; 18:1826-34. [PMID: 9528754 PMCID: PMC121412 DOI: 10.1128/mcb.18.4.1826] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Accepted: 12/22/1997] [Indexed: 02/07/2023] Open
Abstract
Translation of mitochondrial mRNAs in Saccharomyces cerevisiae depends on mRNA-specific translational activators that recognize the 5' untranslated leaders (5'-UTLs) of their target mRNAs. We have identified mutations in two new nuclear genes that suppress translation defects due to certain alterations in the 5'-UTLs of both the COX2 and COX3 mRNAs, indicating a general function in translational activation. One gene, MRP21, encodes a protein with a domain related to the bacterial ribosomal protein S21 and to unidentified proteins of several animals. The other gene, MRP51, encodes a novel protein whose only known homolog is encoded by an unidentified gene in S. kluyveri. Deletion of either MRP21 or MRP51 completely blocked mitochondrial gene expression. Submitochondrial fractionation showed that both Mrp21p and Mrp51p cosediment with the mitochondrial ribosomal small subunit. The suppressor mutations are missense substitutions, and those affecting Mrp21p alter the region homologous to E. coli S21, which is known to interact with mRNAs. Interactions of the suppressor mutations with leaky mitochondrial initiation codon mutations strongly suggest that the suppressors do not generally increase translational efficiency, since some alleles that strongly suppress 5'-UTL mutations fail to suppress initiation codon mutations. We propose that mitochondrial ribosomes themselves recognize a common feature of mRNA 5'-UTLs which, in conjunction with mRNA-specific translational activation, is required for organellar translation initiation.
Collapse
Affiliation(s)
- N S Green-Willms
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
20
|
Amrani N, Minet M, Le Gouar M, Lacroute F, Wyers F. Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro. Mol Cell Biol 1997; 17:3694-701. [PMID: 9199303 PMCID: PMC232221 DOI: 10.1128/mcb.17.7.3694] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Saccharomyces cerevisiae, the single poly(A) binding protein, Pab1, is the major ribonucleoprotein associated with the poly(A) tails of mRNAs in both the nucleus and the cytoplasm. We found that Pab1 interacts with Rna15 in two-hybrid assays and in coimmunoprecipitation experiments. Overexpression of PAB1 partially but specifically suppressed the rna15-2 mutation in vivo. RNA15 codes for a component of the cleavage and polyadenylation factor CF I, one of the four factors needed for pre-mRNA 3'-end processing. We show that Pab1 and CF I copurify in anion-exchange chromatography. These data suggest that Pab1 is physically associated with CF I. Extracts from a thermosensitive pab1 mutant and from a wild-type strain immunoneutralized for Pab1 showed normal cleavage activity but a large increase in poly(A) tail length. A normal tail length was restored by adding recombinant Pab1 to the mutant extract. The longer poly(A) tails were not due to an inhibition of exonuclease activities. Pab1 has previously been implicated in the regulation of translation initiation and in cytoplasmic mRNA stability. Our data indicate that Pab1 is also a part of the 3'-end RNA-processing complex and thus participates in the control of the poly(A) tail lengths during the polyadenylation reaction.
Collapse
Affiliation(s)
- N Amrani
- Centre de Génétique Moléculaire, C.N.R.S. UPR 9061, University of Paris VI (Pierre et Marie Curie), Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
21
|
Steele DF, Butler CA, Fox TD. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 1996; 93:5253-7. [PMID: 8643562 PMCID: PMC39231 DOI: 10.1073/pnas.93.11.5253] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic code differences prevent expression of nuclear genes within Saccharomyces cerevisiae mitochondria. To bridge this gap a synthetic gene, ARG8m, designed to specify an arginine biosynthetic enzyme when expressed inside mitochondria, has been inserted into yeast mtDNA in place of the COX3 structural gene. This mitochondrial cox3::ARG8m gene fully complements a nuclear arg8 deletion at the level of cell growth, and it is dependent for expression upon nuclear genes that encode subunits of the COX3 mRNA-specific translational activator. Thus, cox3::ARG8m serves as a mitochondrial reporter gene. Measurement of cox3::ARG8m expression at the levels of steady-state protein and enzymatic activity reveals that glucose repression operates within mitochondria. The levels of this reporter vary among strains whose nuclear genotypes lead to under- and overexpression of translational activator subunits, in particular Pet494p, indicating that mRNA-specific translational activation is a rate-limiting step in this organellar system. Whereas the steady-state level of cox3::ARG8m mRNA was also glucose repressed in an otherwise wild-type strain, absence of translational activation led to essentially repressed mRNA levels even under derepressing growth conditions. Thus, the mRNA is stabilized by translational activation, and variation in its level may be largely due to modulation of translation.
Collapse
Affiliation(s)
- D F Steele
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
22
|
Cosentino GP, Venkatesan S, Serluca FC, Green SR, Mathews MB, Sonenberg N. Double-stranded-RNA-dependent protein kinase and TAR RNA-binding protein form homo- and heterodimers in vivo. Proc Natl Acad Sci U S A 1995; 92:9445-9. [PMID: 7568151 PMCID: PMC40818 DOI: 10.1073/pnas.92.21.9445] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The yeast two-hybrid system and far-Western protein blot analysis were used to demonstrate dimerization of human double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in vivo and in vitro. A catalytically inactive mutant of PKR with a single amino acid substitution (K296R) was found to dimerize in vivo, and a mutant with a deletion of the catalytic domain of PKR retained the ability to dimerize. In contrast, deletion of the two dsRNA-binding motifs in the N-terminal regulatory domain of PKR abolished dimerization. In vitro dimerization of the dsRNA-binding domain required the presence of dsRNA. These results suggest that the binding of dsRNA by PKR is necessary for dimerization. The mammalian dsRNA-binding protein TRBP, originally identified on the basis of its ability to bind the transactivation region (TAR) of human immunodeficiency virus RNA, also dimerized with itself and with PKR in the yeast assay. Taken together, these results suggest that complexes consisting of different combinations of dsRNA-binding proteins may exist in vivo. Such complexes could mediate differential effects on gene expression and control of cell growth.
Collapse
Affiliation(s)
- G P Cosentino
- Department of Biochemistry, McGill University, Montreal, QC Canada
| | | | | | | | | | | |
Collapse
|
23
|
Costanzo MC, Fox TD. A point mutation in the 5'-untranslated leader that affects translational activation of the mitochondrial COX3 mRNA. Curr Genet 1995; 28:60-6. [PMID: 8536314 DOI: 10.1007/bf00311882] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 613-base 5'-untranslated leader (5'-UTL) of the Saccharomyces cerevisiae mitochondrial COX3 mRNA contains the target of an mRNA-specific translational activator complex composed of at least three nuclearly encoded proteins. We have genetically mapped a collection of cox3 point mutations, using a set of defined COX3 deletions, and found one to be located in the region coding the 5'-UTL. The strain carrying this allele was specifically defective in translation of the COX3 mRNA. Nucleotide-sequence analysis showed that the allele was in fact a double mutation comprised of a single-base insertion in the 5'-UTL (T inserted between bases -428 and -427 with respect to the start of translation) and a G to A substitution at +3 that changed the ATG initiation codon to ATA. Both mutations were required to block translation completely. The effects of the ATG to ATA mutation alone (cox3-1) had previously been analyzed in this laboratory: it reduces, but does not eliminate, translation, causing a slow respiratory growth phenotype. The T insertion in the 5'-UTL had no detectable respiratory growth phenotype as a single mutation. However, the 5'-UTL insertion mutation enhanced the respiratory defective phenotype of missense mutations in pet54, one of the COX3-specific translational-activator genes. This phenotypic enhancement suggests that the -400 region of the 5'-UTL, where the mutation is located, is important for Pet54p-COX3 mRNA interaction.
Collapse
Affiliation(s)
- M C Costanzo
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | |
Collapse
|
24
|
Wiesenberger G, Costanzo MC, Fox TD. Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5' untranslated leader: translational activation and mRNA processing. Mol Cell Biol 1995; 15:3291-300. [PMID: 7539105 PMCID: PMC230562 DOI: 10.1128/mcb.15.6.3291] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We used transformation of yeast mitochondria and homologous gene replacement to study features of the 613-base COX3 mRNA 5' untranslated leader (5'-UTL) required for translational activation by the protein products of the nuclear genes PET54, PET122, and PET494 in vivo. Elimination of the single AUG triplet in the 5'-UTL had no detectable effect on expression, indicating that activator proteins do not work by allowing ribosomes to bypass that AUG. Deletion of the entire 5'-UTL completely prevented translation, suggesting that the activator proteins do not function by antagonizing any other negative element in the 5'-UTL. Removal of the 15 terminal bases from the 5' end of the 5'-UTL did not block activator-dependent translation. The largest internal deletion that did not interfere with translation removed 125 bases from the upstream portion of the leader. However, two large deletions that blocked translation could be reverted to activator-dependent expression by secondary changes in the remaining 5'-UTL sequences, indicating that the original deletions had not removed the translational activator target but only deformed it. Taken together, the deletion mutations and revertants define a region of 151 bases (between positions -480 and -330 relative to the start codon) containing sequences that are sufficient for translational activation when modified slightly. Suppression of the respiratory phenotypes of two 5'-UTL mutations by overexpression of PET54, PET122, and PET494 indicated functional interactions between the leader and the three activator proteins. The mature COX3 mRNA is cleaved from a precursor immediately downstream of the preceding tRNAVal in a fashion resembling mRNA processing in vertebrate mitochondria. Our results indicate that the site of this cleavage in Saccharomyces cerevisiae is determined solely by the position of the tRNA.
Collapse
Affiliation(s)
- G Wiesenberger
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
25
|
Mittelmeier TM, Dieckmann CL. In vivo analysis of sequences required for translation of cytochrome b transcripts in yeast mitochondria. Mol Cell Biol 1995; 15:780-9. [PMID: 7823946 PMCID: PMC231951 DOI: 10.1128/mcb.15.2.780] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Respiratory chain proteins encoded by the yeast mitochondrial genome are synthesized within the organelle. Mitochondrial mRNAs lack a 5' cap structure and contain long AU-rich 5' untranslated regions (UTRs) with many potential translational start sites and no apparent Shine-Dalgarno-like complementarity to the 15S mitochondrial rRNA. However, translation initiation requires specific interactions between the 5' UTRs of the mRNAs, mRNA-specific activators, and the ribosomes. In an initial step toward identifying potential binding sites for the mRNA-specific translational activators and the ribosomes, we have analyzed the effects of deletions in the 5' UTR of the mitochondrial COB gene on translation of COB transcripts in vivo. The deletions define two regions of the COB 5' UTR that are important for translation and indicate that sequence just 5' of the AUG is involved in selection of the correct start codon. Taken together, the data implicate specific regions of the 5' UTR of COB mRNA as possible targets for the mitochondrial translational machinery.
Collapse
Affiliation(s)
- T M Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | |
Collapse
|
26
|
Affiliation(s)
- H J Pel
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | |
Collapse
|