1
|
Dalgaard JZ, Eydmann T, Koulintchenko M, Sayrac S, Vengrova S, Yamada-Inagawa T. Random and site-specific replication termination. Methods Mol Biol 2009; 521:35-53. [PMID: 19563100 DOI: 10.1007/978-1-60327-815-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bi-directionality is a common feature observed for genomic replication for all three phylogenetic kingdoms: Eubacteria, Archaea, and Eukaryotes. A consequence of bi-directional replication, where the two replication forks initiated at an origin move away from each other, is that the replication termination will occur at positions away from the origin sequence(s). The replication termination processes are therefore physically and mechanistically dissociated from the replication initiation. The replication machinery is a highly processive complex that in short time copies huge numbers of bases while competing for the DNA substrate with histones, transcription factors, and other DNA-binding proteins. Importantly, the replication machinery generally wins out; meanwhile, when converging forks meet termination occurs, thus preventing over-replication and genetic instability. Very different scenarios for the replication termination processes have been described for the three phylogenetic kingdoms. In eubacterial genomes replication termination is site specific, while in archaea and eukaryotes termination is thought to occur randomly within zones where converging replication forks meet. However, a few site-specific replication barrier elements that mediate replication termination have been described in eukaryotes. This review gives an overview about what is known about replication termination, with a focus on these natural site-specific replication termination sites.
Collapse
|
2
|
Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe. J Genet 2007; 86:139-48. [PMID: 17968141 DOI: 10.1007/s12041-007-0018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.
Collapse
|
3
|
Marilley M, Milani P, Thimonier J, Rocca-Serra J, Baldacci G. Atomic force microscopy of DNA in solution and DNA modelling show that structural properties specify the eukaryotic replication initiation site. Nucleic Acids Res 2007; 35:6832-45. [PMID: 17933778 PMCID: PMC2175326 DOI: 10.1093/nar/gkm733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The replication origins (ORIs) of Schizosaccharomyces pombe, like those in most eukaryotes, are long chromosomal regions localized within A+T-rich domains. Although there is no consensus sequence, the interacting proteins are strongly conserved, suggesting that DNA structure is important for ORI function. We used atomic force microscopy in solution and DNA modelling to study the structural properties of the Spars1 origin. We show that this segment is the least stable of the surrounding DNA (9 kb), and contains regions of intrinsically bent elements (strongly curved and inherently supercoiled DNAs). The pORC-binding site co-maps with a superhelical DNA region, where the spatial arrangement of adenine/thymine stretches may provide the binding substrate. The replication initiation site (RIP) is located within a strongly curved DNA region. On pORC unwinding, this site shifts towards the apex of the curvature, thus potentiating DNA melting there. Our model is entirely consistent with the sequence variability, large size and A+T-richness of ORIs, and also accounts for the multistep nature of the initiation process, the specificity of pORC-binding site(s), and the specific location of RIP. We show that the particular DNA features and dynamic properties identified in Spars1 are present in other eukaryotic origins.
Collapse
Affiliation(s)
- Monique Marilley
- Régulation génique et fonctionnelle & microscopie champ proche, EA 3290, IFR 125, Faculté de Médecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille cedex 5, France.
| | | | | | | | | |
Collapse
|
4
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
5
|
Abstract
This review describes the transformation systems including vectors, replicons, genetic markers, transformation methods, vector stability, and copy numbers of 13 genera and 31 species of non-Saccharomyces yeasts. Schizosaccharomyces pombe was the first non-Saccharomyces yeast studied for transformation and genetics. The replicons of non-Saccharomyces yeast vectors are from native plasmids, chromosomal DNA, and mitochondrial DNA of Saccharomyces cerevisiae, non-Saccharomyces yeasts, protozoan, plant, and animal. Vectors such as YAC, YCp, YEp, YIp, and YRp were developed for non-Saccharomyces yeasts. Forty-two types of genes from bacteria, yeasts, fungi, and plant were used as genetic markers that could be classified into biosynthetic, dominant, and colored groups to construct non-Saccharomyces yeasts vectors. The LEU2 gene and G418 resistance gene are the two most popular markers used in the yeast transformation. All known transformation methods such as spheroplast-mediating method, alkaline ion treatment method, electroporation, trans-kingdom conjugation, and biolistics have been developed successfully for non-Saccharomyces yeasts, among which the first three are most widely used. The highest copy number detected from non-Saccharomyces yeasts is 60 copies in Kluyveromyces lactis. No general rule is known to illustrate the transformation efficiency, vector stability, and copy number, although factors such as vector composition, host strain, transformation method, and selective pressure might influence them.
Collapse
Affiliation(s)
- T T Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | | | |
Collapse
|
6
|
Takahashi T, Masukata H. Interaction of fission yeast ORC with essential adenine/thymine stretches in replication origins. Genes Cells 2001; 6:837-49. [PMID: 11683912 DOI: 10.1046/j.1365-2443.2001.00468.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Eukaryotic DNA replication is initiated from distinct regions on the chromosome. However, the mechanism for recognition of replication origins is not known for most eukaryotes. In fission yeast, replication origins are isolated as autonomously replicating sequences (ARSs). Multiple adenine/thymine clusters are essential for replication, but no short consensus sequences are found. In this paper, we examined the interaction of adenine/thymine clusters with the replication initiation factor ORC. RESULTS The SpOrc1 or SpOrc2 immunoprecipitates (IPs) containing at least four subunits of SpORC, interacted with the ars2004 fragment, which is derived from a predominant replication origin on the chromosome. SpORC-IPs preferentially interacted with two regions of the ars2004, which consist of consecutive adenines and AAAAT repeats and are essential for ARS activity. The nucleotide sequences required for the interaction with SpORC-IPs correspond closely to those necessary for in vivo ARS activity. CONCLUSION Our results suggest that the SpORC interacts with adenine/thymine stretches, which have been shown to be the most important component in the fission yeast replication origin. The presence of multiple SpORC-binding sites, with certain sequence variations, is characteristic for the fission yeast replication origins.
Collapse
Affiliation(s)
- T Takahashi
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 Japan
| | | |
Collapse
|
7
|
Dalgaard JZ, Klar AJ. Orientation of DNA replication establishes mating-type switching pattern in S. pombe. Nature 1999; 400:181-4. [PMID: 10408447 DOI: 10.1038/22139] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fission yeast Schizosaccharomyces pombe normally has haploid cells of two mating types, which differ at the chromosomal locus mat1. After two consecutive asymmetric cell divisions, only one in four 'grand-daughter' cells undergoes a 'mating-type switch', in which genetic information is transferred to mat1 from the mat2-P or mat3-M donor loci. This switching pattern probably results from an imprinting event at mat1 that marks one sister chromatid in a strand-specific manner, and is related to a site-specific, double-stranded DNA break at mat1. Here we show that the genetic imprint is a strand-specific, alkali-labile DNA modification at mat1. The DNA break is an artefact, created from the imprint during DNA purification. We also propose and test the model that mat1 is preferentially replicated by a centromere-distal origin(s), so that the strand-specific imprint occurs only during lagging-strand synthesis. Altering the origin of replication, by inverting mat1 or introducing an origin of replication, affects the imprinting and switching efficiencies in predicted ways. Two-dimensional gel analysis confirmed that mat1 is preferentially replicated by a centromere-distal origin(s). Thus, the DNA replication machinery may confer different developmental potential to sister cells.
Collapse
Affiliation(s)
- J Z Dalgaard
- Gene Regulation and Chromosome Biology Laboratory, ABL-Basic Research Program, NCI Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | |
Collapse
|
8
|
Huberman JA. Genetic methods for characterizing the cis-acting components of yeast DNA replication origins. Methods 1999; 18:356-67. [PMID: 10454997 DOI: 10.1006/meth.1999.0792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small circular plasmids containing replication origins and, in some cases, centromeres, can replicate autonomously in the nuclei of all tested yeast species. Because this autonomous replication is dependent on the replication origin within the plasmid, measurements of the efficiency of autonomous replication (by the methods summarized here) permit evaluation of the effects of mutations on origin function. Although alternative methods are available for genetic characterization of replication origins in other organisms, the simplicity of the autonomous replication assay in yeasts has permitted development of the deepest understanding to date of eukaryotic replication origin structure. This information has come primarily from studies with Saccharomyces cerevisiae. However, there are many other yeast species, each with its own variety of replication origins. Use of the methods summarized here to characterize origins in other yeast species is likely to provide additional insights into eukaryotic replication origin structure.
Collapse
Affiliation(s)
- J A Huberman
- Department of Genetics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, New York 14263-0001, USA.
| |
Collapse
|
9
|
Kim SM, Huberman JA. Influence of a replication enhancer on the hierarchy of origin efficiencies within a cluster of DNA replication origins. J Mol Biol 1999; 288:867-82. [PMID: 10329185 DOI: 10.1006/jmbi.1999.2728] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA replication origins in animal cells sometimes occur in clusters. Often one of the multiple origins within these clusters fires more frequently than the others. The reason for this hierarchy remains unknown. Similar origin clusters occur in the fission yeast, Schizosaccharomyces pombe. One such cluster is located near the ura4 gene on chromosome III and contains three origins: ars3002, ars3003, and ars3004. In their natural chromosomal context (ars3003 is about 2.5 kb upstream of ars3002 and ars3004 is adjacent to ars3002 on the downstream side) their initiation frequencies display a striking hierarchy: ars3002 >> ars3003 >> ars3004. Here, we describe experiments that reveal a 400 bp replication enhancer within ars3004, adjacent to ars3002. The enhancer is essential for ars3004 origin function in a plasmid, but even with the enhancer ars3004 is an inefficient origin. The enhancer is not essential for ars3002 plasmid origin activity, but dramatically stimulates this activity, converting ars3002 from an inefficient plasmid origin to a very efficient one. It also stimulates the plasmid origin activity of ars3001 and ars3003 at all tested positions and orientations on both sides of each autonomously replicating sequence (ARS) element. If ars3002 is redefined to include the enhancer, then the relative activities of the three ARS elements as single origins within separate plasmids or as origins when all three ARS elements are present in a single plasmid is the same as the chromosomal hierarchy. Thus, this replication enhancer defines the relative activities of the three origins in the ura4 origin region. Similar enhancers may affect relative activities in the origin clusters of animal cells.
Collapse
Affiliation(s)
- S M Kim
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | | |
Collapse
|
10
|
Vernis L, Chasles M, Pasero P, Lepingle A, Gaillardin C, Fournier P. Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica. Mol Biol Cell 1999; 10:757-69. [PMID: 10069816 PMCID: PMC25200 DOI: 10.1091/mbc.10.3.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
11
|
Ogawa Y, Okazaki T, Masukata H. Association of autonomous replication activity with replication origins in a human chromosome. Exp Cell Res 1998; 243:50-8. [PMID: 9716448 DOI: 10.1006/excr.1998.4141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A systematic analysis of the correlation of autonomous replication activity with initiation of replication in a human chromosome was performed. The temporal order of replication of segments in a pericentric 320-kb MEN203 locus on human chromosome 10 (10q11.2) was determined by pulse-labeling of cells with 5-bromodeoxyuridine after synchronization with aphidicolin. The entire MEN203 locus replicated during the late S phase. Two distinct segments replicated earlier than the others in the locus, indicating that replication was initiated within or near these segments. Two other segments also showed an earlier response than the respective neighboring regions. These results suggest that the MEN203 locus contains two distinct replication origins and two possible origins that may be used less frequently. The results were essentially confirmed by synchronization of the cell cycle with mimosine. Analysis of autonomous replication activity of 10-kb long chromosome fragments covering the 320-kb region showed that certain fragments replicated two or three times more efficiently than others. The results are consistent with our previous observations with randomly cloned human chromosome fragments. The replication origins colocalized with fragments exhibiting relatively high autonomous replication activity. Thus, the capacity for autonomous replication of chromosome fragments might be prerequisite for the initiation of chromosomal replication.
Collapse
Affiliation(s)
- Y Ogawa
- School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | |
Collapse
|
12
|
Sugino A, Ohara T, Sebastian J, Nakashima N, Araki H. DNA polymerase epsilon encoded by cdc20+ is required for chromosomal DNA replication in the fission yeast Schizosaccharomyces pombe. Genes Cells 1998; 3:99-110. [PMID: 9605404 DOI: 10.1046/j.1365-2443.1998.00169.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND DNA polymerase II (PolII), the homologue of mammalian DNA polymerase epsilon, is essential for chromosomal DNA replication in the budding yeast Saccharomyces cerevisiae and also participates in S-phase checkpoint control. An important issue is whether chromosomal DNA replication in other eukaryotes, including the fission yeast Schizosaccharomyces pombe--in which the characteristics of replication origins are poorly defined--also requires DNA polymerase epsilon. It has been shown that DNA polymerase epsilon is not required for the in vitro replication of SV40 DNA by human cell extracts. RESULTS We have cloned and sequenced S. pombe pol2+, which is identical to the cell-cycle gene cdc20+, encoding the catalytic polypeptide of DNA polymerase epsilon (Pol epsilon). The predicted amino acid sequence of Pol epsilon is highly homologous to that of S. cerevisiae PolII and human Pol epsilon. Consistent with this, the Pol epsilon polypeptide was recognized by polyclonal antibodies against S. cerevisiae PolII holoenzyme (PolII*). The terminal morphology of cells containing the disrupted pol2 gene was similar to that of DNA replication mutant cells and cdc20 mutant cells. Furthermore, the Pol epsilon activity from temperature-sensitive S. pombe cdc20 mutant cells was temperature-sensitive, and chromosomal DNA replication in the mutant cells was inhibited at the restrictive temperatures. CONCLUSION These data strongly suggest that Pol epsilon is required for normal chromosomal DNA replication in S. pombe, as is PolII in S. cerevisiae. Thus, eukaryotic chromosomal DNA is replicated differently from that of viral SV40 DNA.
Collapse
Affiliation(s)
- A Sugino
- Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | | | | | | | | |
Collapse
|
13
|
Sanchez JA, Kim SM, Huberman JA. Ribosomal DNA replication in the fission yeast, Schizosaccharomyces pombe. Exp Cell Res 1998; 238:220-30. [PMID: 9457075 DOI: 10.1006/excr.1997.3835] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have employed genetic and two-dimensional (2D) gel electrophoretic methods to identify replication initiation, pausing, and termination sites in the tandem ribosomal DNA (rDNA) repeats of the fission yeast, Schizosaccharomyces pombe. An autonomously replicating sequence (ARS) element, ars3001, maps to a 2.3-kb restriction fragment spanning the junction between the nontranscribed spacer (NTS) and the external transcribed spacer upstream of the ribosomal RNA genes, and 2D gel analysis shows that replication initiates in the NTS portion of the same fragment. A pause region at the 3' end of the rRNA genes inhibits forks from entering these genes counter to the direction of transcription. Thus, most forks move through the genes in the same direction as transcription. In these respects, fission yeast rDNA replication resembles that in the budding yeast, Saccharomyces cerevisiae, and in multicellular eukaryotic organisms. A feature which, so far, has been detected only in fission yeast is the pausing of replication forks in a broad region near the 5.8S rRNA gene.
Collapse
Affiliation(s)
- J A Sanchez
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
14
|
Clyne RK, Kelly TJ. Identification of autonomously replicating sequence (ARS) elements in eukaryotic cells. Methods 1997; 13:221-33. [PMID: 9441849 DOI: 10.1006/meth.1997.0522] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Autonomously replicating sequence (ARS) elements were first identified in the budding yeast Saccharomyces cerevisiae as chromosomal DNA fragments that promoted high frequency of transformation and extrachromosomal maintenance of plasmid DNA. These specific sequence elements were subsequently shown to function as origins of DNA replication. Detailed analysis of the structure and function of ARS elements has been limited largely to S. cerevisiae and more recently the fission yeast Schizosaccharomyces pombe. Characterization of ARS activity in other eukaryotes is far less complete. Here we describe the ARS assay developed in yeast and its application to the study of origin function in other eukaryotes. Other available methods for detecting autonomous replication in these systems are also presented.
Collapse
Affiliation(s)
- R K Clyne
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
15
|
Abstract
Studies on DNA replication in S. pombe have provided powerful insights into the way in which the genome of this model eukaryote is replicated and how the replication process is controlled. These studies have been facilitated by the simplicity and range of methods available in this organism for physiological and genetic analysis of DNA replication mutants. In the future, continued focus on the analysis of such mutants, coupled with increasingly sophisticated biochemical investigation of the processes of DNA replication in both wild-type and mutant cells, will ensure continued rapid progress in this area.
Collapse
Affiliation(s)
- S A MacNeill
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| | | |
Collapse
|
16
|
Levac P, Moss T. Inactivation of topoisomerase I or II may lead to recombination or to aberrant replication termination on both SV40 and yeast 2 micron DNA. Chromosoma 1996; 105:250-60. [PMID: 8854885 DOI: 10.1007/bf02528774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Topoisomerase I is believed to be sufficient for early replication of circular viral genomes such as those of SV40 and of yeast plasmids. Topoisomerase II is required for the decatenation of the daughter genomes and probably also for fork elongation during the later stages of SV40 replication. Using the neutral-neutral two-dimensional gel system, we have followed the progression of replication of both SV40 and the yeast 2 micron plasmid under various conditions of topoisomerase inhibition. During SV40 replication, inhibition of topoisomerase II by VP16, VM26 or hypertonic shock (but not by merbarone), and inhibition of topoisomerase I by camptothecin all led to the accumulation of aberrant DNA structures containing two almost completely replicated genomes. These aberrant structures resembled either recombination intermediates or late Cairns structures in which the site of replication termination had shifted and now mapped to a continuum of sites throughout the genome. Replication of the 2 micron plasmid in a topoisomerase II- but not a topoisomerase I-deficient yeast gave rise to very similar structures. The data suggest that inactivation of topoisomerase I or II either stimulates recombination or, by differentially affecting replication fork progression, leads to aberrant replication termination.
Collapse
MESH Headings
- Camptothecin/pharmacology
- DNA Replication
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Fungal/chemistry
- DNA, Viral/chemistry
- Electrophoresis, Gel, Two-Dimensional
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Etoposide/pharmacology
- Hypertonic Solutions
- Mutation
- Plasmids/chemistry
- Plasmids/genetics
- Recombination, Genetic
- Simian virus 40/genetics
- Teniposide/pharmacology
- Thiobarbiturates/pharmacology
- Topoisomerase I Inhibitors
- Topoisomerase II Inhibitors
- Yeasts/enzymology
- Yeasts/genetics
Collapse
Affiliation(s)
- P Levac
- Centre de Recherche en Cancérologie et Département de Biochimie, Université Laval, Hôtel Dieu de Québec, 11 Côte du Palais, G1R 2J6 Québec, Canada.
| | | |
Collapse
|
17
|
Sohn JH, Choi ES, Kim CH, Agaphonov MO, Ter-Avanesyan MD, Rhee JS, Rhee SK. A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1. J Bacteriol 1996; 178:4420-8. [PMID: 8755868 PMCID: PMC178207 DOI: 10.1128/jb.178.15.4420-4428.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Several autonomously replicating sequences of Hansenula polymorpha DL-1 (HARSs) with the characteristics of tandem integration were cloned by an enrichment procedure and analyzed for their functional elements to elucidate the mechanism of multiple integration in tandem repeats. All plasmids harboring newly cloned HARSs showed a high frequency of transformation and were maintained episomally before stabilization. After stabilization, the transforming DNA was stably integrated into the chromosome. HARS36 was selected for its high efficiency of transformation and tendency for integration. Several tandemly repeated copies of the transforming plasmid containing HARS36 (pCE36) integrated into the vicinity of the chromosomal end. Bal 31 digestion of the total DNA from the integrants followed by Southern blotting generated progressive shortening of the hybridization signal, indicating the telomeric localization of the transforming plasmids on the chromosome. The minimum region of HARS36 required for its HARS activity was analyzed by deletion analyses. Three important regions, A, B, and C, for episomal replication and integration were detected. Analysis of the DNA sequences of regions A and B required for the episomal replication revealed that region A contained several AT-rich sequences that showed sequence homology with the ARS core consensus sequence of Saccharomyces cerevisiae. Region B contained two directly repeated sequences which were predicted to form a bent DNA structure. Deletion of the AT-rich core in region A resulted in a complete loss of ARS activity, and deletion of the repeated sequences in region B greatly reduced the stability of the transforming plasmid and resulted in retarded cell growth. Region C was required for the facilitated chromosomal integration of transforming plasmids.
Collapse
Affiliation(s)
- J H Sohn
- Applied Microbiology Research Division, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Dubey DD, Kim SM, Todorov IT, Huberman JA. Large, complex modular structure of a fission yeast DNA replication origin. Curr Biol 1996; 6:467-73. [PMID: 8723351 DOI: 10.1016/s0960-9822(02)00514-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In the budding yeast, Saccharomyces cerevisiae, each DNA replication origin is associated with an autonomously replicating sequence (ARS) element. Each element contains several modules, including an essential close match to the 11 base-pair (bp) ARS consensus sequence (ACS) and two or three short (< 20 bp) stimulatory motifs, within a stretch of approximately 150 bp or less. To determine whether a similar origin structure exists in the evolutionarily distant fission yeast, Schizosaccharomyces pombe, we used deletion and linker substitution scanning to identify the sequences important for the function of ars3002, a chromosomal replication origin. RESULTS We detected two large (30-55 bp) essential regions and several additional stimulatory sequences within a 600 bp stretch of a restriction fragment containing ars3002. The two essential regions are similar to each other, and sequences similar to them are found in all known S. pombe ARS elements, suggesting that one or both of them may represent the S. pombe equivalent of the S. cerevisiae ACS. CONCLUSIONS Like S. cerevisiae origins, the S. pombe origin, ars3002, possesses a modular structure, but the number and size of modules is greater for ars3002, and ars3002 is larger than S. cerevisiae origins. These observations suggest that origin function in S. pombe requires more protein-DNA interactions than in S. cerevisiae.
Collapse
Affiliation(s)
- D D Dubey
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- J F Diffley
- CRF Clare Hall Laboratories, South Mimms, U.K.
| |
Collapse
|
20
|
Brun C, Dijkwel PA, Little RD, Hamlin JL, Schildkraut CL, Huberman JA. Yeast and mammalian replication intermediates migrate similarly in two-dimensional gels. Chromosoma 1995; 104:92-102. [PMID: 8585995 DOI: 10.1007/bf00347691] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the budding yeast, Saccharomyces cerevisiae, DNA replication initiates at specific, discrete chromosomal locations. At each initiation site, a single small replication bubble is generated, which subsequently expands at Y-like replication forks. We wanted to know whether other eukaryotic organisms utilize similar initiation mechanisms. For this purpose, replication intermediates (RIs) from three different organisms (Schizosaccharomyces pombe, Chinese hamster and human) were mixed individually with RIs from S. cerevisiae and then subjected to two-dimensional (2D) gel electrophoresis under conditions known to resolve molecules having different structures. All of the RIs detected by the hybridization probes we used for each organism migrated nearly identically to specific RIs of similar size from S. cerevisiae, implying that the detected RIs from all the studied organisms have very similar structures and may therefore employ the same basic initiation mechanism.
Collapse
Affiliation(s)
- C Brun
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sipiczki M. Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie Van Leeuwenhoek 1995; 68:119-49. [PMID: 8546451 DOI: 10.1007/bf00873099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phylogenesis of fungi is controversial due to their simple morphology and poor fossilization. Traditional classification supported by morphological studies and physiological traits placed the fission yeasts in one group with ascomycetous yeasts. The rRNA sequence comparisons, however, revealed an enormous evolutionary gap between Saccharomyces and Schizosaccharomyces. As shown in this review, the protein sequences also show a large gap which is almost as large as that separating Schizosaccharomyces from higher animals. Since the two yeasts share features (both cytological and molecular) in common which are also characteristic of ascomycetous fungi, their separation must have taken place later than the sequence differences may suggest. Possible reasons for the paradox are discussed. The sequence data also suggest a slower evolutionary rate in the Schizosaccharomyces lineage than in the Saccharomyces branch. In the fission yeast lineage two ramifications can be supposed. First S. japonicus (Hasegawaea japonica) branched off, then S. octosporus (Octosporomyces octosporus) separated from S. pombe.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, University of Debrecen, Hungary
| |
Collapse
|
22
|
Allshire RC. Elements of chromosome structure and function in fission yeast. SEMINARS IN CELL BIOLOGY 1995; 6:55-64. [PMID: 7548843 DOI: 10.1016/1043-4682(95)90001-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The investigation of fission yeast chromosome structure and function has moved rapidly over the past 10 years. The isolation of replication origins, telomeres and centromeres has allowed the development of minichromosomes, a yeast artificial chromosome (YAC)-like cloning system and investigations into chromosome segregation and behaviour during mitosis and meiosis. Many mutants have been isolated which are defective in chromosome segregation. The development of the fluorescent in-situ hybridization (FISH) technique for use in S. pombe has allowed the localization of centromeres and telomeres throughout mitosis and meiosis. In combination with indirect immunofluorescence to detect spindle and chromosomal proteins, the FISH technique should further advance our understanding of fission yeast chromosome structure and function. The recent discovery of a heterochromatin-like structure mediating transcriptional repression at centromeres reinforces the notion that fission yeast centromeres are similar to those of larger eukaryotes. Further characterization of such phenomena will accelerate the genetic dissection of this important chromosomal element.
Collapse
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| |
Collapse
|
23
|
Brewer BJ. Intergenic DNA and the sequence requirements for replication initiation in eukaryotes. Curr Opin Genet Dev 1994; 4:196-202. [PMID: 8032196 DOI: 10.1016/s0959-437x(05)80045-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Replication in eukaryotes initiates at many origins per chromosome. The locations of most of these origins appear to be restricted to intergenic spacers. In this review, I propose that the sequence dependence of initiation seen in lower eukaryotes may be a by-product of the small size of intergenic sequences and may not reflect a general requirement of the mechanisms that control the initiation of replication.
Collapse
Affiliation(s)
- B J Brewer
- Department of Genetics, University of Washington, Seattle 98195
| |
Collapse
|