1
|
Malard F, Dias K, Baudy M, Thore S, Vialet B, Barthélémy P, Fribourg S, Karginov FV, Campagne S. Molecular Basis for the Calcium-Dependent Activation of the Ribonuclease EndoU. RESEARCH SQUARE 2024:rs.3.rs-4654759. [PMID: 39070628 PMCID: PMC11275989 DOI: 10.21203/rs.3.rs-4654759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Ribonucleases (RNases) are ubiquitous enzymes that process or degrade RNA, essential for cellular functions and immune responses. The EndoU-like superfamily includes endoribonucleases conserved across bacteria, eukaryotes, and certain viruses, with an ancient evolutionary link to the ribonuclease A-like superfamily. Both bacterial EndoU and animal RNase A share a similar fold and function independently of cofactors. In contrast, the eukaryotic EndoU catalytic domain requires divalent metal ions for catalysis, possibly due to an N-terminal extension near the catalytic core. In this study, we used biophysical and computational techniques along with in vitro assays to investigate the calcium-dependent activation of human EndoU. We determined the crystal structure of EndoU bound to calcium and found that calcium binding remote from the catalytic triad triggers water-mediated intramolecular signaling and structural changes, activating the enzyme through allostery. Calcium-binding involves residues from both the catalytic core and the N-terminal extension, indicating that the N-terminal extension interacts with the catalytic core to modulate activity in response to calcium. Our findings suggest that similar mechanisms may be present across all eukaryotic EndoUs, highlighting a unique evolutionary adaptation that connects endoribonuclease activity to cellular signaling in eukaryotes.
Collapse
Affiliation(s)
- Florian Malard
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Kristen Dias
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Margaux Baudy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Stéphane Thore
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Brune Vialet
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Philippe Barthélémy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Sébastien Fribourg
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Fedor V Karginov
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Sébastien Campagne
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| |
Collapse
|
2
|
Fafard-Couture É, Labialle S, Scott MS. The regulatory roles of small nucleolar RNAs within their host locus. RNA Biol 2024; 21:1-11. [PMID: 38626213 PMCID: PMC11028025 DOI: 10.1080/15476286.2024.2342685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several snoRNAs are now known to regulate diverse levels of gene expression. While these functions are carried out in trans by mature snoRNAs, evidence has also been emerging of regulatory roles of snoRNAs in cis, either within their genomic locus or as longer transcription intermediates during their maturation. Herein, we review recent findings that snoRNAs can interact in cis with their intron to regulate the expression of their host gene. We also explore the ever-growing diversity of longer host-derived snoRNA extensions and their functional impact across the transcriptome. Finally, we discuss the role of snoRNA duplications into forging these new layers of snoRNA-mediated regulation, as well as their involvement in the genomic imprinting of their host locus.
Collapse
Affiliation(s)
- Étienne Fafard-Couture
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Michelle S Scott
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
Breuer R, Gomes-Filho JV, Randau L. Conservation of Archaeal C/D Box sRNA-Guided RNA Modifications. Front Microbiol 2021; 12:654029. [PMID: 33776983 PMCID: PMC7994747 DOI: 10.3389/fmicb.2021.654029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional modifications fulfill many important roles during ribosomal RNA maturation in all three domains of life. Ribose 2'-O-methylations constitute the most abundant chemical rRNA modification and are, for example, involved in RNA folding and stabilization. In archaea, these modification sites are determined by variable sets of C/D box sRNAs that guide the activity of the rRNA 2'-O-methyltransferase fibrillarin. Each C/D box sRNA contains two guide sequences that can act in coordination to bridge rRNA sequences. Here, we will review the landscape of archaeal C/D box sRNA genes and their target sites. One focus is placed on the apparent accelerated evolution of guide sequences and the varied pairing of the two individual guides, which results in different rRNA modification patterns and RNA chaperone activities.
Collapse
Affiliation(s)
| | | | - Lennart Randau
- Prokaryotic RNA Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Khan MT, Irfan M, Ahsan H, Ahmed A, Kaushik AC, Khan AS, Chinnasamy S, Ali A, Wei DQ. Structures of SARS-CoV-2 RNA-Binding Proteins and Therapeutic Targets. Intervirology 2021; 64:55-68. [PMID: 33454715 PMCID: PMC7900486 DOI: 10.1159/000513686] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) epidemic has resulted in thousands of infections and deaths worldwide. Several therapies are currently undergoing clinical trials for the treatment of SARS-CoV-2 infection. However, the development of new drugs and the repositioning of existing drugs can only be achieved after the identification of potential therapeutic targets within structures, as this strategy provides the most precise solution for developing treatments for sudden epidemic infectious diseases. SUMMARY In the current investigation, crystal and cryo-electron microscopy structures encoded by the SARS-CoV-2 genome were systematically examined for the identification of potential drug targets. These structures include nonstructural proteins (Nsp-9; Nsp-12; and Nsp-15), nucleocapsid (N) proteins, and the main protease (Mpro). Key Message: The structural information reveals the presence of many potential alternative therapeutic targets, primarily involved in interaction between N protein and Nsp3, forming replication-transcription complexes (RTCs) which might be a potential drug target for effective control of current SARS-CoV-2 pandemic. RTCs consist of 16 nonstructural proteins (Nsp1-16) that play the most essential role in the synthesis of viral RNA. Targeting the physical linkage between the envelope and single-stranded positive RNA, a process facilitated by matrix proteins may provide a good alternative strategy. Our current study provides useful information for the development of new lead compounds against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Hina Ahsan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abrar Ahmed
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | - Anwar Sheed Khan
- Department of Microbiology, University of Science and Technology, Kohat, Pakistan
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Arif Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China,
- Peng Cheng Laboratory, Shenzhen, China,
| |
Collapse
|
5
|
Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M, Godzik A, Michalska K, Joachimiak A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci 2020; 29:1596-1605. [PMID: 32304108 PMCID: PMC7264519 DOI: 10.1002/pro.3873] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS-CoVs and Middle East Respiratory Syndrome coronavirus (MERS-CoVs), the detailed information about SARS-CoV-2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high-throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS-CoV-2 proteins and structures. Here we report two high-resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.
Collapse
Affiliation(s)
- Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Natalia I Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Adam Godzik
- Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Michalska K, Quan Nhan D, Willett JLE, Stols LM, Eschenfeldt WH, Jones AM, Nguyen JY, Koskiniemi S, Low DA, Goulding CW, Joachimiak A, Hayes CS. Functional plasticity of antibacterial EndoU toxins. Mol Microbiol 2018; 109:509-527. [PMID: 29923643 PMCID: PMC6173971 DOI: 10.1111/mmi.14007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 01/05/2023]
Abstract
Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact-dependent growth inhibition toxin CdiA-CTSTECO31 from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His-His-Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate-specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N-terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA-CTSTECO31 and other clade III toxins are specific anticodon nucleases that cleave tRNAGlu between nucleotides C37 and m2 A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter-bacterial toxin delivery systems.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Dinh Quan Nhan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Julia L E Willett
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA
| | - Allison M Jones
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Josephine Y Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.,Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 2018; 10:17-39. [PMID: 11868985 PMCID: PMC5977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.
Collapse
MESH Headings
- Animals
- Base Pairing
- Biological Transport
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Eukaryotic Cells/metabolism
- Evolution, Molecular
- Methylation
- Prokaryotic Cells/metabolism
- Pseudouridine/metabolism
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/physiology
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosomes/metabolism
- Species Specificity
- Structure-Activity Relationship
- Telomerase/metabolism
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
8
|
Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration. Sci Rep 2017; 7:41559. [PMID: 28139767 PMCID: PMC5282483 DOI: 10.1038/srep41559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function.
Collapse
|
9
|
Pascale M, Laurino S, Vogel H, Grimaldi A, Monné M, Riviello L, Tettamanti G, Falabella P. The Lepidopteran endoribonuclease-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:129-39. [PMID: 25043263 PMCID: PMC7124382 DOI: 10.1016/j.dci.2014.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, with a putative endoribonuclease-U domain. In previous works we have shown that P102 is involved in Lepidopteran immune response by forming amyloid fibrils, which catalyze and localize melanin deposition around non-self intruders during encapsulation, preventing harmful systemic spreading. Here we demonstrate that P102 belongs to a new class of proteins that, at least in Lepidoptera, has a diminished endoribonuclease-U activity probably due to the lack of two out of five catalytically essential residues. We show that the P102 homolog from Trichoplusia ni (Lepidoptera, Noctuidae) displays catalytic site residues identical to P102, a residual endoribonuclease-U activity and the ability to form functional amyloids. On the basis of these results as well as sequence and structural analyses, we hypothesize that all the Lepidoptera endoribonuclease-U orthologs with catalytic site residues identical to P102 form a subfamily with similar function.
Collapse
Affiliation(s)
- Mariarosa Pascale
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Laurino
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Annalisa Grimaldi
- Università dell'Insubria, Dipartimento di Biotecnologie e Scienze della Vita, via Dunant 3, 21100 Varese, Italy
| | - Magnus Monné
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lea Riviello
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Gianluca Tettamanti
- Università dell'Insubria, Dipartimento di Biotecnologie e Scienze della Vita, via Dunant 3, 21100 Varese, Italy
| | - Patrizia Falabella
- Università della Basilicata, Dipartimento di Scienze, via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
10
|
Schwarz DS, Blower MD. The calcium-dependent ribonuclease XendoU promotes ER network formation through local RNA degradation. ACTA ACUST UNITED AC 2014; 207:41-57. [PMID: 25287301 PMCID: PMC4195833 DOI: 10.1083/jcb.201406037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In both Xenopus laevis egg extract and human cells, an increase in cytosolic calcium activates the endogenous ribonuclease XendoU/hEndoU, which localizes to the ER, promotes RNA cleavage and RNP removal, and induces ER network assembly. How cells shape and remodel organelles in response to cellular signals is a poorly understood process. Using Xenopus laevis egg extract, we found that increases in cytosolic calcium lead to the activation of an endogenous ribonuclease, XendoU. A fraction of XendoU localizes to the endoplasmic reticulum (ER) and is required for nuclear envelope assembly and ER network formation in a catalysis-dependent manner. Using a purified vesicle fusion assay, we show that XendoU functions on the surface of ER membranes to promote RNA cleavage and ribonucleoprotein (RNP) removal. Additionally, RNA removal from the surface of vesicles by RNase treatment leads to increased ER network formation. Using human tissue culture cells, we found that hEndoU localizes to the ER, where it promotes the formation of ER tubules in a catalysis-dependent manner. Together, these results demonstrate that calcium-activated removal of RNA from membranes by XendoU promotes and refines ER remodeling and the formation of tubular ER.
Collapse
Affiliation(s)
- Dianne S Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Ragno R, Gioia U, Laneve P, Bozzoni I, Mai A, Caffarelli E. Identification of small-molecule inhibitors of the XendoU endoribonucleases family. ChemMedChem 2011; 6:1797-805. [PMID: 21805647 PMCID: PMC7162399 DOI: 10.1002/cmdc.201100281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Indexed: 01/12/2023]
Abstract
The XendoU family of enzymes includes several proteins displaying high sequence homology. The members characterized so far are endoribonucleases sharing similar biochemical properties and a common architecture in their active sites. Despite their similarities, these proteins are involved in distinct RNA‐processing pathways in different organisms. The amphibian XendoU participates in the biosynthesis of small nucleolar RNAs, the human PP11 is supposed to play specialized roles in placental tissue, and NendoU has critical function in coronavirus replication. Notably, XendoU family members have been implicated in human pathologies such as cancer and respiratory diseases: PP11 is aberrantly expressed in various tumors, while NendoU activity has been associated with respiratory infections by pathogenic coronaviruses. The present study is aimed at identifying small molecules that may selectively interfere with these enzymatic activities. Combining structure‐based virtual screening and experimental approaches, we identified four molecules that specifically inhibited the catalytic activity of XendoU and PP11 in the low micromolar range. Moreover, docking experiments strongly suggested that these compounds might also bind to the active site of NendoU, thus impairing the catalytic activity essential for the coronavirus life cycle. The identified compounds, while allowing deep investigation of the molecular functions of this enzyme family, may also represent leads for the development of new therapeutic tools.
Collapse
Affiliation(s)
- Rino Ragno
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Makarova JA, Kramerov DA. Analysis of C/D box snoRNA genes in vertebrates: The number of copies decreases in placental mammals. Genomics 2009; 94:11-9. [PMID: 19272437 DOI: 10.1016/j.ygeno.2009.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 12/31/2022]
Abstract
C/D box small nucleolar RNAs (snoRNAs) guide site-specific 2'-O-methylation of RNAs. Nearly all C/D box snoRNAs with known targets are involved in rRNA modification. In vertebrates, snoRNAs are encoded in introns of various genes and their processing is coupled with splicing of host gene pre-mRNA. Here, the genes encoding C/D box snoRNAs that guide 2'-O-methylation of rRNA were identified and analyzed in vertebrate genomes. The number of copies of most C/D box snoRNA genes proved to be lower in placental mammals compared to other vertebrates. This can be due to smaller oocytes and accordingly lower number of ribosomes in them in eutherians. The targets of snoRNAs encoded by single-copy and multiple-copy genes proved to have different distribution in rRNAs. The causes of this difference are discussed. In some cases, the transcripts of homologous C/D box RNA genes were shown to guide the modification of neighboring nucleotides in rRNA. C/D box snoRNA pseudogenes were found in all vertebrate classes. Three novel C/D box snoRNAs were found in Xenopus tropicalis that may guide 2'-O-methylation of Xenopus-specific rRNA sites. A list of 922 annotated C/D box snoRNA genes is presented.
Collapse
Affiliation(s)
- Julia A Makarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | | |
Collapse
|
13
|
|
14
|
Makarova JA, Kramerov DA. Small nucleolar RNA genes. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
de Turris V, Di Leva G, Caldarola S, Loreni F, Amaldi F, Bozzoni I. TOP promoter elements control the relative ratio of intron-encoded snoRNA versus spliced mRNA biosynthesis. J Mol Biol 2004; 344:383-94. [PMID: 15522292 DOI: 10.1016/j.jmb.2004.09.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/02/2004] [Accepted: 09/21/2004] [Indexed: 12/01/2022]
Abstract
In vertebrates almost all snoRNAs are encoded in introns of a specific subclass of polII transcripts: the TOP genes. The majority of these RNAs originate through debranching of the spliced introns, the rest through endonucleolytic cleavage of the precursor that contains them. In both cases it has been suggested that snoRNP factors associate at early steps during transcription and control snoRNA biogenesis. Here, we analyzed the specific case of the U16 snoRNA that was shown to originate mainly through endonucleolytic cleavage. We show that TOP promoter elements determine a specific ratio of snoRNA and mRNA production. Under the control of these sequences the snoRNA is likely to originate from both splicing and cleavage of the pre-mRNA. Conversely, canonical polII promoter elements seem not to be compatible with snoRNA release through the cleavage reaction and produce a lower snoRNA/mRNA ratio. In addition, we show that the proximal part of the TOP promoter is responsible for this peculiar post-transcriptional process that controls the relative ratio between snoRNA and mRNA.
Collapse
Affiliation(s)
- Valeria de Turris
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology, University "La Sapienza" P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Mechanisms and functions of RNA-guided RNA modification. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2004. [DOI: 10.1007/b105585] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Abstract
Conservation of microRNAs (miRNAs) among species suggests that they bear conserved biological functions. However, sequencing of new miRNAs has not always been accompanied by a search for orthologues in other species. I report herein the results of a systematic search for interspecies orthologues of miRNA precursors, leading to the identification of 35 human and 45 mouse new putative miRNA genes. MicroRNA tracks were written to visualize miRNAs in human and mouse genomes on the UCSC Genome Browser. Based on their localization, miRNA precursors can be excised either from introns or exons of mRNAs. When intronic miRNAs are antisense to the apparent host gene, they appear to originate from ill-characterized antisense transcription units. Exonic miRNAs are, in general, nonprotein-coding, poorly conserved genes in sense orientation. In three cases, the excision of an miRNA from a protein-coding mRNA might lead to the degradation of the rest of the transcript. Moreover, three new examples of miRNAs fully complementary to an mRNA are reported. Among these, miR135a might control the stability and/or translation of an alternative form of the glycerate kinase mRNA by RNA interference. I also discuss the presence of human miRNAs in introns of paralogous genes and in miRNA clusters.
Collapse
Affiliation(s)
- Michel J Weber
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS and Université Paul Sabatier, IFR109, Toulouse, France.
| |
Collapse
|
18
|
Laneve P, Altieri F, Fiori ME, Scaloni A, Bozzoni I, Caffarelli E. Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J Biol Chem 2003; 278:13026-32. [PMID: 12571235 DOI: 10.1074/jbc.m211937200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the purification, from Xenopus laevis oocyte nuclear extracts, of a new endoribonuclease, XendoU, that is involved in the processing of the intron-encoded box C/D U16 small nucleolar RNA (snoRNA) from its host pre-mRNA. Such an activity has never been reported before and has several uncommon features that make it quite a novel enzyme: it is poly(U)-specific, it requires Mn(2+) ions, and it produces molecules with 2'-3'-cyclic phosphate termini. Even if XendoU cleaves U-stretches, it displays some preferential cleavage on snoRNA precursor molecules. XendoU also participates in the biosynthesis of another intron-encoded snoRNA, U86, which is contained in the NOP56 gene of Xenopus laevis. A common feature of these snoRNAs is that their production is alternative to that of the mRNA, suggesting an important regulatory role for all the factors involved in the processing reaction.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University La Sapienza Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Liang XH, Liu L, Michaeli S. Identification of the first trypanosome H/ACA RNA that guides pseudouridine formation on rRNA. J Biol Chem 2001; 276:40313-8. [PMID: 11483606 DOI: 10.1074/jbc.m104488200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In trypanosomes small nucleolar RNA (snoRNA) genes are clustered, and the clusters encode for either single or multiple RNAs. We previously reported on a genomic locus in Leptomonas collosoma that encodes for multiple C/D snoRNAs whose expression is regulated at the processing level (Xu, Y., Liu, L., Lopez-Estraño, C., and Michaeli, S. (2001) J. Biol. Chem. 276, 14289-14298). In this study we have characterized, in the same genomic locus, the first trypanosome H/ACA RNA, which we termed h1. Having a length of 69 nucleotides, h1 has the potential to guide pseudouridylation on 28 S rRNA. The h1 is processed from a long polycistronic transcript that carries both the C/D and h1 snoRNAs. The h1/rRNA duplex obeys the rules for guiding pseudouridylation. Mapping of the pseudouridine site indicated that the predicted U is indeed modified. However, in contrast to all H/ACA RNAs, h1 consists of a single hairpin structure and is the shortest H/ACA RNA described so far.
Collapse
MESH Headings
- Animals
- Base Sequence
- Genes, Protozoan
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- Pseudouridine/biosynthesis
- RNA Editing
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Transcription, Genetic
- Trypanosomatina/genetics
Collapse
Affiliation(s)
- X H Liang
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
20
|
Filippini D, Renzi F, Bozzoni I, Caffarelli E. U86, a novel snoRNA with an unprecedented gene organization in yeast. Biochem Biophys Res Commun 2001; 288:16-21. [PMID: 11594746 DOI: 10.1006/bbrc.2001.5720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Xenopus laevis Nop56 gene (XNOP56), coding for a snoRNP-specific factor, belongs to the 5'-TOP gene family. XNOP56, as many 5'-TOP genes, contains an intron-encoded snoRNA. This previously unidentified RNA, named U86, was found as a highly conserved species in yeast and human. While in human it is also encoded in an intron of the hNop56 gene, in yeast it has an unprecedented gene organization: it is encoded inside an open-reading frame. Both in X. laevis and yeast, the synthesis of U86 snoRNA appears to be alternative to that of the cotranscribed mRNA. Despite the overall homology, the three U86 snoRNAs do not show strong conservation of the sequence upstream from the box D and none of them displays significant sequence complementarity to rRNA or snRNA sequences, suggesting a role different from that of methylation.
Collapse
Affiliation(s)
- D Filippini
- Istituto Pasteur Fondazione Cenci-Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
21
|
Cavaillé J, Vitali P, Basyuk E, Hüttenhofer A, Bachellerie JP. A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J Biol Chem 2001; 276:26374-83. [PMID: 11346658 DOI: 10.1074/jbc.m103544200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antisense box C/D small nucleolar RNAs (snoRNAs) guide the 2'-O-ribose methylations of eukaryotic rRNAs and small nuclear RNAs (snRNAs) through formation of a specific base pairing at each RNA methylation site. By analysis of a box C/D snoRNA cDNA library constructed from rat brain RNAs, we have identified a novel box C/D snoRNA, RBII-36, which is devoid of complementarity to rRNA or an snRNA and exhibits a brain-specific expression pattern. It is uniformly expressed in all major areas of adult rat brain (except for choroid plexus) and throughout rat brain ontogeny but exclusively detected in neurons in which it exhibits a nucleolar localization. In vertebrates, known methylation guide snoRNAs are intron-encoded and processed from transcripts of housekeeping genes. In contrast, RBII-36 snoRNA is intron-encoded in a gene preferentially expressed in the rat central nervous system and not in proliferating cells. Remarkably, this host gene, which encodes a previously reported noncoding RNA, Bsr, spans tandemly repeated 0.9-kilobase units including the snoRNA-containing intron. The novel brain-specific snoRNA appears to result not only from processing of the debranched lariat but also from endonucleolytic cleavages of unspliced Bsr RNA (i.e. an alternative splicing-independent pathway unreported so far for mammalian intronic snoRNAs). Sequences homologous to RBII-36 snoRNA were exclusively detected in the Rattus genus of rodents, suggesting a very recent origin of this brain-specific snoRNA.
Collapse
Affiliation(s)
- J Cavaillé
- UMR5099, Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul-Sabatier, 118 route de Narbonne, Toulouse 31062, France.
| | | | | | | | | |
Collapse
|
22
|
Xu Y, Liu L, Lopez-Estraño C, Michaeli S. Expression studies on clustered trypanosomatid box C/D small nucleolar RNAs. J Biol Chem 2001; 276:14289-98. [PMID: 11278327 DOI: 10.1074/jbc.m007007200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed three chromosomal loci of the trypanosomatid Leptomonas collosoma encoding box C/D small nucleolar RNAs (snoRNAs). All the snoRNAs that were analyzed here carry two sequences complementary to rRNA target sites and obey the +5 rule for guide methylation. Studies on transgenic parasites carrying the snoRNA-2 gene in the episomal expression vector (pX-neo) indicated that no promoter activity was found immediately adjacent to this gene. Deleting the flanking sequences of snoRNA-2 affected the expression; in the absence of the 3'-flanking (but not 5'-flanking) sequence, the expression was almost completely abolished. The snoRNA genes are transcribed as polycistronic RNA. All snoRNAs can be folded into a common stem-loop structure, which may play a role in processing the polycistronic transcript. snoRNA B2, a member of a snoRNA cluster, was expressed when cloned into the episomal vector, suggesting that each gene within a cluster is individually processed. Studies with permeable cells indicated that snoRNA gene transcription was relatively sensitive to alpha-amanitin, thus supporting transcription by RNA polymerase II. We propose that snoRNA gene expression, similar to protein-coding genes in this family, is regulated at the processing level.
Collapse
MESH Headings
- Amanitins/pharmacology
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA Methylation
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Gene Deletion
- Genetic Vectors
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligonucleotides/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA Polymerase II/metabolism
- RNA, Messenger/metabolism
- RNA, Small Nucleolar/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction
- Ribose/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Trypanosoma/genetics
- Trypanosoma/metabolism
Collapse
Affiliation(s)
- Y Xu
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
23
|
Tycowski KT, Steitz JA. Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 2001; 80:119-25. [PMID: 11302516 DOI: 10.1078/0171-9335-00150] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification guide snoRNAs either are encoded within introns and co-transcribed with the host gene pre-mRNA or are independently transcribed as mono- or polycistronic units. Different eukaryotic kingdoms utilize these coding strategies to various degrees. Intron-encoded and polycistronic snoRNAs are released from primary transcripts as pre-snoRNAs by the spliceosome or by an RNase III-like activity, respectively. In the spliceosomal pathway, the resulting intron lariat is then linearized by a debranching activity. The leader and trailer sequences of pre-snoRNAs are removed by exonucleolytic activities. The majority of snoRNA host genes encode proteins involved in the synthesis, structure or function of the translational apparatus. Several vertebrate snoRNA host genes do not appear to code for functional proteins. We have identified two unusually compact box C/D multi-snoRNA host genes in D. melanogaster, dUHG1 and dUHG2, similar in their organization to the corresponding vertebrate non-protein-coding host genes. In dUHG1 and dUHG2, the snoRNA sequences are located within introns at a conserved distance of about 75 nucleotides upstream of the 3' splice sites. Both genes initiate transcription with TOP-like sequences that share unique features with previously reported Drosophila snoRNA host genes. Although the spliced dUHG RNAs are relatively stable, they exhibit little potential for protein coding.
Collapse
Affiliation(s)
- K T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| | | |
Collapse
|
24
|
Filippini D, Bozzoni I, Caffarelli E. p62, a novel Xenopus laevis component of box C/D snoRNPs. RNA (NEW YORK, N.Y.) 2000; 6:391-401. [PMID: 10744023 PMCID: PMC1369921 DOI: 10.1017/s135583820099174x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
U16 belongs to the family of box C/D small nucleolar RNAs (snoRNAs) whose members participate in ribosome biogenesis, mainly acting as guides for site-specific methylation of the pre-rRNA. Like all the other members of the family, U16 is associated with a set of protein factors forming a ribonucleoprotein particle, localized in the nucleolus. So far, only a few box C/D-specific proteins are known: in Xenopus laevis, fibrillarin and p68 have been identified by UV crosslinking and shown to require the conserved boxes C and D for snoRNA interaction. In this study, we have identified an additional protein factor (p62), common to box C/D snoRNPs, that crosslinks to the internal stem region, distinct from the conserved box C/D "core motif," of U16 snoRNA. We show here that, although the absence of the core motif and, as a consequence, of fibrillarin and p68 binding prevents processing and accumulation of the snoRNA, the lack of the internal stem does not interfere with the efficient release of U16 from its host intron and only slightly affects snoRNA stability. Because this region is likely to be the binding site for p62, we propose that this protein plays an accessory role in the formation of a mature and stable U16 snoRNP particle.
Collapse
Affiliation(s)
- D Filippini
- Dipartimento di Genetica e Biologia Molecolare, Istituto Pasteur Fondazione Cenci-Bolognetti, Universitá La Sapienza, Rome, Italy
| | | | | |
Collapse
|
25
|
Fatica A, Galardi S, Altieri F, Bozzoni I. Fibrillarin binds directly and specifically to U16 box C/D snoRNA. RNA (NEW YORK, N.Y.) 2000; 6:88-95. [PMID: 10668801 PMCID: PMC1369896 DOI: 10.1017/s1355838200991623] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Eukaryotic nucleoli contain a large family of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs) that are involved in processing and site-specific methylation of pre-rRNA. Several proteins have been reported to be common factors of box C/D snoRNPs in lower and higher eukaryotes; nevertheless none of them has been clearly shown to directly interact with RNA. We previously identified in Xenopus laevis, by means of UV crosslinking in vivo, two proteins associated with box C/D snoRNAs, fibrillarin and p68. Here we show that fibrillarin interacts directly and specifically with the U16 box C/D snoRNA in a X. laevis oocyte nuclear extract and that it does not require p68 for binding. Specific binding is also obtained with a recombinant fibrillarin demonstrating that the protein is able to bind directly and specifically to U16 snoRNA by itself.
Collapse
Affiliation(s)
- A Fatica
- Centro Acidi Nucleici of Consiglio Nazionale delle Richerche, Rome, Italy
| | | | | | | |
Collapse
|
26
|
Chanfreau G, Legrain P, Jacquier A. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J Mol Biol 1998; 284:975-88. [PMID: 9837720 DOI: 10.1006/jmbi.1998.2237] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The variety of biogenesis pathways for small nucleolar RNAs (snoRNAs) reflects the diversity of their genomic organization. We have searched for yeast snoRNAs which are affected by the depletion of the yeast ortholog of bacterial RNase III, Rnt1. In a yeast strain inactivated for RNT1, almost half of the snoRNAs tested are depleted with significant accumulation of monocistronic or polycistronic precursors. snoRNAs from both major families of snoRNAs (C/D and H/ACA) are affected by RNT1 disruption. In vitro, recombinant Rnt1 specifically cleaves pre-snoRNA precursors in the absence of other factors, generating intermediates which require the action of other enzymes for processing to the mature snoRNA. Most Rnt1 cleavage sites fall within potentially double-stranded regions closed by tetraloops with a novel consensus sequence AGNN. These results demonstrate that biogenesis of a large number of snoRNAs from the two major families of snoRNAs requires a common RNA endonuclease and a putative conserved structural motif.
Collapse
Affiliation(s)
- G Chanfreau
- Laboratoire du Métabolisme des ARN, URA1300 CNRS, Institut Pasteur, Département des Biotechnologies, 25 rue du Dr Roux, Paris Cedex 15, F-75724, France.
| | | | | |
Collapse
|
27
|
Ooi SL, Samarsky DA, Fournier MJ, Boeke JD. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA (NEW YORK, N.Y.) 1998; 4:1096-1110. [PMID: 9740128 PMCID: PMC1369685 DOI: 10.1017/s1355838298980785] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The eukaryotic small nucleolar RNAs (snoRNAs) are involved in processing of pre-rRNA and modification of rRNA nucleotides. Some snoRNAs are derived from mono- or polycistronic transcription units, whereas others are encoded in introns of protein genes. The present study addresses the role of the RNA lariat-debranching enzyme (Dbr1p) in the synthesis and function of intronic snoRNAs in the yeast Saccharomyces cerevisiae. Intronic snoRNA production was determined to depend on Dbr1p. Accumulation of mature intronic snoRNAs is reduced in a dbr1 mutant; instead, intronic snoRNAs are "trapped" within host intron lariats. Interestingly, the extent of intronic snoRNA accumulation in the form of lariats in dbr1 cells varied among different intronic snoRNAs. Intronic snoRNAs encoded within shorter introns, such as U24 and snR38, accumulate more unprocessed lariat precursors than those encoded within longer introns, e.g., U18 and snR39. This correlation was corroborated by experiments conducted with model intron:U24 snoRNA constructs. These results support a splicing-dependent exonucleolytic pathway for the biosynthesis of intronic snoRNAs. Curiously, U24 in a lariat may be functional in directing methylation of ribosomal RNA.
Collapse
Affiliation(s)
- S L Ooi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
28
|
Watkins NJ, Newman DR, Kuhn JF, Maxwell ES. In vitro assembly of the mouse U14 snoRNP core complex and identification of a 65-kDa box C/D-binding protein. RNA (NEW YORK, N.Y.) 1998; 4:582-93. [PMID: 9582099 PMCID: PMC1369641 DOI: 10.1017/s1355838298980128] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The eukaryotic nucleolus contains a diverse population of small nucleolar RNAs (snoRNAs) that have been categorized into two major families based on evolutionarily conserved sequence elements. U14 snoRNA is a member of the larger, box C/D snoRNA family and possesses nucleotide box C and D consensus sequences. In previous studies, we have defined a U14 box C/D core motif that is essential for intronic U14 snoRNA processing. These studies also revealed that nuclear proteins that recognize boxes C/D are required. We have now established an in vitro U14 snoRNP assembly system to characterize protein binding. Electrophoretic mobility-shift analysis demonstrated that all the sequences and structures of the box C/D core motif required for U14 processing are also necessary for protein binding and snoRNP assembly. These required elements include a base paired 5',3' terminal stem and the phylogenetically conserved nucleotides of boxes C and D. The ability of other box C/D snoRNAs to compete for protein binding demonstrated that the box C/D core motif-binding proteins are common to this family of snoRNAs. UV crosslinking of nuclear proteins bound to the U14 core motif identified a 65-kDa mouse snoRNP protein that requires boxes C and D for binding. Two additional core motif proteins of 55 and 50 kDa were also identified by biochemical fractionation of the in vitro-assembled U14 snoRNP complex. Thus, the U14 snoRNP core complex is a multiprotein particle whose assembly requires nucleotide boxes C and D.
Collapse
Affiliation(s)
- N J Watkins
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | | | |
Collapse
|
29
|
Intron-exon structures. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-5701(98)80020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Marusic L, Luzi E, Barsacchi G, Eckstein F. Intermolecular cleavage by the newt ribozyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:396-401. [PMID: 9249052 DOI: 10.1111/j.1432-1033.1997.00396.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To analyse the trans-cleavage activity of the hammerhead ribozyme occurring in the ovary of the newt (Notophthalmus, Triturus) in more detail, six synthetic ribozymes representing natural and modified hammerhead sequences were tested with both short oligoribonucleotides and long transcripts as substrates. The same analysis was also performed with the monomer (330 nucleotides) newt ribozyme and variants thereof. None of the ribozymes comprising the newt natural sequence showed activity under multiple turnover conditions, regardless of sequence changes in stem and loop II. With excess of ribozyme, the same ribozymes cleaved only to a limited extent a short substrate and extremely poorly a target site embedded within a long transcript. The addition of whole ovary cell extract had little influence on cleavage activity of short substrates. However, sequence changes in stems I and III to target different sequences considerably improved cleavage ability of the ribozymes under all conditions used. An RNA secondary-structure folding program showed that ribozymes with the natural newt sequence did not fold in a hammerhead structure whereas those with the changes in stem I and III did. These results suggest that the sequence of the stems I and III impairs the assembly of the newt ribozyme into a bimolecular hammerhead complex in vitro and that proteins present in the ovaries do not facilitate activity.
Collapse
Affiliation(s)
- L Marusic
- Laboratorio di Biologia Cellulare e dello Sviluppo, Università di Pisa, Italy
| | | | | | | |
Collapse
|
31
|
Abstract
Eukaryotic cells contain an extraordinarily complex population of small nucleolar RNAs (snoRNAs). During its brief lifetime, each human pre-rRNA molecule will transiently associate with approximately 150 different snoRNA species. In the past year our understanding of snoRNAs has been clarified by the recognition that the snoRNA population can be divided into a small number of groups which are structurally and functionally distinct. The two largest groups of snoRNAs direct the site-specific modification of the pre-rRNA at positions of 2'-O-methylation and pseudouridine formatio. Other groups of snoRNAs function in pre-rRNA cleavage and in the formation of the correct structure of the pre-rRNA.
Collapse
Affiliation(s)
- D Tollervey
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
32
|
Caffarelli E, Maggi L, Fatica A, Jiricny J, Bozzoni I. A novel Mn++-dependent ribonuclease that functions in U16 SnoRNA processing in X. laevis. Biochem Biophys Res Commun 1997; 233:514-7. [PMID: 9144568 DOI: 10.1006/bbrc.1997.6487] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intron-encoded U16 small nucleolar RNA (snoRNA) is a component of a new family of molecules which originate by processing of pre-mRNA in which they are contained. The mechanism of U16 snoRNA biosynthesis involves an initial step of endonucleolytic cleavage of the pre-mRNA with the release of a pre-snoRNA molecule; the subsequent step consists of exonucleolytic trimming that produces mature U16 molecules. In order to identify the molecular components involved in this peculiar biosynthetic pathway, we have undertaken the characterization of the endonucleolytic activity by biochemical fractionation of Xenopus laevis oocyte nuclear extract. In this paper we show the production of a protein fraction (BSF) which is highly enriched for a specific endonucleolytic activity that exactly reproduces the cleavage pattern of the U16-containing pre-mRNA identified in vivo in X. laevis oocytes and in unfractionated nuclear extract.
Collapse
Affiliation(s)
- E Caffarelli
- Centro Acidi Nucleici of C.N.R., Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
33
|
Minniti AN, Sadler C, Ward S. Genetic and molecular analysis of spe-27, a gene required for spermiogenesis in Caenorhabditis elegans hermaphrodites. Genetics 1996; 143:213-23. [PMID: 8722776 PMCID: PMC1207255 DOI: 10.1093/genetics/143.1.213] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hermaphrodites with mutations in the spe-27 gene are self-sterile, laying only unfertilized eggs; mutant males are fertile. Hermaphrodites make spermatids that fail to activate to crawling spermatozoa so passing oocytes sweep them out of the spermatheca. These spermatids do activate and produce self-progeny if young mutant hermaphrodites are mated by fertile (or sterile) males. Spermatids isolated from either mutant males or hermaphrodites initiate activation in vitro when treated with proteases, but then arrest with spiky membrane projections that resemble those of a normal intermediate in pseudopod formation. These phenotypes are identical to spe-8 and spe-12 mutants. They can be explained if males and hermaphrodites have distinct pathways for spermatid activation, and these three genes are necessary only for the hermaphrodite pathway. Consistent with this model, when spe-27 mutant male spermatids without seminal fluid are artificially inseminated into hermaphrodites, they fail to activate. The spe-27 gene has been isolated, sequenced and its regulatory regions identified. The sequence predicts a 131 amino acid polypeptide that has no striking structural motifs and no resemblance to known proteins. Two of the mutations in spe-27 alter mRNA splicing; a third mutation is a temperature-sensitive missense mutation.
Collapse
Affiliation(s)
- A N Minniti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
34
|
Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J 1996; 15:1121-31. [PMID: 8605882 PMCID: PMC450010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel class of small nucleolar RNAs (snoRNAs), encoded in introns of protein coding genes and originating from processing of their precursor molecules, has recently been described. The L1 ribosomal protein (r-protein) gene of Xenopus laevis and its human homologue contain two snoRNAs, U16 and U18. It has been shown that these snoRNAs are excised from their intron precursors by endonucleolytic cleavage and that their processing is alternative to splicing. Two sequences, internal to the snoRNA coding region, have been identified as indispensable for processing the conserved boxes C and D. Competition experiments have shown that these sequences interact with diffusible factors which can bind both the pre-mRNA and the mature U16 snoRNA. Fibrillarin, which is known to associate with complexes formed on C and D boxes of other snoRNAs, is found in association with mature U16 RNA, as well as with its precursor molecules. This fact suggests that the complex formed on the pre-mRNA remains bound to U16 throughout all the processing steps. We also show that the complex formed on the C and D boxes is necessary to stabilize mature snoRNA.
Collapse
Affiliation(s)
- E Caffarelli
- Centro Acidi Nucleici, CNR, Universita La Sapienza, Roma, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Watkins NJ, Leverette RD, Xia L, Andrews MT, Maxwell ES. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA (NEW YORK, N.Y.) 1996; 2:118-133. [PMID: 8601279 PMCID: PMC1369357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Essential elements for intronic U14 processing have been analyzed by microinjecting various mutant hsc70/Ul4 pre-mRNA precursors into Xenopus oocyte nuclei. Initial truncation experiments revealed that elements sufficient for U14 processing are located within the mature snoRNA sequence itself. Subsequent deletions within the U14 coding region demonstrated that only the terminal regions of the folded U14 molecule containing con- served nucleotide boxes C and D are required for processing. Mutagenesis of either box C or box D completely blocked U14 processing. The importance of boxes C and D was confirmed with the excision of appropriately sized U3 and U8 fragments containing boxes C and D from an hsc7O pre-mRNA intron. Competition studies indicate that a trans-acting factor (protein?) is binding this terminal motif and is essential for U14 processing. Competition studies also revealed that this factor is common to both intronic and non-intronic snoRNAs possessing nucleotide boxes C and D. Immunoprecipitation of full-length and internally deleted U14 snoRNA molecules demonstrated that the terminal region containing boxes C and D does not bind fibrillarin. Collectively, our results indicate that a trans-acting factor (different from fibrillarin) binds to the box C- and D-containing terminal motif of U14 snoRNA, thereby stabilizing the intronic snoRNA sequence in an RNP complex during processing.
Collapse
Affiliation(s)
- N J Watkins
- Department of Biochemistry, North Carolina State University, Raleigh, 27695-7622, USA
| | | | | | | | | |
Collapse
|
36
|
Cavaillé J, Bachellerie JP. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 1996; 78:443-56. [PMID: 8915534 DOI: 10.1016/0300-9084(96)84751-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleoli contain complex populations of small nucleolar RNAs (snoRNAs) likely to be involved in pre-rRNA processing and ribosome biogenesis. A growing family of snoRNAs which interacts with nucleolar protein fibrillarin is structurally related by the presence of long complementarities to rRNA (12 to 21 nucleotides) and of a pair of common sequence motifs, termed boxes C and D. All are encoded in introns and produced by processing of intronic RNA. We have analysed the mechanism of processing of one of these snoRNAs, U20, by transfection in mouse cells. We show here that the cis-acting signals for its processing are restricted to a minor portion of the mature snoRNA sequence. A terminal structure in which the two box motifs are brought in close vicinity by the pairing of the 5' and 3' terminal nucleotides is sufficient to direct faithful processing. Particularly, the key role of the terminal stem shared by most snoRNAs of this family is demonstrated by the effect of compensatory mutations. Our results also indicate that faithful processing at both ends of the snoRNA can be uncoupled and that it is not strictly dependent on pre-mRNA splicing. Finally, our data point to the exclusive involvement of 5'-->3' and 3'-->5' exonucleolytic activities in the processing of intronic snoRNAs of this family.
Collapse
Affiliation(s)
- J Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | |
Collapse
|
37
|
Lafontaine D, Tollervey D. Trans-acting factors in yeast pre-rRNA and pre-snoRNA processing. Biochem Cell Biol 1995; 73:803-12. [PMID: 8721996 DOI: 10.1139/o95-088] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major intermediates in the pathway of pre-rRNA processing in yeast and other eukaryotes were originally identified by biochemical analyses. However, as a result of the analysis of the effects of mutations in trans-acting factors, the yeast pre-rRNA processing pathway is now characterized in far more detail than that of other eukaryotes. These analyses have led to the identification of processing sites and intermediates that were either too close in size or too short lived to detected by biochemical analyses alone. In addition, it was generally unclear whether pre-rRNA processing steps were endonucleolytic or exonucleolytic; analyses of trans-acting factors is now revealing a complex mixture of endonucleolytic and exonucleolytic processing steps. Many of the small nucleolar RNAs (snoRNAs) are excised from larger precursors. Analyses of trans-acting factors are also revealing details of pre-snoRNA processing in yeast. Interestingly, factors involved in pre-snoRNA processing turn out to be components that also function in pre-rRNA processing, suggesting a potential mechanism for the coregulation of rRNA and snoRNA synthesis. In general, very little is known about the regulation of pre-rRNA processing steps. The best candidate for a system regulating specific pre-rRNA processing reactions has recently been revealed by the analysis of a yeast pre-RNA methylase. Here we will review recent data on the trans-acting factors involved in yeast ribosome synthesis and discuss how these analyses have contributed to our current view of this complex process.
Collapse
Affiliation(s)
- D Lafontaine
- European Molecular Biology Laboratory (EMBL), Postfach 10 22 09, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
38
|
Abstract
A growing list of small nucleolar RNAs (snoRNAs) has been characterized in eukaryotes. They are transcribed by RNA polymerase II or III; some snoRNAs are encoded in the introns of other genes. The nonintronic polymerase II transcribed snoRNAs receive a trimethylguanosine cap, probably in the nucleus, and move to the nucleolus. snoRNAs are complexed with proteins, sometimes including fibrillarin. Localization and maintenance in the nucleolus of some snoRNAs requires the presence of initial precursor rRNA (pre-rRNA). Many snoRNAs have conserved sequence boxes C and D and a 3' terminal stem; the role of these features are discussed. Functional assays done for a few snoRNAs indicate their roles in rRNA processing for cleavage of the external and internal transcribed spacers (ETS and ITS). U3 is the most abundant snoRNA and is needed for cleavage of ETS1 and ITS1; experimental results on U3 binding sites in pre-rRNA are reviewed. 18S rRNA production also needs U14, U22, and snR30 snoRNAs, whereas U8 snoRNA is needed for 5.8S and 28S rRNA production. Other snoRNAs that are complementary to 18S or 28S rRNA might act as chaperones to mediate RNA folding. Whether snoRNAs join together in a large rRNA processing complex (the "processome") is not yet clear. It has been hypothesized that such complexes could anchor the ends of loops in pre-rRNA containing 18S or 28S rRNA, thereby replacing base-paired stems found in pre-rRNA of prokaryotes.
Collapse
|
39
|
Prislei S, Fatica A, De Gregorio E, Arese M, Fragapane P, Caffarelli E, Presutti C, Bozzoni I. Self-cleaving motifs are found in close proximity to the sites utilized for U16 snoRNA processing. Gene 1995; 163:221-6. [PMID: 7590270 DOI: 10.1016/0378-1119(95)00344-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A class of small nucleolar RNAs (snoRNAs) is encoded in introns of protein-coding genes. The U16 snoRNA belongs to this class; it is encoded in the third intron of the Xenopus laevis (Xl) L1 ribosomal protein encoding gene and is released from the pre-mRNA by processing both in vivo and in vitro systems. In this paper, we show that in close proximity to the U16 snoRNA processing sites, sequences displaying self-cleaving activity are present. These elements are conserved in the two copies of the Xl L1 and in the single copy of the X. tropicalis L1. The catalytic activity corresponds to that already described for the minimal hairpin ribozyme [Dange et al., Science 242 (1990) 585-588]; it is Mn(2+)-dependent, produces 2'-3' cyclic phosphate and 5'-OH termini and comprises an essential GAAA element. Here we show that the 2'-OH group of the G residue is essential for catalysis.
Collapse
Affiliation(s)
- S Prislei
- Istituto Pasteur Fondazione Cenci-Bolognetti, Università La Sapienza, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|