1
|
Identification and functional characterization of the transcription factor coding Dp1 gene in large yellow croaker Pseudosciaena crocea. Heliyon 2021; 7:e06299. [PMID: 33718639 PMCID: PMC7921785 DOI: 10.1016/j.heliyon.2021.e06299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/24/2022] Open
Abstract
The transcription factor Dp1, as a binding partner, often forms a dimerization complex with typical E2F to play a central role in regulating gene expression during G1/S cell cycle progression. In this study, a full-length dp1 cDNA (Pcdp1) was successfully cloned and characterized from the large yellow croaker Pseudosciaena crocea. The nucleotidic sequence of Pcdp1 is 1,427 bp long with an open reading frame (ORF) of 1,239 bp encoding a putative protein of 412 amino acids, a 5′-untranslated region of 116 bp and a 3′-untranslated region of 70 bp. Prediction of protein domains showed that PcDp1 contains a DNA-binding domain (DBD) with a DEF box, a dimerization domain and an acidic region at C terminus with transcription activity. Homology comparisons indicated that PcDp1 shared the highest sequence identity of 98.55% with Oreochromis niloticus dp1, followed by 88.72% identity with Danio rerio dp1 and a relatively low identity of 78.91–80.55% with its mammalian and amphibian counterparts. The mRNA of Pcdp1 showed ubiquitously expression in all analyzed tissues, with the highest level of expression in the body kidney. Moderate expression levels of Pcdp1 was found in several immune-related tissues including the gills, head kidney and liver, indicating that PcDp1 might play an important role in osmotic pressure regulation and immune response of the large yellow croaker. The subcellular localization of PcDp1 revealed that it is mainly distributed in the cytoplasm both in COS-7 and parenchymal cells of the spleen, head kidney and kidney tissues. Furthermore, the recombinant PcDp1 exhibited DNA-binding activity to E2F site in vitro. In conclusion, these results indicated that PcDp1 may participate in immune regulation and provide a foundation for further study of the regulatory mechanism of Dp1 in teleosts.
Collapse
|
2
|
Parkhitko AA, Singh A, Hsieh S, Hu Y, Binari R, Lord CJ, Hannenhalli S, Ryan CJ, Perrimon N. Cross-species identification of PIP5K1-, splicing- and ubiquitin-related pathways as potential targets for RB1-deficient cells. PLoS Genet 2021; 17:e1009354. [PMID: 33591981 PMCID: PMC7909629 DOI: 10.1371/journal.pgen.1009354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/26/2021] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The RB1 tumor suppressor is recurrently mutated in a variety of cancers including retinoblastomas, small cell lung cancers, triple-negative breast cancers, prostate cancers, and osteosarcomas. Finding new synthetic lethal (SL) interactions with RB1 could lead to new approaches to treating cancers with inactivated RB1. We identified 95 SL partners of RB1 based on a Drosophila screen for genetic modifiers of the eye phenotype caused by defects in the RB1 ortholog, Rbf1. We validated 38 mammalian orthologs of Rbf1 modifiers as RB1 SL partners in human cancer cell lines with defective RB1 alleles. We further show that for many of the RB1 SL genes validated in human cancer cell lines, low activity of the SL gene in human tumors, when concurrent with low levels of RB1 was associated with improved patient survival. We investigated higher order combinatorial gene interactions by creating a novel Drosophila cancer model with co-occurring Rbf1, Pten and Ras mutations, and found that targeting RB1 SL genes in this background suppressed the dramatic tumor growth and rescued fly survival whilst having minimal effects on wild-type cells. Finally, we found that drugs targeting the identified RB1 interacting genes/pathways, such as UNC3230, PYR-41, TAK-243, isoginkgetin, madrasin, and celastrol also elicit SL in human cancer cell lines. In summary, we identified several high confidence, evolutionarily conserved, novel targets for RB1-deficient cells that may be further adapted for the treatment of human cancer.
Collapse
Affiliation(s)
- Andrey A. Parkhitko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon Hsieh
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Christopher J. Lord
- CRUK Gene Function Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Colm J. Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Guarner A, Morris R, Korenjak M, Boukhali M, Zappia MP, Van Rechem C, Whetstine JR, Ramaswamy S, Zou L, Frolov MV, Haas W, Dyson NJ. E2F/DP Prevents Cell-Cycle Progression in Endocycling Fat Body Cells by Suppressing dATM Expression. Dev Cell 2017; 43:689-703.e5. [PMID: 29233476 PMCID: PMC5901703 DOI: 10.1016/j.devcel.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/28/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
To understand the consequences of the complete elimination of E2F regulation, we profiled the proteome of Drosophila dDP mutants that lack functional E2F/DP complexes. The results uncovered changes in the larval fat body, a differentiated tissue that grows via endocycles. We report an unexpected mechanism of E2F/DP action that promotes quiescence in this tissue. In the fat body, dE2F/dDP limits cell-cycle progression by suppressing DNA damage responses. Loss of dDP upregulates dATM, allowing cells to sense and repair DNA damage and increasing replication of loci that are normally under-replicated in wild-type tissues. Genetic experiments show that ectopic dATM is sufficient to promote DNA synthesis in wild-type fat body cells. Strikingly, reducing dATM levels in dDP-deficient fat bodies restores cell-cycle control, improves tissue morphology, and extends animal development. These results show that, in some cellular contexts, dE2F/dDP-dependent suppression of DNA damage signaling is key for cell-cycle control and needed for normal development.
Collapse
Affiliation(s)
- Ana Guarner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
4
|
The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA. Cell Death Dis 2014; 5:e1405. [PMID: 25188515 PMCID: PMC4540203 DOI: 10.1038/cddis.2014.372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
Abstract
The retinoblastoma gene, rb, ensures at least its tumor suppressor function by inhibiting cell proliferation. Its role in apoptosis is more complex and less described than its role in cell cycle regulation. Rbf1, the Drosophila homolog of Rb, has been found to be pro-apoptotic in proliferative tissue. However, the way it induces apoptosis at the molecular level is still unknown. To decipher this mechanism, we induced rbf1 expression in wing proliferative tissue. We found that Rbf1-induced apoptosis depends on dE2F2/dDP heterodimer, whereas dE2F1 transcriptional activity is not required. Furthermore, we highlight that Rbf1 and dE2F2 downregulate two major anti-apoptotic genes in Drosophila: buffy, an anti-apoptotic member of Bcl-2 family and diap1, a gene encoding a caspase inhibitor. On the one hand, Rbf1/dE2F2 repress buffy at the transcriptional level, which contributes to cell death. On the other hand, Rbf1 and dE2F2 upregulate how expression. How is a RNA binding protein involved in diap1 mRNA degradation. By this way, Rbf1 downregulates diap1 at a post-transcriptional level. Moreover, we show that the dREAM complex has a part in these transcriptional regulations. Taken together, these data show that Rbf1, in cooperation with dE2F2 and some members of the dREAM complex, can downregulate the anti-apoptotic genes buffy and diap1, and thus promote cell death in a proliferative tissue.
Collapse
|
5
|
RBF and Rno promote photoreceptor differentiation onset through modulating EGFR signaling in the Drosophila developing eye. Dev Biol 2011; 359:190-8. [PMID: 21920355 DOI: 10.1016/j.ydbio.2011.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/21/2011] [Accepted: 08/28/2011] [Indexed: 01/13/2023]
Abstract
The retinoblastoma gene Rb is the prototype tumor suppressor and is conserved in Drosophila. We use the developing fly retina as a model system to investigate the role of Drosophila Rb (rbf) during differentiation. This report shows that mutation of rbf and rhinoceros (rno), which encodes a PHD domain protein, leads to a synergistic delay in photoreceptor cell differentiation in the developing eye disc. We show that this differentiation delay phenotype is caused by decreased levels of different components of the Epidermal Growth Factor Receptor (EGFR) signaling pathway in the absence of rbf and rno. We show that rbf is required for normal expression of Rhomboid proteins and activation of MAP kinase in the morphogenetic furrow (MF), while rno is required for the expression of Pointed (Pnt) and Ebi proteins, which are key factors that mediate EGFR signaling output in the nucleus. Interestingly, while removing the transcription activation function of dE2F1 is sufficient to suppress the synergistic differentiation delay, a mutant form of de2f1 that disrupts the binding with RBF but retains the transcription activation function does not mimic the effect of rbf loss. These observations suggest that RBF has additional functions besides dE2F1 binding that regulates EGFR signaling and photoreceptor differentiation.
Collapse
|
6
|
Wichmann A, Uyetake L, Su TT. E2F1 and E2F2 have opposite effects on radiation-induced p53-independent apoptosis in Drosophila. Dev Biol 2010; 346:80-9. [PMID: 20659447 DOI: 10.1016/j.ydbio.2010.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/15/2010] [Accepted: 07/17/2010] [Indexed: 12/15/2022]
Abstract
The ability of ionizing radiation (IR) to induce apoptosis independent of p53 is crucial for successful therapy of cancers bearing p53 mutations. p53-independent apoptosis, however, remains poorly understood relative to p53-dependent apoptosis. IR induces both p53-dependent and p53-independent apoptoses in Drosophila melanogaster, making studies of both modes of cell death possible in a genetically tractable model. Previous studies have found that Drosophila E2F proteins are generally pro-death or neutral with regard to p53-dependent apoptosis. We report here that dE2F1 promotes IR-induced p53-independent apoptosis in larval imaginal discs. Using transcriptional reporters, we provide evidence that, when p53 is mutated, dE2F1 becomes necessary for the transcriptional induction of the pro-apoptotic gene hid after irradiation. In contrast, the second E2F homolog, dE2F2, as well as the net E2F activity, which can be depleted by mutating the common cofactor, dDp, is inhibitory for p53-independent apoptosis. We conclude that p53-dependent and p53-independent apoptoses show differential reliance on E2F activity in Drosophila.
Collapse
Affiliation(s)
- Anita Wichmann
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80209-0347, USA
| | | | | |
Collapse
|
7
|
Abstract
The retinoblastoma gene, Rb, was originally identified as the tumor suppressor gene mutated in a rare childhood cancer called retinoblastoma (reviewed in [1]). Subsequent studies showed that Rb functions in a pathway that is often functionally inactivated in a large majority of human cancers. Interestingly, recent studies showed that in certain types of cancers, Rb function is actually required for cancer development. The intimate link between the Rb pathway and cancer development suggests that the status of Rb activity can potentially be used to develop targeted therapy. However, a prerequisite will be to understand the role of Rb and its interaction with other signaling pathways in cancer development. In this review, we will discuss the roles of Rb in proliferation, apoptosis and differentiation by reviewing the recent findings in both mammalian systems and different model organisms. In addition, we will discuss strategies that can be employed that specifically target cancer cells based on the status of the Rb pathway.
Collapse
Affiliation(s)
- W Du
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
8
|
Steele L, Sukhanova MJ, Xu J, Gordon GM, Huang Y, Yu L, Du W. Retinoblastoma family protein promotes normal R8-photoreceptor differentiation in the absence of rhinoceros by inhibiting dE2F1 activity. Dev Biol 2009; 335:228-36. [PMID: 19744473 DOI: 10.1016/j.ydbio.2009.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 08/10/2009] [Accepted: 09/01/2009] [Indexed: 12/31/2022]
Abstract
The retinoblastoma gene Rb is a prototype tumor suppressor which is conserved in Drosophila. Although much is known about the roles of Rb in cell proliferation and apoptosis, much less is known about how Rb regulates cell differentiation. Inactivation of Drosophila Rb (rbf) exhibited subtle differentiation defects similar to inactivation of Rb in mice, suggesting the existence of redundant mechanisms in the control of cell differentiation. To test this possibility and to characterize the role of Rbf in cell differentiation during retinal development, we carried out a genetic screen and identified a mutation in rhinoceros (rno), which leads to synergistic differentiation defects in conjunction with rbf inactivation. Characterization of an early differentiation defect, the multiple-R8 phenotype, revealed that this phenotype was caused by limiting amounts of Notch signaling due to reduced expression of the Notch ligand, Delta (Dl). Decreasing the gene dosage of Dl enhanced the multiple-R8 phenotype, while increasing the level of Dl suppressed this phenotype. Interestingly, removal of the transcriptional activation of dE2F1 partially restores Dl expression in rbf,rno mutant clones and suppresses the associated differentiation defects, indicating that this differentiation function of RBF is mediated by its regulation of dE2F1 activity.
Collapse
Affiliation(s)
- Latishya Steele
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Tanaka-Matakatsu M, Xu J, Cheng L, Du W. Regulation of apoptosis of rbf mutant cells during Drosophila development. Dev Biol 2008; 326:347-56. [PMID: 19100727 DOI: 10.1016/j.ydbio.2008.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022]
Abstract
Inactivation of the retinoblastoma gene Rb leads to defects in cell proliferation, differentiation, or apoptosis, depending on specific cell or tissue types. To gain insights into the genes that can modulate the consequences of Rb inactivation, we carried out a genetic screen in Drosophila to identify mutations that affected apoptosis induced by inactivation of the Retinoblastoma-family protein (rbf) and identified a mutation that blocked apoptosis induced by rbf. We found this mutation to be a new allele of head involution defective (hid) and showed that hid expression is deregulated in rbf mutant cells in larval imaginal discs. We identified an enhancer that regulates hid expression in response to developmental cues as well as to radiation and demonstrated that this hid enhancer is directly repressed by RBF through an E2F binding site. These observations indicate that apoptosis of rbf mutant cells is mediated by an upregulation of hid. Finally, we showed that bantam, a miRNA that regulates hid translation, is expressed in the interommatidial cells in the larval eye discs and modulates the survival of rbf mutant cells.
Collapse
Affiliation(s)
- Miho Tanaka-Matakatsu
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
10
|
Hagemann IS, Narzinski KD, Baranski TJ. E2F8 is a nonreceptor activator of heterotrimeric G proteins. J Mol Signal 2007; 2:3. [PMID: 17394670 PMCID: PMC1852105 DOI: 10.1186/1750-2187-2-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/30/2007] [Indexed: 01/22/2023] Open
Abstract
Background Heterotrimeric G proteins are important for numerous signaling events in eukaryotes, serving primarily to transduce signals that are initiated by G protein-coupled receptors. It has recently become clear that nonreceptor activators can regulate the level of heterotrimeric G protein signaling and, in some cases, drive cycles of receptor-independent G protein activation. In this study, we used a yeast expression cloning strategy to identify novel nonreceptor activators of heterotrimeric G proteins in a human adipocyte cDNA library. Results The human transcription factor E2F8 was found to activate heterotrimeric G proteins, suggesting a specific biological role for this recently described member of the E2F family. Epistasis studies showed that E2F8 acted at the level of G proteins and was specific for Gαi over Gpa1. E2F8 augmented receptor-driven signaling, but also activated G proteins in the absence of a receptor. The GTPase-activating protein RGS4 antagonized the effect of E2F8, showing that E2F8's effect on Gα involved nucleotide turnover. The entire E2F8 protein was required for full activity, but the majority of the signaling activity appeared to reside in the first 200 residues. Conclusion In yeast, E2F8 is a guanine nucleotide exchange factor (GEF) for the α subunit of heterotrimeric G proteins. The molecular mechanism and biological significance of this effect remain to be determined.
Collapse
Affiliation(s)
- Ian S Hagemann
- Departments of Medicine and of Molecular Biology & Pharmacology, 660 S. Euclid Ave., Campus Box 8127, St. Louis, Missouri 63110, USA
| | - Kirk D Narzinski
- Departments of Medicine and of Molecular Biology & Pharmacology, 660 S. Euclid Ave., Campus Box 8127, St. Louis, Missouri 63110, USA
| | - Thomas J Baranski
- Departments of Medicine and of Molecular Biology & Pharmacology, 660 S. Euclid Ave., Campus Box 8127, St. Louis, Missouri 63110, USA
| |
Collapse
|
11
|
Abstract
The retinoblastoma gene Rb was the first tumor suppressor gene cloned, and it is well known as a negative regulator of the cell cycle through its ability to bind the transcription factor E2F and repress transcription of genes required for S phase. Although over 100 other proteins have been reported to interact with Rb, in most cases these interactions are much less well characterized. Therefore, this review will primarily focus on Rb and E2F interactions. In addition to cell cycle regulation, studies of Rb and E2F proteins in animal models have revealed important roles for these proteins in apoptosis and differentiation. Recent screens of Rb/E2F target genes have identified new targets in all these areas. In addition, the mechanisms determining how different subsets of target genes are regulated under different conditions have only begun to be addressed and offer exciting possibilities for future research.
Collapse
Affiliation(s)
- W Du
- Ben May Institute for Cancer Research and Center for Molecular Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
12
|
Rasheva VI, Knight D, Bozko P, Marsh K, Frolov MV. Specific role of the SR protein splicing factor B52 in cell cycle control in Drosophila. Mol Cell Biol 2006; 26:3468-77. [PMID: 16611989 PMCID: PMC1447424 DOI: 10.1128/mcb.26.9.3468-3477.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E2F and retinoblastoma tumor suppressor protein pRB are important regulators of cell proliferation; however, the regulation of these proteins in vivo is not well understood. In Drosophila there are two E2F genes, an activator, de2f1, and a repressor, de2f2. The loss of de2f1 gives rise to the G(1)/S block accompanied by the repression of E2F-dependent transcription. These defects can be suppressed by mutation of de2f2. In this work, we show that the de2f1 mutant phenotype is rescued by the loss of the pre-mRNA splicing factor SR protein B52. Mutations in B52 restore S phase in clones of de2f1 mutant cells and phenocopy the loss of the de2f2 function. B52 acts upstream of de2f2 and plays a specific role in regulation of de2f2 pre-mRNA splicing. In B52-deficient cells, the level of dE2F2 protein is severely reduced and the expression of dE2F2-dependent genes is deregulated. Reexpression of the intronless copy of dE2F2 in B52-deficient cells restores the dE2F2-mediated repression. These results uncover a previously unrecognized role of the splicing factor in maintaining the G(1)/S block in vivo by specific regulation of the dE2F2 repressor function.
Collapse
Affiliation(s)
- Vanya I Rasheva
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 2352, MC 669, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
To gain insight into the essential functions of E2F, we have examined the phenotypes caused by complete inactivation of E2F and DP family members in Drosophila. Our results show that dDP requires dE2F1 and dE2F2 for DNA-binding activity in vitro and in vivo. In tissue culture cells and in mutant animals, the levels of dE2F and dDP proteins are strongly interdependent. In the absence of dDP, the levels of dE2F1 and dE2F2 decline dramatically, and vice versa. Accordingly, the cell cycle and transcriptional phenotypes caused by targeting dDP mimic the effects of targeting both dE2F1 and dE2F2 and are indistinguishable from the effects of inactivating all three proteins. Although trans-heterozygous dDP mutant animals develop to late pupal stages, the analysis of somatic mutant clones shows that dDP mutant cells are at a severe proliferative disadvantage when compared directly with wild-type neighbors. Strikingly, the timing of S-phase entry or exit is not delayed in dDP mutant clones, nor is the accumulation of cyclin A or cyclin B. However, the maximal level of bromodeoxyuridine incorporation is reduced in dDP mutant clones, and RNA interference experiments show that dDP-depleted cells are prone to stall in S phase. In addition, dDP mutant clones contain reduced numbers of mitotic cells, indicating that dDP mutant cells have a defect in G2/M-phase progression. Thus, dDP is not essential for developmental control of the G1-to-S transition, but it is required for normal cell proliferation, for optimal DNA synthesis, and for efficient G2/M progression.
Collapse
Affiliation(s)
- Maxim V Frolov
- Massachusetts General Hospital Cancer Center, Bldg. 149, 13th St., Charlestown, MA 02129, USA
| | | | | |
Collapse
|
14
|
Abstract
The E2 factor (E2F) family of transcription factors are downstream targets of the retinoblastoma protein. E2F factors have been known for several years to be important regulators of S-phase entry. Recent studies have improved our understanding of the molecular mechanisms of action used by this transcriptional network. In addition, they have given us an appreciation of the fact that E2F has functions that reach beyond G1/S control and impact cell proliferation in several different ways. The discovery of new family members with unusual properties, the unexpected phenotypes of mutant animals, a diverse collection of biological activities, a large number of new putative target genes and the new modes of transcriptional regulation have all contributed to an increasingly complex view of E2F function. In this review, we will discuss these recent developments and describe how they are beginning to shape a new and revised picture of the E2F transcriptional program.
Collapse
|
15
|
Otsuki K, Hayashi Y, Kato M, Yoshida H, Yamaguchi M. Characterization of dRFX2, a novel RFX family protein in Drosophila. Nucleic Acids Res 2004; 32:5636-48. [PMID: 15494451 PMCID: PMC524303 DOI: 10.1093/nar/gkh895] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/29/2004] [Accepted: 09/29/2004] [Indexed: 11/13/2022] Open
Abstract
A transcriptional regulatory element was identified in the region between URE (upstream regulatory element) and DRE (DNA replication-related element) in the Drosophila PCNA gene promoter. This element plays an important role in promoter activity in living flies. A yeast one-hybrid screening using this element as a bait allowed isolation of a cDNA encoding a protein which binds to the element in vitro. Nucleotide sequence analyses revealed that the cDNA encodes a novel protein containing a characteristic DNA-binding domain conserved among the regulatory factor X (RFX) family proteins. We termed this protein Drosophila RFX2 (dRFX2) and this element dRFX2 site. To investigate the function of dRFX2 in vivo, we took the strategy of analyzing the dominant negative effects against the endogenous dRFX2. Transgenic flies were established in which expression of HA-dRFX(202-480) carrying the amino acid sequences from 202 to 480 containing the RFX domain (DNA-binding domain) of dRFX2 was targeted to the cells in the eye imaginal discs. In the eye imaginal disc expressing the HA-dRFX(202-480), the G1-S transition and/or the progression of S phase were/was interrupted, and the ectopic apoptosis was induced, though photoreceptor cells differentiated normally. These results indicate that dRFX2 plays a role in G1-S transition and/or in progression of S phase.
Collapse
Affiliation(s)
- Kyoko Otsuki
- Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
16
|
Dimova DK, Stevaux O, Frolov MV, Dyson NJ. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev 2003; 17:2308-20. [PMID: 12975318 PMCID: PMC196467 DOI: 10.1101/gad.1116703] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/21/2003] [Indexed: 11/25/2022]
Abstract
To determine which E2F/RB-family members are functionally important at E2F-dependent promoters, we used RNA interference (RNAi) to selectively remove each component of the dE2F/dDP/RBF pathway, and we examined the genome-wide changes in gene expression that occur when each element is missing. The results reveal a remarkable division of labor between family members. Classic E2F targets, encoding functions needed for cell cycle progression, are expressed in cycling cells and are primarily dependent on dE2F1and RBF1 for regulation. Unexpectedly, there is a second program of dE2F/RBF-dependent transcription, in which dE2F2/RBF1or dE2F2/RBF2 complexes repress gene expression in actively proliferating cells. These new E2F target genes encode differentiation factors that are transcribed in developmentally regulated and gender-specific patterns and not in a cell cycle-regulated manner. We propose that dE2F/RBF complexes should not be viewed simply as a cell cycle regulator of transcription. Instead, dE2F/RBF-mediated repression is exerted on genes that encode an assortment of cellular functions, and these effects are reversed on sets of functionally related genes in particular developmental contexts. As a result, dE2F/RBF regulation is used to link gene expression with cell cycle progression at some targets while simultaneously providing stable repression at others.
Collapse
Affiliation(s)
- Dessislava K Dimova
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, 02129 USA
| | | | | | | |
Collapse
|
17
|
Weng L, Zhu C, Xu J, Du W. Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J 2003; 22:3865-75. [PMID: 12881421 PMCID: PMC169046 DOI: 10.1093/emboj/cdg373] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
E2F transcription factors can activate or actively repress transcription of their target genes. The role of active repression during normal development has not been analyzed in detail. dE2F1(su89) is a novel allele of dE2F1 that disrupts dE2F1's association with RBF [the Drosophila retinoblastoma protein (Rb) homolog] but retains its transcription activation function. Interestingly, the dE2F1(su89) mutant, which has E2F activation by dE2F1(su89) and active repression by dE2F2, is viable and fertile with no gross developmental defects. In contrast, complete removal of active repression in de2f2;dE2F1(su89) mutants results in severe developmental defects in tissues with extensive endocycles but not in tissues derived from mitotic cycles. We show that the endoreplication defect resulted from a failure to downregulate the level of cyclin E during the gap phase of the endocycling cells. Importantly, reducing the gene dosage of cyclin E partially suppressed all the phenotypes associated with the endoreplication defect. These observations point to an important role for E2F-Rb complexes in the downregulation of cyclin E during the gap phase of endocycling cells in Drosophila development.
Collapse
Affiliation(s)
- Li Weng
- Committee on Cancer Biologyand Ben May Institute for Cancer Research and Center for Molecular Oncology, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
18
|
Frolov MV, Huen DS, Stevaux O, Dimova D, Balczarek-Strang K, Elsdon M, Dyson NJ. Functional antagonism between E2F family members. Genes Dev 2001; 15:2146-60. [PMID: 11511545 PMCID: PMC312757 DOI: 10.1101/gad.903901] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
E2F is a heterogenous transcription factor and its role in cell cycle control results from the integrated activities of many different E2F family members. Unlike mammalian cells, that have a large number of E2F-related genes, the Drosophila genome encodes just two E2F genes, de2f1 and de2f2. Here we show that de2f1 and de2f2 provide different elements of E2F regulation and that they have opposing functions during Drosophila development. dE2F1 and dE2F2 both heterodimerize with dDP and bind to the promoters of E2F-regulated genes in vivo. dE2F1 is a potent activator of transcription, and the loss of de2f1 results in the reduced expression of E2F-regulated genes. In contrast, dE2F2 represses the transcription of E2F reporters and the loss of de2f2 function results in increased and expanded patterns of gene expression. The loss of de2f1 function has previously been reported to compromise cell proliferation. de2f1 mutant embryos have reduced expression of E2F-regulated genes, low levels of DNA synthesis, and hatch to give slow-growing larvae. We find that these defects are due in large part to the unchecked activity of dE2F2, since they can be suppressed by mutation of de2f2. Examination of eye discs from de2f1; de2f2 double-mutant animals reveals that relatively normal patterns of DNA synthesis can occur in the absence of both E2F proteins. This study shows how repressor and activator E2Fs are used to pattern transcription and how the net effect of E2F on cell proliferation results from the interplay between two types of E2F complexes that have antagonistic functions.
Collapse
Affiliation(s)
- M V Frolov
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kwon EJ, Oh EJ, Kim YS, Hirose F, Ohno K, Nishida Y, Matsukage A, Yamaguchi M, Yoo MA. E2F-dependent transcription of the raf proto-oncogene during Drosophila development. Nucleic Acids Res 2001; 29:1808-14. [PMID: 11292854 PMCID: PMC31312 DOI: 10.1093/nar/29.8.1808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
D-raf, a Drosophila homolog of the raf proto-oncogene, has diverse functions throughout development and is transcribed in a wide range of tissues, with high levels of expression in the ovary and in association with rapid proliferation. The expression pattern resembles those of S phase genes, which are regulated by E2F transcription factors. In the 5'-flanking region of D-raf, four sequences (E2F sites 1-4) similar to the E2F recognition sequence were found, one of them (E2F site 3) being recognized efficiently by Drosophila E2F (dE2F) in vitro. Transient luciferase expression assays confirmed activation of the D-raf gene promoter by dE2F/dDP. Expression of Draf-lacZ was greatly reduced in embryos homozygous for the dE2F mutation. These results suggest that dE2F is likely to be an important regulator of D-raf transcription.
Collapse
Affiliation(s)
- E J Kwon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luciakova K, Barath P, Li R, Zaid A, Nelson BD. Activity of the human cytochrome c1 promoter is modulated by E2F. Biochem J 2000; 351:251-6. [PMID: 10998368 PMCID: PMC1221356 DOI: 10.1042/0264-6021:3510251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human cytochrome c(1) promoter is strongly activated in transfected Drosophila SL2 cells expressing exogenous human E2F1. Transfection-deletion experiments, DNase I protection by E2F1 and gel mobility-shift experiments locate E2F1 activation sites to two regions on either side of the transcription start site. Deletion of either region prevents E2F1 activation in transfected SL2 cells, suggesting a co-operative interaction between them. E2F6, a member of the E2F family that lacks transactivation domains but contains specific suppressor domains, inhibits cytochrome c(1) promoter activity when co-transfected into HeLa cells, indicating that the E2F proteins modulate the cytochrome c(1) promoter in mammalian cells. However, E2F is not a general regulator of oxidative phosphorylation genes since three additional nuclear-encoded mitochondrial genes were unaffected by E2F1 or E2F6.
Collapse
Affiliation(s)
- K Luciakova
- Department of Biochemistry, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
McCaffrey J, Yamasaki L, Dyson NJ, Harlow E, Griep AE. Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part through E2F-1. Mol Cell Biol 1999; 19:6458-68. [PMID: 10454591 PMCID: PMC84615 DOI: 10.1128/mcb.19.9.6458] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1999] [Accepted: 06/08/1999] [Indexed: 01/01/2023] Open
Abstract
Complexes between the retinoblastoma protein (pRb) and the transcription factor E2F-1 are thought to be important for regulating cell proliferation. We have shown previously that the E7 oncoprotein from human papillomavirus type 16, dependent upon its binding to pRb proteins, induces proliferation, disrupts differentiation, and induces apoptosis when expressed in the differentiating, or fiber, cells of the ocular lenses in transgenic mice. Mice that carry a null mutation in E2F-1 do not exhibit any defects in proliferation and differentiation in the lens. By examining the lens phenotype in mice that express E7 on an E2F-1 null background, we now show genetic evidence that E7's ability to alter the fate of fiber cells is partially dependent on E2F-1. On the other hand, E2F-1 status does not affect E7-induced proliferation in the undifferentiated lens epithelium. These data provide genetic evidence that E2F-1, while dispensible for normal fiber cell differentiation, is one mediator of E7's activity in vivo and that the requirement for E2F-1 is context dependent. These data suggest that an important role for pRb-E2F-1 complex during fiber cell differentiation is to negatively regulate cell cycle progression, thereby allowing completion of the differentiation program to occur.
Collapse
Affiliation(s)
- J McCaffrey
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
22
|
Hirose F, Yamaguchi M, Matsukage A. Targeted expression of the DNA binding domain of DRE-binding factor, a Drosophila transcription factor, attenuates DNA replication of the salivary gland and eye imaginal disc. Mol Cell Biol 1999; 19:6020-8. [PMID: 10454549 PMCID: PMC84493 DOI: 10.1128/mcb.19.9.6020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The promoters of Drosophila genes encoding DNA replication-related proteins contain transcription regulatory elements consisting of an 8-bp palindromic DNA replication-related element (DRE) sequence (5'-TATCGATA). The specific DRE-binding factor (DREF), a homodimer of the polypeptide with 709 amino acid residues, is a positive trans-acting factor for transcription of DRE-containing genes. Both DRE binding and dimer formation are associated with residues 16 to 115 of the N-terminal region. We have established transgenic flies expressing the full-length DREF polypeptide or its N-terminal fragment (amino acid residues 1 to 125) under the control of the heat shock promoter, the salivary gland-specific promoter, or the eye imaginal disc-specific promoter. Heat shock induction of the N-terminal fragment during embryonic, larval, or pupal stages caused greater than 50% lethality. This lethality was overcome by coexpression of the full-length DREF. In salivary glands of the transgenic larvae expressing the N-terminal fragment, this fragment formed a homodimer and a heterodimer with the endogenous DREF. Ectopic expression of the N-terminal fragment in salivary gland cells reduced the contents of mRNAs for the 180-kDa subunit of DNA polymerase alpha and for dE2F and the extent of DNA endoreplication. Ectopic expression of the N-terminal fragment in the eye imaginal discs significantly reduced DNA replication in cells at the second mitotic wave. The lines of evidence suggest that the N-terminal fragment can impede the endogenous DREF function in a dominant negative manner and that DREF is required for normal DNA replication in both mitotic cell cycle and endo cycle.
Collapse
Affiliation(s)
- F Hirose
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, 464-8681, Japan
| | | | | |
Collapse
|
23
|
Brennan P, Babbage JW, Thomas G, Cantrell D. p70(s6k) integrates phosphatidylinositol 3-kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol Cell Biol 1999; 19:4729-38. [PMID: 10373522 PMCID: PMC84271 DOI: 10.1128/mcb.19.7.4729] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 04/22/1999] [Indexed: 11/20/2022] Open
Abstract
In T lymphocytes, the hematopoietic cytokine interleukin-2 (IL-2) uses phosphatidylinositol 3-kinase (PI 3-kinase)-induced signaling pathways to regulate E2F transcriptional activity, a critical cell cycle checkpoint. PI 3-kinase also regulates the activity of p70(s6k), the 40S ribosomal protein S6 kinase, a response that is abrogated by the macrolide rapamycin. This immunosuppressive drug is known to prevent T-cell proliferation, but the precise point at which rapamycin regulates T-cell cycle progression has yet to be elucidated. Moreover, the effects of rapamycin on, and the role of p70(s6k) in, IL-2 and PI 3-kinase activation of E2Fs have not been characterized. Our present results show that IL-2- and PI 3-kinase-induced pathways for the regulation of E2F transcriptional activity include both rapamycin-resistant and rapamycin-sensitive components. Expression of a rapamycin-resistant mutant of p70(s6k) in T cells could restore rapamycin-suppressed E2F responses. Thus, the rapamycin-controlled processes involved in E2F regulation appear to be mediated by p70(s6k). However, the rapamycin-resistant p70(s6k) could not rescue rapamycin inhibition of T-cell cycle entry, consistent with the involvement of additional, rapamycin-sensitive pathways in the control of T-cell cycle progression. The present results thus show that p70(s6k) is able to regulate E2F transcriptional activity and provide direct evidence for the first time for a link between IL-2 receptors, PI 3-kinase, and p70(s6k) that regulates a crucial G1 checkpoint in T lymphocytes.
Collapse
Affiliation(s)
- P Brennan
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
24
|
Abstract
Throughout the cell cycle of Saccharomyces cerevisiae, the level of origin recognition complex (ORC) is constant and ORCs are bound constitutively to replication origins. Replication is regulated by the recruitment of additional factors such as CDC6. ORC components are widely conserved, and it generally has been assumed that they are also stable factors bound to origins throughout the cell cycle. In this report, we show that the level of the ORC1 subunit changes dramatically throughout Drosophila development. The accumulation of ORC1 is regulated by E2F-dependent transcription. In embryos, ORC1 accumulates preferentially in proliferating cells. In the eye imaginal disc, ORC1 accumulation is cell cycle regulated, with high levels in late G1 and S phase. In the ovary, the sub-nuclear distribution of ORC1 shifts during a developmentally regulated switch from endoreplication of the entire genome to amplification of the chorion gene clusters. Furthermore, we find that overexpression of ORC1 alters the pattern of DNA synthesis in the eye disc and the ovary. Thus, replication origin activity appears to be governed in part by the level of ORC1 in Drosophila.
Collapse
Affiliation(s)
- M Asano
- Howard Hughes Medical Institute, Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
25
|
Royzman I, Austin RJ, Bosco G, Bell SP, Orr-Weaver TL. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev 1999; 13:827-40. [PMID: 10197983 PMCID: PMC316602 DOI: 10.1101/gad.13.7.827] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1999] [Accepted: 02/16/1999] [Indexed: 11/24/2022]
Abstract
We isolated mutations in Drosophila E2F and DP that affect chorion gene amplification and ORC2 localization in the follicle cells. In the follicle cells of the ovary, the ORC2 protein is localized throughout the follicle cell nuclei when they are undergoing polyploid genomic replication, and its levels appear constant in both S and G phases. In contrast, when genomic replication ceases and specific regions amplify, ORC2 is present solely at the amplifying loci. Mutations in the DNA-binding domains of dE2F or dDP reduce amplification, and in these mutants specific localization of ORC2 to amplification loci is lost. Interestingly, a dE2F mutant predicted to lack the carboxy-terminal transcriptional activation and RB-binding domain does not abolish ORC2 localization and shows premature chorion amplification. The effect of the mutations in the heterodimer subunits suggests that E2F controls not only the onset of S phase but also origin activity within S phase.
Collapse
Affiliation(s)
- I Royzman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 USA
| | | | | | | | | |
Collapse
|
26
|
Sasaki T, Sawado T, Yamaguchi M, Shinomiya T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol Cell Biol 1999; 19:547-55. [PMID: 9858578 PMCID: PMC83912 DOI: 10.1128/mcb.19.1.547] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the early stage of Drosophila embryogenesis, DNA replication initiates at unspecified sites in the chromosome. In contrast, DNA replication initiates in specified regions in cultured cells. We investigated when and where the initiation regions are specified during embryogenesis and compared them with those observed in cultured cells by two-dimensional gel methods. In the DNA polymerase alpha gene (DNApolalpha) locus, where an initiation region, oriDalpha, had been identified in cultured Kc cells, repression of origin activity in the coding region was detected after formation of cellular blastoderms, and the range of the initiation region had become confined by 5 h after fertilization. During this work we identified other initiation regions between oriDalpha and the Drosophila E2F gene (dE2F) downstream of DNApolalpha. At least four initiation regions showing replication bubbles were identified in the 65-kb DNApolalpha-dE2F locus in 5-h embryos, but only two were observed in Kc cells. These results suggest that the specification levels of origin usage in 5-h embryos are in the intermediate state compared to those in more differentiated cells. Further, we found a spatial correlation between the active promoter regions for dE2F and the active initiation zones of replication. In 5-h embryos, two known transcripts differing in their first exons were expressed, and two regions close to the respective promoter regions for both transcripts functioned as replication origins. In Kc cells, only one transcript was expressed and functional replication origins were observed only in the region including the promoter region for this transcript.
Collapse
Affiliation(s)
- T Sasaki
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
27
|
Duronio RJ, Bonnette PC, O'Farrell PH. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol Cell Biol 1998; 18:141-51. [PMID: 9418862 PMCID: PMC121467 DOI: 10.1128/mcb.18.1.141] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1997] [Accepted: 10/27/1997] [Indexed: 02/05/2023] Open
Abstract
Activation of heterodimeric E2F-DP transcription factors can drive the G1-S transition. Mutation of the Drosophila melanogaster dE2F gene eliminates transcriptional activation of several replication factors at the G1-S transition and compromises DNA replication. Here we describe a mutation in the Drosophila dDP gene. As expected for a defect in the dE2F partner, this mutation blocks G1-S transcription of DmRNR2 and cyclin E as previously described for mutations of dE2F. Mutation of dDP also causes an incomplete block of DNA replication. When S phase is compromised by reducing the activity of dE2F-dDP by either a dE2F or dDP mutation, the first phenotype detected is a reduction in the intensity of BrdU incorporation and a prolongation of the labeling. Notably, in many cells, there was no detected delay in entry into this compromised S phase. In contrast, when cyclin E function was reduced by a hypomorphic allele combination, BrdU incorporation was robust but the timing of S-phase entry was delayed. We suggest that dE2F-dDP contributes to the expression of two classes of gene products: replication factors, whose abundance has a graded effect on replication, and cyclin E, which triggers an all-or-nothing transition from G1 to S phase.
Collapse
Affiliation(s)
- R J Duronio
- Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA.
| | | | | |
Collapse
|
28
|
Yamaguchi M, Hayashi Y, Hirose F, Nishimoto Y, Matsukage A. Distinct roles of E2F recognition sites as positive or negative elements in regulation of the DNA polymerase alpha 180 kDa catalytic subunit gene promoter during Drosophila development. Nucleic Acids Res 1997; 25:3847-54. [PMID: 9380507 PMCID: PMC146973 DOI: 10.1093/nar/25.19.3847] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F plays a key role in transcriptional control during the growth cycle of higher eukaryotic cells. The promoter region of the DrosophilaDNA polymerase alpha 180 kDa catalytic subunit gene contains three E2F recognition sequences located at positions -353 to -342 (E2F site 1), -21 to -14 (E2F site 2) and -12 to -5 (E2F site 3) with respect to the transcription initiation site. Various base substitutions were generated in each or all of the three E2F sites in vitro to allow examination of their effects on E2F binding and promoter function in cultured Kc cells as well as in living flies. Glutathione S-transferase (GST)-E2F and GST-DP fusion proteins were found to cooperate in binding to the three E2F sites in the DNA polymerase alpha gene promoter in vitro. In contrast, an E2F-specific activity detected in nuclear extracts of Kc cells showed little affinity for E2F site 1 but strong binding to sites 2 and 3. Transient expression of Drosophila E2F in Kc cells activated the DNA polymerase alpha gene promoter and the target sites for activation coincided with E2F sites 2 and 3. However, analyses with transgenic flies indicate that E2F site 3 functions positively in terms of DNA polymerase alpha gene promoter activity, while E2F sites 1 and 2 rather have a negative control function. Thus E2F sites play distinct roles as positive or negative elements in regulation of the DNA polymerase alpha gene promoter during Drosophila development.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464, Japan.
| | | | | | | | | |
Collapse
|
29
|
Royzman I, Whittaker AJ, Orr-Weaver TL. Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev 1997; 11:1999-2011. [PMID: 9271122 PMCID: PMC316409 DOI: 10.1101/gad.11.15.1999] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The E2F transcription factor, a heterodimer of E2F and DP subunits, is capable of driving the G1-S transition of the cell cycle. However, mice in which the E2F-1 gene had been disrupted developed tumors, suggesting a negative role for E2F in controlling cell proliferation in some tissues. The consequences of disrupting the DP genes have not been reported. We screened for mutations that disrupt G1-S transcription late in Drosophila embryogenesis and identified five mutations in the dDP gene. Although mutations in dDP or dE2F nearly eliminate E2F-dependent G1-S transcription, S-phase still occurs. Cyclin E has been shown to be essential for S-phase in late embryogenesis, but in dDP and dE2F mutants the peaks of G1-S transcription of cyclin E are missing. Thus, greatly reduced levels of cyclin E transcript suffice for DNA replication until late in development. Both dDP and dE2F are necessary for viability, and mutations in the genes cause lethality at the late larval/pupal stage. The mutant phenotypes reveal that both genes promote progression of the cell cycle.
Collapse
Affiliation(s)
- I Royzman
- Department of Biology, Massachusetts Institute of Technology, and Whitehead Institute, Cambridge 02142, USA
| | | | | |
Collapse
|
30
|
Sauer K, Weigmann K, Sigrist S, Lehner CF. Novel members of the cdc2-related kinase family in Drosophila: cdk4/6, cdk5, PFTAIRE, and PITSLRE kinase. Mol Biol Cell 1996; 7:1759-69. [PMID: 8930898 PMCID: PMC276024 DOI: 10.1091/mbc.7.11.1759] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In addition to the previously identified Drosophila cdc2 and cdc2c genes, we have identified four additional cdc2-related genes with low stringency and polymerase chain reaction approaches. Sequence comparisons suggest that the four putative kinases represent the Drosophila homologues of vertebrate cdk4/6, cdk5, PCTAIRE, and PITSLRE kinases. Although the similarity between human and Drosophila homologues is extensive in the case of cdk5, PCTAIRE, and PITSLRE kinases (78%, 58%, and 65% identity in the kinase domain), only limited conservation is observed for Drosophila cdk4/6 (47% identity). However, like vertebrate cdk4 and cdk6, Drosophila cdk4/6 binds also to a D-type cyclin according to the results of two-hybrid experiments in yeast. Northern blot analysis indicated that the four Drosophila kinases are expressed throughout embryogenesis. Expression in early embryogenesis appeared to be ubiquitous according to in situ hybridization. Abundant expression already at the start of embryogenesis and long before neuron differentiation was also observed in the case of cdk5 protein, which has been described as predominantly neuron specific in mice. Sequence conservation and expression pattern, therefore, suggest that all of these kinases perform important cellular functions.
Collapse
Affiliation(s)
- K Sauer
- Friedrich-Miescher-Laboratorium, Max-Planck-Gesellschaft, Tübingen, Germany
| | | | | | | |
Collapse
|
31
|
Wu CL, Classon M, Dyson N, Harlow E. Expression of dominant-negative mutant DP-1 blocks cell cycle progression in G1. Mol Cell Biol 1996; 16:3698-706. [PMID: 8668186 PMCID: PMC231365 DOI: 10.1128/mcb.16.7.3698] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Unregulated expression of the transcription factor E2F promotes the G1-to-S phase transition in cultured mammalian cells. However, there has been no direct evidence for an E2F requirement in this process. To demonstrate that E2F is obligatory for cell cycle progression, we attempted to inactivate E2F by overexpressing dominant-negative forms of one of its heterodimeric partners, DP-1. We dissected the functional domains of DP-1 and separated the region that facilitate heterodimer DNA binding from the E2F dimerization domain. Various DP-1 mutants were introduced into cells via transfection, and the cell cycle profile of the transfected cells was analyzed by flow cytometry. Expression of wild-type DP-1 or DP-1 mutants that bind to both DNA and E2F drove cells into S phase. In contrast, DP-1 mutants that retained E2F binding but lost DNA binding arrested cells in the G1 phase of the cell cycle. The DP-1 mutants that were unable to bind DNA resulted in transcriptionally inactive E2F complexes, suggesting that the G1 arrest is caused by formation of defective E2F heterodimers. Furthermore, the G1 arrest instigated by these DP-1 mutants could be rescued by coexpression of wild-type E2F or DP protein. These experiments define functional domains of DP and demonstrate a requirement for active E2F complexes in cell cycle progression.
Collapse
Affiliation(s)
- C L Wu
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
32
|
Cress WD, Nevins JR. A role for a bent DNA structure in E2F-mediated transcription activation. Mol Cell Biol 1996; 16:2119-27. [PMID: 8628278 PMCID: PMC231199 DOI: 10.1128/mcb.16.5.2119] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We examined the role of promoter architecture, as well as that of the DNA-bending capacity of the E2F transcription factor family, in the activation of transcription. DNA phasing analysis revealed that a consensus E2F site in the E2F1 promoter possesses an inherent bend with a net magnitude of 40 +/-2 degrees and with an orientation toward the major groove relative to the center of the E2F site. The inherent DNA bend is reversed upon binding of E2F, generating a net bend with a magnitude of 25 +/- 3 degrees oriented toward the minor groove relative to the center of the E2F site. We also found that three members of the E2F family, in conjunction with the DP1 protein, bend the DNA toward the minor groove, suggesting that DNA bending is a characteristic of the entire E2F family. The Rb-E2F complex, on the other hand, does not reverse the intrinsic DNA bend. Analysis of a series of E2F1 deletion mutants defined E2F1 sequences which are not required for DNA binding but are necessary for the DNA-bending capacity of E2F. An internal region of E2F1, previously termed the marked box, which is highly homologous among E2F family members, was particularly important in DNA bending. We also found that a bent DNA structure can be a contributory component in the activation of the E2F1 promoter but is not critical in the repression of that promoter in quiescent cells. This finding suggests that E2F exhibits characteristics typical of modular transcription factors, with independent DNA-binding and transcriptional activation functions, but also has features of architectural factors that alter DNA structure.
Collapse
Affiliation(s)
- W D Cress
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
33
|
Lin SY, Black AR, Kostic D, Pajovic S, Hoover CN, Azizkhan JC. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol 1996; 16:1668-75. [PMID: 8657142 PMCID: PMC231153 DOI: 10.1128/mcb.16.4.1668] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Because of the large number of growth-regulated genes containing binding sites for the transcription factors Sp1 and E2F and the reported ability of E2F to mediate cell cycle (growth) regulation, we studied interactions between E2F1 and Sp1. In transient transfection assays using Drosophila melanogaster SL2 cells, transfection with both Sp1 and E2F1 expression vectors resulted in greater than 85-fold activation of transcription from a hamster dihydrofolate reductase reporter construct, whereas cotransfection with either the Sp1 or E2F1 expression vector resulted in 30- or <2-fold activation, respectively. Therefore, these transcription factors act synergistically in activation of dihydrofolate reductase transcription. Transient transfection studies demonstrated that E2F1 could superactivate Sp1-dependent transcription in a promoter containing only Sp1 sites and that Sp1 could superactivate transcription of promoters through E2F sites, further demonstrating that these physically associated in Drosophila cells transfected with Sp1 and E2F1 expression vectors and in human cells, with maximal interaction detected in mid- to late G1. Additionally, E2F1 and Sp1 interact in vitro through specific domains of each protein, and the physical interaction and functional synergism appear to require the same regions. Taken together, these data demonstrate that E2F1 and Sp1 both functionally and physically interact; therefore this interaction, Sp1 and E2F1 may regulate transcription of genes containing binding sites for either or both factors.
Collapse
Affiliation(s)
- S Y Lin
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ayté J, Leis JF, Herrera A, Tang E, Yang H, DeCaprio JA. The Schizosaccharomyces pombe MBF complex requires heterodimerization for entry into S phase. Mol Cell Biol 1995; 15:2589-99. [PMID: 7739540 PMCID: PMC230489 DOI: 10.1128/mcb.15.5.2589] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Schizosaccharomyces pombe, MBF is a DNA-binding complex suspected to activate the transcription of genes necessary for entry into S phase. The MBF complex contains both p85cdc10 and p72res1/sct1. To obtain a better understanding of how the MBF complex regulates gene expression at the G1/S transition, we have performed a genetic analysis of p72res1. We determined that p72res1 can bind specifically to the cdc22 promoter, when analyzed by gel mobility shift assay, and that the N-terminal 157 amino acids of p72res1 are sufficient for this specific binding. When overexpressed in vivo, a fragment of p72res1 containing this DNA-binding domain could rescue a strain carrying a temperature-sensitive cdc10 allele at the restrictive temperature as well as a strain with a cdc10 null allele. We also determined that the C-terminal region of p72res1 is necessary and sufficient for binding to p85cdc10. Overexpression of the cdc10-binding domain of p72res1 leads to a G1 arrest with a cdc phenotype and a decrease on MBF activity. Overexpression of full-length p72res1 also leads to a growth arrest that can be rescued by overexpression of p85cdc10. These results imply that the MBF activity in vivo is dependent on the interaction of p85cdc10 with p72res1.
Collapse
Affiliation(s)
- J Ayté
- Division of Neoplastic Disease Mechanisms, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A, Weinberg RA. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci U S A 1995; 92:2403-7. [PMID: 7892279 PMCID: PMC42492 DOI: 10.1073/pnas.92.6.2403] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The E2F transcription factors play a role in regulating the expression of genes required for cell proliferation. Their activity appears to be regulated by association with the retinoblastoma protein (pRb) and the pRb-related proteins p107 and p130. In vivo, pRb is found in complex with a subset of E2F components--namely, E2F-1, E2F-2, and E2F-3. Here we describe the characterization of cDNAs encoding two unusual E2Fs, E2F-4 and E2F-5, each identified by the ability of their gene product to interact with p130 in a yeast two-hybrid system. E2F-4 and -5 share common sequences with E2F-1, E2F-2, and E2F-3 and, like these other E2Fs, the ability to heterodimerize with DP-1, thereby acquiring the ability to bind an E2F DNA recognition sequence with high affinity. However, in contrast to E2F-1, E2F-4 and E2F-5 fail to bind pRb in a two-hybrid assay. Moreover, they show a unique pattern of expression in synchronized human keratinocytes: E2F-4 and E2F-5 mRNA expression is maximal in mid-G1 phase before E2F-1 expression is detectable. These findings suggest that E2F-4 and E2F-5 may contribute to the regulation of early G1 events including the G0/G1 transition.
Collapse
Affiliation(s)
- C Sardet
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | | | | | | | | | | |
Collapse
|
36
|
Smith EJ, Nevins JR. The Rb-related p107 protein can suppress E2F function independently of binding to cyclin A/cdk2. Mol Cell Biol 1995; 15:338-44. [PMID: 7799940 PMCID: PMC231964 DOI: 10.1128/mcb.15.1.338] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The interaction of the retinoblastoma susceptibility gene product (Rb)-related p107 protein with the E2F transcription factor in S-phase cells facilitates the formation of a multicomponent complex also containing cyclin A and the p33cdk2 kinase. We have created a series of p107 mutants to assess the ability of p107 to inhibit E2F function and the role of the cyclin A/cdk2 complex in this process. We find that p107 mutants that do not bind to E2F also fail to repress E2F-dependent transcription. Moreover, we find that the ability of p107 to suppress E2F-dependent transcription is not dependent on the ability of p107 to associate with cyclin A/cdk2. Finally, an analysis of the ability of the p107 mutant proteins to suppress cell growth suggests that both E2F-dependent and E2F-independent events correlate with this activity.
Collapse
Affiliation(s)
- E J Smith
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
37
|
Abstract
Previous experiments have identified the E2F transcription factor as a potential downstream target for the action of cellular regulatory activities, such as the Rb tumor suppressor protein, that control cell growth and that, when altered, contribute to the development of human tumors. In light of these findings, we have assayed the ability of the E2F1 and DP1 genes, which encode heterodimeric partners that together create E2F activity, to act in an oncogenic fashion. We find that E2F1, particularly in combination with the DP1 product, cooperates with an activated ras oncogene to induce the formation of morphologically transformed foci in primary rat embryo fibroblast cultures. In addition, an E2F1 chimeric protein, in which sequences involved in Rb binding have been replaced with the herpesvirus VP16 activation domain, exhibits increased transformation activity. Cells transfected with E2F1 and DP1 or the E2F1-VP16 chimera form colonies in soft agar and induce tumor formation in nude mice. We conclude that deregulated E2F1 expression and function can have oncogenic consequences.
Collapse
Affiliation(s)
- D G Johnson
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
38
|
Dynlacht BD, Brook A, Dembski M, Yenush L, Dyson N. DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc Natl Acad Sci U S A 1994; 91:6359-63. [PMID: 8022787 PMCID: PMC44201 DOI: 10.1073/pnas.91.14.6359] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The temporal activation of E2F transcriptional activity appears to be an important component of the mechanisms that prepare mammalian cells for DNA replication. Regulation of E2F activity appears to be a highly complex process, and the dissection of the E2F pathway will be greatly facilitated by the ability to use genetic approaches. We report the isolation of two Drosophila genes that can stimulate E2F-dependent transcription in Drosophila cells. One of these genes, dE2F, contains three domains that are highly conserved in the human homologs E2F-1, E2F-2, and E2F-3. Interestingly, one of these domains is highly homologous to the retinoblastoma protein (RB)-binding sequences of human E2F genes. The other gene, dDP, is closely related to the human DP-1 and DP-2 genes. We demonstrate that dDP and dE2F interact and cooperate to give sequence-specific DNA binding and optimal trans-activation. These features suggest that endogenous Drosophila E2F, like human E2F, may be composed of heterodimers and may be regulated by RB-like proteins. The isolation of these genes will provide important reagents for the genetic analysis of the E2F pathway.
Collapse
Affiliation(s)
- B D Dynlacht
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Charlestown 02129
| | | | | | | | | |
Collapse
|