1
|
Cuarenta A. Retrotransposons and the brain: Exploring a complex relationship between mobile elements, stress, and neurological health. Neurobiol Stress 2025; 34:100709. [PMID: 39927173 PMCID: PMC11803260 DOI: 10.1016/j.ynstr.2025.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Environmental experiences during early life, including stress, can significantly impact brain development and behavior. Early life stress (ELS) is linked to an increased risk for various psychiatric disorders including anxiety, depression, and substance use disorders. Epigenetic mechanisms have increasingly been of interest to understand how environmental factors contribute to reprogramming the brain and alter risk and resilience to developing psychiatric disorders. However, we know very little about mobile elements or the regulation of mobile elements and their contribution to psychiatric disorders. Recently, advances in genomics have contributed to our understanding of mobile elements, including the retrotransposon LINE-1 (L1) and their potential role in mediating environmental experiences. Yet we still do not understand how these elements may contribute to psychiatric disorders. Future research leveraging cutting-edge technologies will deepen our understanding of these mobile elements. By elucidating their role in development and how stress may impact them, we may unlock new avenues for therapeutic and diagnostic innovations.
Collapse
Affiliation(s)
- Amelia Cuarenta
- Neuroscience Institute and the Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
2
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
3
|
Liu Q, Yi D, Ding J, Mao Y, Wang S, Ma L, Li Q, Wang J, Zhang Y, Zhao J, Guo S, Liu Z, Guo F, Zhao D, Liang C, Li X, Peng X, Cen S. MOV10 recruits DCP2 to decap human LINE-1 RNA by forming large cytoplasmic granules with phase separation properties. EMBO Rep 2023; 24:e56512. [PMID: 37437058 PMCID: PMC10481665 DOI: 10.15252/embr.202256512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Long interspersed element 1 (LINE-1) is the only active autonomous mobile element in the human genome. Its transposition can exert deleterious effects on the structure and function of the host genome and cause sporadic genetic diseases. Tight control of LINE-1 mobilization by the host is crucial for genetic stability. In this study, we report that MOV10 recruits the main decapping enzyme DCP2 to LINE-1 RNA and forms a complex of MOV10, DCP2, and LINE-1 RNP, exhibiting liquid-liquid phase separation (LLPS) properties. DCP2 cooperates with MOV10 to decap LINE-1 RNA, which causes degradation of LINE-1 RNA and thus reduces LINE-1 retrotransposition. We here identify DCP2 as one of the key effector proteins determining LINE-1 replication, and elucidate an LLPS mechanism that facilitates the anti-LINE-1 action of MOV10 and DCP2.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Dongrong Yi
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jiwei Ding
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Yang Mao
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Shujie Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Ling Ma
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Quanjie Li
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jing Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Yongxin Zhang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jianyuan Zhao
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Saisai Guo
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealQCCanada
| | - Fei Guo
- Institute of Pathogen BiologyChinese Academy of Medical ScienceBeijingChina
| | - Dongbing Zhao
- National Cancer CenterChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Chen Liang
- Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealQCCanada
| | - Xiaoyu Li
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Shan Cen
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| |
Collapse
|
4
|
Hepatitis C virus infection restricts human LINE-1 retrotransposition in hepatoma cells. PLoS Pathog 2021; 17:e1009496. [PMID: 33872335 PMCID: PMC8084336 DOI: 10.1371/journal.ppat.1009496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules. Members of the Long Interspersed Nuclear Element 1 (LINE-1, L1) class of retrotransposons account for ~17% of the human genome and include ~100–150 intact L1 loci that are still functional. L1 mobilization is known to affect genomic integrity, thereby leading to disease-causing mutations, but little is known about the impact of exogenous viral infections on L1 and vice versa. While L1 retrotransposition is controlled by various mechanisms including CpG methylation, hypomethylation of L1 has been observed in hepatocellular carcinoma tissues of hepatitis C virus (HCV)-infected patients. Here, we demonstrate molecular interactions between HCV and L1 elements. HCV infection stably increases cellular levels of the L1-encoded ORF1 protein (L1ORF1p). HCV core and L1ORF1p interact in ribonucleoprotein complexes that traffic to lipid droplets. Despite its redistribution to HCV assembly sites, L1ORF1p is dispensable for HCV infection. In contrast, retrotransposition of engineered L1 reporter elements is restricted by HCV, correlating with an increased formation of L1ORF1p-containing cytoplasmic stress granules. Thus, our data provide first insights into the molecular interplay of endogenous transposable elements and exogenous viruses that might contribute to disease progression in vivo.
Collapse
|
5
|
Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front Immunol 2020; 11:593891. [PMID: 33281822 PMCID: PMC7691656 DOI: 10.3389/fimmu.2020.593891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
More than 200 human disorders include various manifestations of autoimmunity. The molecular events that lead to these diseases are still incompletely understood and their causes remain largely unknown. Numerous potential triggers of autoimmunity have been proposed over the years, but very few of them have been conclusively confirmed or firmly refuted. Viruses have topped the lists of suspects for decades, and it seems that many viruses, including those of the Herpesviridae family, indeed can influence disease initiation and/or promote exacerbations by a number of mechanisms that include prolonged anti-viral immunity, immune subverting factors, and mechanisms, and perhaps “molecular mimicry”. However, no specific virus has yet been established as being truly causative. Here, we discuss a different, but perhaps mechanistically related possibility, namely that retrotransposons or retroviruses that infected us in the past and left a lasting copy of themselves in our genome still can provoke an escalating immune response that leads to autoimmune disease. Many of these loci still encode for retroviral proteins that have retained some, or all, of their original functions. Importantly, these endogenous proviruses cannot be eliminated by the immune system the way it can eliminate exogenous viruses. Hence, if not properly controlled, they may drive a frustrated and escalating chronic, or episodic, immune response to the point of a frank autoimmune disorder. Here, we discuss the evidence and the proposed mechanisms, and assess the therapeutic options that emerge from the current understanding of this field.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kennedy C Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
7
|
Malicki M, Spaller T, Winckler T, Hammann C. DIRS retrotransposons amplify via linear, single-stranded cDNA intermediates. Nucleic Acids Res 2020; 48:4230-4243. [PMID: 32170321 PMCID: PMC7192593 DOI: 10.1093/nar/gkaa160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
The Dictyostelium Intermediate Repeat Sequence 1 (DIRS-1) is the name-giving member of the DIRS order of tyrosine recombinase retrotransposons. In Dictyostelium discoideum, DIRS-1 is highly amplified and enriched in heterochromatic centromers of the D. discoideum genome. We show here that DIRS-1 it tightly controlled by the D. discoideum RNA interference machinery and is only mobilized in mutants lacking either the RNA dependent RNA polymerase RrpC or the Argonaute protein AgnA. DIRS retrotransposons contain an internal complementary region (ICR) that is thought to be required to reconstitute a full-length element from incomplete RNA transcripts. Using different versions of D. discoideum DIRS-1 equipped with retrotransposition marker genes, we show experimentally that the ICR is in fact essential to complete retrotransposition. We further show that DIRS-1 produces a mixture of single-stranded, mostly linear extrachromosomal cDNA intermediates. If this cDNA is isolated and transformed into D. discoideum cells, it can be used by DIRS-1 proteins to complete productive retrotransposition. This work provides the first experimental evidence to propose a general retrotransposition mechanism of the class of DIRS like tyrosine recombinase retrotransposons.
Collapse
Affiliation(s)
- Marek Malicki
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, DE 28759 Bremen, Germany
| | - Thomas Spaller
- Institute of Pharmacy, Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, DE 07743 Jena, Germany
| | - Thomas Winckler
- Institute of Pharmacy, Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, DE 07743 Jena, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, DE 28759 Bremen, Germany
| |
Collapse
|
8
|
LINE-1 specific nuclear organization in mice olfactory sensory neurons. Mol Cell Neurosci 2020; 105:103494. [PMID: 32387751 DOI: 10.1016/j.mcn.2020.103494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022] Open
Abstract
Long interspersed nuclear elements-1 (LINE-1) are mobile DNA elements that comprise the majority of interspersed repeats in the mammalian genome. During the last decade, these transposable sequences have been described as controlling elements involved in transcriptional regulation and genome plasticity. Recently, LINE-1 have been implicated in neurogenesis, but to date little is known about their nuclear organization in neurons. The olfactory epithelium is a site of continuous neurogenesis, and loci of olfactory receptor genes are enriched in LINE-1 copies. Olfactory neurons have a unique inverted nuclear architecture and constitutive heterochromatin forms a block in the center of the nuclei. Our DNA FISH images show that, even though LINE-1 copies are dispersed throughout the mice genome, they are clustered forming a cap around the central heterochromatin block and frequently occupy the same position as facultative heterochromatin in olfactory neurons nuclei. This specific LINE-1 organization could not be observed in other olfactory epithelium cell types. Analyses of H3K27me3 and H3K9me3 ChIP-seq data from olfactory epithelium revealed that LINE-1 copies located at OR gene loci show different enrichment for these heterochromatin marks. We also found that LINE-1 are transcribed in mouse olfactory epithelium. These results suggest that LINE-1 play a role in the olfactory neurons' nuclear architecture. SIGNIFICANCE STATEMENT: LINE-1 are mobile DNA elements and comprise almost 20% of mice and human genomes. These retrotransposons have been implicated in neurogenesis. We show for the first time that LINE-1 retrotransposons have a specific nuclear organization in olfactory neurons, forming aggregates concentric to the heterochromatin block and frequently occupying the same region as facultative heterochromatin. We found that LINE-1 at olfactory receptor gene loci are differently enriched for H3K9me3 and H3K27me3, but LINE-1 transcripts could be detected in the olfactory epithelium. We speculate that these retrotransposons play an active role in olfactory neurons' nuclear architecture.
Collapse
|
9
|
Mustelin T, Lood C, Giltiay NV. Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1028. [PMID: 31139185 PMCID: PMC6519310 DOI: 10.3389/fimmu.2019.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct "endotypes" of SLE, each with its distinct therapeutic choices.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
10
|
Fung L, Guzman H, Sevrioukov E, Idica A, Park E, Bochnakian A, Daugaard I, Jury D, Mortazavi A, Zisoulis DG, Pedersen IM. miR-128 Restriction of LINE-1 (L1) Retrotransposition Is Dependent on Targeting hnRNPA1 mRNA. Int J Mol Sci 2019; 20:E1955. [PMID: 31010097 PMCID: PMC6515209 DOI: 10.3390/ijms20081955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
The majority of the human genome is made of transposable elements, giving rise to interspaced repeats, including Long INterspersed Element-1s (LINE-1s or L1s). L1s are active human transposable elements involved in genomic diversity and evolution; however, they can also contribute to genomic instability and diseases. L1s require host factors to complete their life cycles, whereas the host has evolved numerous mechanisms to restrict L1-induced mutagenesis. Restriction mechanisms in somatic cells include methylation of the L1 promoter, anti-viral factors and RNA-mediated processes such as small RNAs. microRNAs (miRNAs or miRs) are small non-coding RNAs that post-transcriptionally repress multiple target genes often found in the same cellular pathways. We have recently established that miR-128 functions as a novel restriction factor inhibiting L1 mobilization in somatic cells. We have further demonstrated that miR-128 functions through a dual mechanism; by directly targeting L1 RNA for degradation and indirectly by inhibiting a cellular co-factor which L1 is dependent on to transpose to new genomic locations (TNPO1). Here, we add another piece to the puzzle of the enigmatic L1 lifecycle. We show that miR-128 also inhibits another key cellular factor, hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), by significantly reducing mRNA and protein levels through direct interaction with the coding sequence (CDS) of hnRNPA1 mRNA. In addition, we demonstrate that repression of hnRNPA1 using hnRNPA1-shRNA significantly decreases de novo L1 retro-transposition and that induced hnRNPA1 expression enhances L1 mobilization. Furthermore, we establish that hnRNPA1 is a functional target of miR-128. Finally, we determine that induced hnRNPA1 expression in miR-128-overexpressing cells can partly rescue the miR-128-induced repression of L1's ability to transpose to different genomic locations. Thus, we have identified an additional mechanism by which miR-128 represses L1 retro-transposition and mediates genomic stability.
Collapse
Affiliation(s)
- Lianna Fung
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Herlinda Guzman
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Evgueni Sevrioukov
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Adam Idica
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Eddie Park
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
| | - Aurore Bochnakian
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Iben Daugaard
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Douglas Jury
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
| | - Dimitrios G Zisoulis
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| | - Irene M Pedersen
- Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Reamtong O, Rujimongkon K, Sookrung N, Saeung A, Thiangtrongjit T, Sakolvaree Y, Thammapalo S, Loymek S, Chaicumpa W. Immunome and immune complex-forming components of Brugia malayi identified by microfilaremic human sera. Exp Parasitol 2019; 200:92-98. [PMID: 30991039 DOI: 10.1016/j.exppara.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022]
Abstract
Adult Brugia malayi proteins with high potential as epidemiological markers, diagnostic and therapeutic targets, and/or vaccine candidates were revealed by using microfilaremic human sera and an immunoproteomic approach. They were HSP70, cytoplasmic intermediate filament protein, independent phosphoglycerate mutase, and enolase. Brugia malayi microfilaria-specific proteins that formed circulating immune complexes (ICs) were investigated. The IC-forming proteins were orthologues of hypothetical protein Bm1_12480, Pao retrotransposon peptidase family protein, uncoordinated protein 44, NAD-binding domain containing protein of the UDP-glucose/GDP-mannose dehydrogenase family which contained ankyrin repeat region, ZU5 domain with C-terminal death domain, C2 domain containing protein, and FLJ90013 protein of the eukaryotic membrane protein family. Antibodies to these proteins were not free in the microfilaremic sera, raising the possible role of the IC-forming proteins in an immune evasion mechanism of the circulating microfilariae to avoid antibody-mediated-host immunity. Moreover, detection of these ICs should be able to replace the inconvenient night blood sampling for microfilaria in an evaluation of efficacy of anti-microfilarial agents.
Collapse
Affiliation(s)
- Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kitiya Rujimongkon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubation Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Atiporn Saeung
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yuwaporn Sakolvaree
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suwich Thammapalo
- The Office of Disease Prevention and Control 12, Songkhla, 90000, Thailand
| | - Sumat Loymek
- The Office of Disease Prevention and Control 12, Songkhla, 90000, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
12
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
13
|
Orqueda AJ, Gatti CR, Ogara MF, Falzone TL. SOX-11 regulates LINE-1 retrotransposon activity during neuronal differentiation. FEBS Lett 2018; 592:3708-3719. [PMID: 30276805 DOI: 10.1002/1873-3468.13260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/25/2023]
Abstract
Activity of the human long interspersed nuclear elements-1 (LINE-1) retrotransposon occurs mainly in early embryonic development and during hippocampal neurogenesis. SOX-11, a transcription factor relevant to neuronal development, has unknown functions in the control of LINE-1 retrotransposon activity during neuronal differentiation. To study the dependence of LINE-1 activity on SOX-11 during neuronal differentiation, we induced differentiation of human SH-SY5Y neuroblastoma cells and adult adipose mesenchymal stem cells (hASCs) to a neuronal fate and found increased LINE-1 activity. We also show that SOX-11 protein binding to the LINE-1 promoter is higher in differentiating neuroblastoma cells, while knock-down of SOX-11 inhibits the induction of LINE-1 transcription in differentiating conditions. These results suggest that activation of LINE-1 retrotransposition during neuronal differentiation is mediated by SOX-11.
Collapse
Affiliation(s)
- Andrés J Orqueda
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hospital Italiano de Buenos Aires e Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
| | - Cintia R Gatti
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hospital Italiano de Buenos Aires e Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
| | - María F Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), FCEN, UBA, Buenos Aires, Argentina
| | - Tomás L Falzone
- Instituto de Biología Celular y Neurociencias (IBCN-CONICET-UBA), Facultad de Medicina, UBA, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Transposons, p53 and Genome Security. Trends Genet 2018; 34:846-855. [PMID: 30195581 DOI: 10.1016/j.tig.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
p53, the most commonly mutated tumor suppressor, is a transcription factor known to regulate proliferation, senescence, and apoptosis. Compelling studies have found that p53 may prevent oncogenesis through effectors that are unrelated to these canonical processes and recent findings have uncovered ancient roles for p53 in the containment of mobile elements. Together, these developments raise the possibility that some p53-driven cancers could result from unrestrained transposons. Here, we explore evidence linking conserved features of p53 biology to the control of transposons. We also show how p53-deficient cells can be exploited to probe the behavior of transposons and illustrate how unrestrained transposons incited by p53 loss might contribute to human malignancies.
Collapse
|
15
|
Keskin H, Storici F. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template. Methods Enzymol 2018. [PMID: 29523242 DOI: 10.1016/bs.mie.2017.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells.
Collapse
Affiliation(s)
- Havva Keskin
- Georgia Institute of Technology, Atlanta, GA, United States
| | | |
Collapse
|
16
|
Kopera HC, Flasch DA, Nakamura M, Miyoshi T, Doucet AJ, Moran JV. LEAP: L1 Element Amplification Protocol. Methods Mol Biol 2016; 1400:339-55. [PMID: 26895063 DOI: 10.1007/978-1-4939-3372-3_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that are required for retrotransposition. The L1 element amplification protocol (LEAP) assays the ability of L1 ORF2p to reverse transcribe L1 RNA in vitro. Ultracentrifugation or immunoprecipitation is used to isolate L1 ribonucleoprotein particle (RNP) complexes from cultured human cells transfected with an engineered L1 expression construct. The isolated RNPs are incubated with an oligonucleotide that contains a unique sequence at its 5' end and a thymidine-rich sequence at its 3' end. The addition of dNTPs to the reaction allows L1 ORF2p bound to L1 RNA to generate L1 cDNA. The resultant L1 cDNAs then are amplified using polymerase chain reaction (PCR) and the products are visualized by gel electrophoresis. Sequencing the resultant PCR products then allows product verification. The LEAP assay has been instrumental in determining how mutations in L1 ORF1p and ORF2p affect L1 reverse transcriptase (RT) activity. Furthermore, the LEAP assay has revealed that the L1 ORF2p RT can extend a DNA primer with mismatched 3' terminal bases when it is annealed to an L1 RNA template. As the LINE-1 biology field gravitates toward studying cellular proteins that regulate LINE-1, molecular genetic and biochemical approaches such as LEAP, in conjunction with the LINE-1-cultured cell retrotransposition assay, are essential to dissect the molecular mechanism of L1 retrotransposition.
Collapse
Affiliation(s)
- Huira C Kopera
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA.
| | - Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - Mitsuhiro Nakamura
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - Tomoichiro Miyoshi
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - Aurélien J Doucet
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA. .,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Hayashi M, Maehara K, Harada A, Semba Y, Kudo K, Takahashi H, Oki S, Meno C, Ichiyanagi K, Akashi K, Ohkawa Y. Chd5 Regulates MuERV-L/MERVL Expression in Mouse Embryonic Stem Cells Via H3K27me3 Modification and Histone H3.1/H3.2. J Cell Biochem 2015; 117:780-92. [PMID: 26359639 DOI: 10.1002/jcb.25368] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022]
Abstract
Chd5 is an essential factor for neuronal differentiation and spermatogenesis and is a known tumor suppressor. H3K27me3 and H3K4un are modifications recognized by Chd5; however, it remains unclear how Chd5 remodels chromatin structure. We completely disrupted the Chd5 locus using the CRISPR-Cas9 system to generate a 52 kbp long deletion and analyzed Chd5 function in mouse embryonic stem cells. Our findings show that Chd5 represses murine endogenous retrovirus-L (MuERV-L/MERVL), an endogenous retrovirus-derived retrotransposon, by regulating H3K27me3 and H3.1/H3.2 function.
Collapse
Affiliation(s)
- Masayasu Hayashi
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Akihito Harada
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichiro Semba
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kensuke Kudo
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Hokkaido 060-8638, Japan
| | - Shinya Oki
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Ichiyanagi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
Moldovan JB, Moran JV. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet 2015; 11:e1005121. [PMID: 25951186 PMCID: PMC4423928 DOI: 10.1371/journal.pgen.1005121] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements. Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. L1s comprise ~17% of human DNA and it is estimated that an average human genome has ~80–100 active L1s. L1 moves throughout the genome via a “copy-and-paste” mechanism known as retrotransposition. L1 retrotransposition is known to cause mutations; thus, it stands to reason that the host cell has evolved mechanisms to protect the cell from unabated retrotransposition. Here, we demonstrate that the zinc-finger antiviral protein (ZAP) inhibits the retrotransposition of human L1 and Alu retrotransposons, as well as related retrotransposons from mice and zebrafish. Biochemical and genetic data suggest that ZAP interacts with L1 RNA. Fluorescent microscopy demonstrates that ZAP associates with L1 in cytoplasmic foci that co-localize with stress granule proteins. Mechanistic analyses suggest that ZAP reduces the expression of full-length L1 RNA and the L1-encoded proteins, thereby providing mechanistic insight for how ZAP may restricts retrotransposition. Importantly, these data suggest that ZAP initially may have evolved to combat endogenous retrotransposons and subsequently was co-opted as a viral restriction factor.
Collapse
Affiliation(s)
- John B. Moldovan
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| | - John V. Moran
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| |
Collapse
|
19
|
Rajan KS, Ramasamy S. Retrotransposons and piRNA: The missing link in central nervous system. Neurochem Int 2014; 77:94-102. [DOI: 10.1016/j.neuint.2014.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/25/2014] [Accepted: 05/29/2014] [Indexed: 01/17/2023]
|
20
|
Abstract
Homologous recombination (HR) is a molecular process that plays multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life1. Generally, HR involves exchange of genetic information between two identical or nearly identical DNA molecules1; however, HR can also occur between RNA molecules, as shown for RNA viruses2. Previous research showed that synthetic RNA oligonucleotides (oligos) can template DNA double-strand break (DSB) repair in yeast and human cells3,4, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements5. Here we report that endogenous transcript RNA mediates HR with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect events of HR initiated by transcript RNA following repair of a chromosomal DSB occurring either in a homologous but remote locus (in trans), or in the same transcript-generating locus (in cis) in reverse transcription defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases (RNases) H1 and H2. In the presence of RNases H, DSB repair proceeds through a cDNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in cis facilitates Rad52-driven HR during DSB repair. In accord, we demonstrate that yeast and human Rad52 proteins efficiently catalyze annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of HR and DNA repair templated by transcript RNA. Thus, considering the abundance of RNA transcripts in cells, the impact of RNA on genomic stability and plasticity could be vast.
Collapse
|
21
|
Abstract
Long interspersed element-1 (LINE-1 or L1) is a repetitive DNA retrotransposon capable of duplication by a copy-and-paste genetic mechanism. Scattered throughout mammalian genomes, L1 is typically quiescent in most somatic cell types. In developing neurons, however, L1 can express and retrotranspose at high frequency. The L1 element can insert into various genomic locations including intragenic regions. These insertions can alter the dynamic of the neuronal transcriptome by changing the expression pattern of several nearby genes. The consequences of L1 genomic alterations in somatic cells are still under investigation, but the high level of mutagenesis within neurons suggests that each neuron is genetically unique. Furthermore, some neurological diseases, such as Rett syndrome and ataxia telangiectasia, misregulate L1 retrotransposition, which could contribute to some pathological aspects. In this review, we survey the literature related to neurodevelopmental retrotransposition and discuss possible relevance to neuronal function, evolution, and neurological disease.
Collapse
Affiliation(s)
- Charles A Thomas
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
22
|
Novikova O, Papusheva E, Ponimaskin E, Blinov A. A retroposition assay for the NLR1Cth from midge Chironomus thummi genome in the Chinese hamster ovary cells. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411060147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
|
24
|
Abstract
Long interspersed nucleotide element (LINE)-1 retrotransposon (L1) has emerged as the largest contributor to mammalian genome mass, responsible for over 35% of the human genome. Differences in the number and activity levels of L1s contribute to interindividual variation in humans, both by affecting an individual's likelihood of acquiring new L1-mediated mutations, as well as by differentially modifying gene expression. Here, we report on recent progress in understanding L1 biology, with a focus on mechanisms of L1-mediated disease. We discuss known details of L1 life cycle, including L1 structure, transcriptional regulation, and the mechanisms of translation and retrotransposition. Current views on cell type specificity, timing, and control of retrotransposition are put forth. Finally, we discuss the role of L1 as a mutagen, using the latest findings in L1 biology to illuminate molecular mechanisms of L1-mediated gene disruption.
Collapse
Affiliation(s)
- Daria V Babushok
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6145, USA
| | | |
Collapse
|
25
|
Garfinkel DJ. Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 2005; 110:63-9. [PMID: 16093659 DOI: 10.1159/000084939] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/03/2003] [Indexed: 11/19/2022] Open
Abstract
How mobile genetic elements molded eukaryotic genomes is a key evolutionary question that gained wider popularity when mobile DNA sequences were shown to comprise about half of the human genome. Although Saccharomyces cerevisiae does not suffer such "genome obesity", five families of LTR-retrotransposons, Ty1, Ty2, Ty3, Ty4, and Ty5 elements, comprise about 3% of its genome. The availability of complete genome sequences from several Saccharomyces species, including members of the closely related sensu stricto group, present new opportunities for analyzing molecular mechanisms for chromosome evolution, speciation, and reproductive isolation. In this review I present key experiments from both the pre- and current genomic sequencing eras suggesting how Ty elements mediate genome evolution.
Collapse
Affiliation(s)
- D J Garfinkel
- National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
26
|
Audrézet MP, Chen JM, Raguénès O, Chuzhanova N, Giteau K, Le Maréchal C, Quéré I, Cooper DN, Férec C. Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat 2004; 23:343-57. [PMID: 15024729 DOI: 10.1002/humu.20009] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR/ABCC7). Despite the extensive and enduring efforts of many CF researchers over the past 14 years, up to 30% of disease alleles still remain to be identified in some populations. It has long been suggested that gross genomic rearrangements could account for these unidentified alleles. To date, however, only a few large deletions have been found in the CFTR gene and only three have been fully characterized. Here, we report the first systematic screening of the 27 exons of the CFTR gene for large genomic rearrangements, by means of the quantitative multiplex PCR of short fluorescent fragments (QMPSF). A well-characterized cohort of 39 classical CF patients carrying at least one unidentified allele (after extensive and complete screening of the CFTR gene by both denaturing gradient gel electrophoresis and denaturing high-performance liquid chromatography) participated in this study. Using QMPSF, some 16% of the previously unidentified CF mutant alleles were identified and characterized, including five novel mutations (one large deletion and four indels). The breakpoints of these five mutations were precisely determined, enabling us to explore the underlying mechanisms of mutagenesis. Although non-homologous recombination may be invoked to explain all five complex lesions, each mutation appears to have arisen through a different mechanism. One of the indels was highly unusual in that it involved the insertion of a short 41 bp sequence with partial homology to a retrotranspositionally-competent LINE-1 element. The insertion of this ultra-short LINE-1 element (dubbed a "hyphen element") may constitute a novel type of mutation associated with human genetic disease.
Collapse
Affiliation(s)
- Marie-Pierre Audrézet
- INSERM U613, Génétique Moléculaire et Génétique Epidémiologique, Centre Hospitalier Universitaire, Brest, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
28
|
Haas NB, Grabowski JM, North J, Moran JV, Kazazian HH, Burch JB. Subfamilies of CR1 non-LTR retrotransposons have different 5'UTR sequences but are otherwise conserved. Gene 2001; 265:175-83. [PMID: 11255020 DOI: 10.1016/s0378-1119(01)00344-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CR1 elements and CR1-related (CR1-like) elements are a novel family of non-LTR retrotransposons that are found in all vertebrates (reptilia, amphibia, fish, and mammals), whereas more distantly related elements are found in several invertebrate species. CR1 elements have several features that distinguish them from other non-LTR retrotransposons. Most notably, their 3' termini lack a polyadenylic acid (poly A) tail and instead contain 2-4 copies of a unique 8 bp repeat. CR1 elements are present at approximately 100,000 copies in the chicken genome. The vast majority of these elements are severely 5' truncated and mutated; however, six subfamilies (CR1-A through CR1-F) are resolved by sequence comparisons. One of these subfamilies (i.e. CR1-B) previously was analyzed in detail. In the present study, we identified several full-length elements from the CR1-F subfamily. Although regions within the open reading frames and 3' untranslated regions of CR1-F and CR1-B elements are well conserved, their respective 5' untranslated regions are unrelated. Thus, our results suggest that new CR1 subfamilies form when elements with intact open reading frames acquire new 5' UTRs, which could, in principle, function as promoters.
Collapse
Affiliation(s)
- N B Haas
- Fox Chase Cancer Center, 19111, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mashkova TD, Oparina NY, Lacroix MH, Fedorova LI, G Tumeneva I, Zinovieva OL, Kisselev LL. Structural rearrangements and insertions of dispersed elements in pericentromeric alpha satellites occur preferably at kinkable DNA sites. J Mol Biol 2001; 305:33-48. [PMID: 11114245 DOI: 10.1006/jmbi.2000.4270] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Centromeric region of human chromosome 21 comprises two long alphoid DNA arrays: the well homogenized and CENP-B box-rich alpha21-I and the alpha21-II, containing a set of less homogenized and CENP-B box-poor subfamilies located closer to the short arm of the chromosome. Continuous alphoid fragment of 100 monomers bordering the non-satellite sequences in human chromosome 21 was mapped to the pericentromeric short arm region by fluorescence in situ hybridization (alpha21-II locus). The alphoid sequence contained several rearrangements including five large deletions within monomers and insertions of three truncated L1 elements. No binding sites for centromeric protein CENP-B were found. We analyzed sequences with alphoid/non-alphoid junctions selectively screened from current databases and revealed various rearrangements disrupting the regular tandem alphoid structure, namely, deletions, duplications, inversions, expansions of short oligonucleotide motifs and insertions of different dispersed elements. The detailed analysis of more than 1100 alphoid monomers from junction regions showed that the vast majority of structural alterations and joinings with non-alphoid DNAs occur in alpha satellite families lacking CENP-B boxes. Most analyzed events were found in sequences located toward the edges of the centromeric alphoid arrays. Different dispersed elements were inserted into alphoid DNA at kinkable dinucleotides (TG, CA or TA) situated between pyrimidine/purine tracks. DNA rearrangements resulting from different processes such as recombination and replication occur at kinkable DNA sites alike insertions but irrespectively of the occurrence of pyrimidine/purine tracks. It seems that kinkable dinucleotides TG, CA and TA are part of recognition signals for many proteins involved in recombination, replication, and insertional events. Alphoid DNA is a good model for studying these processes.
Collapse
MESH Headings
- Alu Elements/genetics
- Autoantigens
- Base Sequence
- Binding Sites
- Centromere/chemistry
- Centromere/genetics
- Centromere/metabolism
- Centromere Protein B
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Deletion
- Chromosome Inversion
- Chromosomes, Human, Pair 21/chemistry
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Computational Biology
- Crossing Over, Genetic/genetics
- DNA Replication/genetics
- DNA, Satellite/chemistry
- DNA, Satellite/genetics
- DNA, Satellite/metabolism
- DNA-Binding Proteins
- Databases as Topic
- Dinucleotide Repeats/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Lymphocytes
- Mutagenesis, Insertional/genetics
- Mutation/genetics
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Recombination, Genetic/genetics
Collapse
Affiliation(s)
- T D Mashkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Str., Moscow, 117984, Russia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Genomic DNA is often thought of as the stable template of heredity, largely dormant and unchanging, apart from perhaps the occasional point mutation. But it has become increasingly clear that DNA is dynamic rather than static, being subjected to rearrangements, insertions and deletions. Much of this plasticity can be attributed to transposable elements and their genomic relatives.
Collapse
Affiliation(s)
- E T Prak
- Department of Genetics, 475 Clinical Research Building, 415 Curie Boulevard, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
31
|
Furano AV. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:255-94. [PMID: 10697412 DOI: 10.1016/s0079-6603(00)64007-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian LINE-1 (L1) elements belong to the superfamily of autonomously replicating retrotransposable elements that lack the long terminal repeated (LTR) sequences typical of retroviruses and retroviral-like retrotransposons. The non-LTR superfamily is very ancient and L1-like elements are ubiquitous in nature, having been found in plants, fungi, invertebrates, and various vertebrate classes from fish to mammals. L1 elements have been replicating and evolving in mammals for at least the past 100 million years and now constitute 20% or more of some mammalian genomes. Therefore, L1 elements presumably have had a profound, perhaps defining, effect on the evolution, structure, and function of mammalian genomes. L1 elements contain regulatory signals and encode two proteins: one is an RNA-binding protein and the second one presumably functions as an integrase-replicase, because it has both endonuclease and reverse transcriptase activities. This work reviews the structure and biological properties of L1 elements, including their regulation, replication, evolution, and interaction with their mammalian hosts. Although each of these processes is incompletely understood, what is known indicates that they represent challenging and fascinating biological phenomena, the resolution of which will be essential for fully understanding the biology of mammals.
Collapse
Affiliation(s)
- A V Furano
- Section on Genomic Structure and Function, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Abstract
Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Using a novel intron-based genetic assay to identify rare homology-independent DNA rearrangements associated with repair of a chromosomal DSB in S. cerevisiae, we observed that approximately 20% of rearrangements involved endogenous DNA insertions at the break site. We have analyzed 37 inserts and find they fall into two distinct classes: Ty1 cDNA intermediates varying in length from 140 bp to 3.4 kb and short mitochondrial DNA fragments ranging in size from 33 bp to 219 bp. Several inserts consist of multiple noncontiguous mitochondrial DNA segments. These results demonstrate an ongoing mechanism for genome evolution through acquisition of organellar and mobile DNAs at DSB sites.
Collapse
MESH Headings
- Base Sequence
- Cell Nucleus/drug effects
- Cell Nucleus/enzymology
- Cell Nucleus/genetics
- Chromosome Breakage/genetics
- Chromosomes, Fungal/drug effects
- Chromosomes, Fungal/genetics
- DNA Repair/drug effects
- DNA Repair/genetics
- DNA, Fungal/genetics
- DNA, Mitochondrial/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Enzyme Induction/drug effects
- Evolution, Molecular
- Galactose/pharmacology
- Genes, Fungal/genetics
- Introns/genetics
- Molecular Weight
- Mutation/genetics
- Recombination, Genetic/drug effects
- Recombination, Genetic/genetics
- Retroelements/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- X Yu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
33
|
Qadri I, Siddiqui A. Expression of hepatitis B virus polymerase in Ty1-his3AI retroelement of Saccharomyces cerevisiae. J Biol Chem 1999; 274:31359-31365. [PMID: 10531336 DOI: 10.1074/jbc.274.44.31359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatitis B virus (HBV), although a DNA virus, replicates using reverse transcriptase encoded by the HBV polymerase (pol) gene. The biochemical dissection of HBV pol has been hampered by failure to liberate enzymatically active protein from nucleocapsids. Here, we have employed a yeast-based genetic approach to express the HBV reverse transcriptase. In this strategy, the reverse transcriptase of yeast retrotransposon Ty1 element is replaced with the HBV pol gene to produce the hybrid Ty1/HBV element. Additionally, the indicator gene his3AI is combined in an antisense orientation to the transcripts of the hybrid Ty1/HBVRT element. The splicing of his3AI, cDNA synthesis of the Ty1/HBVRT RNA and subsequent integration relies on the reverse transcriptase activity. The production of histidine prototrophs results from the successful reverse transcription of Ty1/HBVRThis3AI transcripts followed by either homologous recombination or integrase-mediated insertion and subsequent expression of HIS3 gene. Using this approach we successfully detected the reverse transcriptase activity of HBV in yeast strains defective in endogenous Ty1 expression. Consistent with the unique priming activity associated with HBV pol, the minus strand DNA synthesis was protein-primed. Deletion of HBV reverse transcriptase (RT) or RNase H domains resulted in a dramatic drop in histidine prototrophs. The addition of HBV encoded HBx protein in virus-like particles during in vitro RT reaction stimulated the RT reaction by severalfold. Furthermore, in the presence of 3TC, a known inhibitor of HBV reverse transcriptase, yeast His(+) growth of His protrophs was not observed. Thus, this approach, which is based on genetic selection in yeast, is safe, economic, and a reliable strategy with a potential for large scale screening of cofactors and inhibitors of HBV polymerase functions.
Collapse
Affiliation(s)
- I Qadri
- Department of Microbiology B172, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
34
|
Abstract
Ty1, the genetically tractable retrotransposable element found in the yeast Saccharomyces cerevisiae, closely resembles vertebrate retroviruses both in structure and in mechanism of replication. By direct sequence analysis, we examined the rate and spectrum of new mutations appearing during a single cycle of Ty1 replication. The rate of new mutations was comparable to those seen for replicating retroviruses. All observed changes were base substitutions, and their location suggested that template ends may be hot spots for generating these mutations. To test this, we developed methods to examine, at the nucleotide level, the end structure of the expected Ty1 replication intermediates. Our results demonstrate that Ty1 reverse transcriptase can add terminal non-templated bases in vivo during each step in replication. Furthermore, Ty1 RNAse H creates multiple template ends by imprecisely cleaving RNA. This expands the range of sites of subsequent non-templated base addition. Finally, on reaching template ends, Ty1 reverse transcriptase can strand transfer to inappropriate templates. Taken together, these mutagenic mechanisms may influence the evolution of particular regions of the Ty1 genome and serve as a mechanism to regulate the overall level of Ty1 transposition in its host cell.
Collapse
Affiliation(s)
- A Gabriel
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA.
| | | |
Collapse
|
35
|
Abstract
Available data on possible genetic impacts of mammalian retroposons are reviewed. Most important is the growing number of established examples showing the involvement of retroposons in modulation of expression of protein-coding genes transcribed by RNA polymerase II (Pol II). Retroposons contain conserved blocks of nucleotide sequence for binding of some important Pol II transcription factors as well as sequences involved in regulation of stability of mRNA. Moreover, these mobile genes provide short regions of sequence homology for illegitimate recombinations, leading to diverse genome rearrangements during evolution. Therefore, mammalian retroposons representing a significant fraction of noncoding DNA cannot be considered at present as junk DNA but as important genetic symbionts driving the evolution of regulatory networks controlling gene expression.
Collapse
Affiliation(s)
- N V Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
36
|
Martin SL, Li J, Epperson LE, Lieberman B. Functional reverse transcriptases encoded by A-type mouse LINE-1: defining the minimal domain by deletion analysis. Gene 1998; 215:69-75. [PMID: 9666081 DOI: 10.1016/s0378-1119(98)00252-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long interspersed elements, or LINEs, are retrotransposons that move via an RNA intermediate. In mice, one polymorphic variant of L1 has amplified relatively recently, giving rise to the A-type subfamily in species belonging to the genus and subgenus Mus. Retrotransposition of LINE-1 (L1) requires the function of the L1-encoded reverse transcriptase that is produced from open reading frame 2 (ORF2). Here, we employ a convenient yeast genetic assay to determine the reverse transcriptase activity of the ORF2 obtained from three A-type L1 elements: one, a cDNA from the RNA in ribonucleoprotein particles; another with a purported inactivating mutation; and the third, a hypothetical ancestral construct. Because there are no examples of A-type elements that have transposed recently to inactivate a gene, this assay is the first step towards demonstrating the functional capability of mouse A-type LINE-1 elements. One of the three elements was believed to have been inactivated during evolution by the substitution of leucine for a highly conserved phenylalanine or tryptophan residue among known reverse transcriptases. This mutation did not inactivate the L1 reverse transcriptase in the yeast assay; thus, all three of the elements tested encoded reverse transcriptase activity. We further examined the minimal reverse transcriptase domain within ORF2 by creating a series of deletions. The results demonstrate that removal of the L1 endonuclease domain from the N-terminal region of ORF2 does not affect reverse transcriptase activity as determined by this assay, and that approximately half of the ORF2 coding sequence from mouse A-type L1 elements is required for functional reverse transcriptase.
Collapse
Affiliation(s)
- S L Martin
- University of Colorado School of Medicine, Department of Cellular, Structural Biology, Program in Molecular Biology, 4200 E. Ninth Avenue, Box B111, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Transposable elements propagate by inserting into new locations in the genomes of the hosts they inhabit. Their transposition might thus negatively affect the fitness of the host, suggesting the requirement for a tight control in the regulation of transposable element mobilization. The nature of this control depends on the structure of the transposable element. DNA elements encode a transposase that is necessary, and in most cases sufficient, for mobilization. In general, regulation of these elements depends on intrinsic factors with little direct input from the host. Retrotransposons require an RNA intermediate for transposition, and their frequency of mobilization is controlled at multiple steps by the host genome by regulating both their expression levels and their insertional specificity. As a result, a symbiotic relationship has developed between transposable elements and their host. Examples are now emerging showing that transposons can contribute significantly to the well being of the organisms they populate.
Collapse
Affiliation(s)
- M Labrador
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
38
|
Maudru T, Peden K. Elimination of background signals in a modified polymerase chain reaction-based reverse transcriptase assay. J Virol Methods 1997; 66:247-61. [PMID: 9255736 DOI: 10.1016/s0166-0934(97)00067-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three highly sensitive reverse transcriptase (RT) assays were recently published that are at least one million times more sensitive than conventional RT assays. These assays derive their high sensitivities through the ability to amplify the complementary DNA (cDNA) product of the RT reaction by the polymerase chain reaction (PCR). We describe a modified PCR-based RT (PBRT) assay that retains the high sensitivities of the original assays while reducing their inherent background signals. The background signal of the PBRT assay was found to be due to an intrinsic RNA-dependent DNA polymerase activity of the Taq DNA polymerase, the enzyme used for the PCR. It could be eliminated by inserting a ribonuclease digestion step prior to amplifying the cDNA product of the RT reaction by PCR and by using a thermostable DNA polymerase identified as having reduced RNA-dependent DNA polymerase activity. Comparable results were obtained using three RNA templates with two purified RT enzymes. This modified assay is capable of detecting reliably between 10 and 100 molecules of RT, which is equivalent to between 1 and 10 retrovirus particles.
Collapse
Affiliation(s)
- T Maudru
- Laboratory of Retrovirus Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
39
|
Garfinkel DJ. Genetic loose change: how retroelements and reverse transcriptase heal broken chromosomes. Trends Microbiol 1997; 5:173-5. [PMID: 9160501 DOI: 10.1016/s0966-842x(97)01018-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D J Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick Cancer Research and Development Center, MD 21702-1201, USA. garfinke@ncifcrf-gov
| |
Collapse
|
40
|
Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH. Many human L1 elements are capable of retrotransposition. Nat Genet 1997; 16:37-43. [PMID: 9140393 DOI: 10.1038/ng0597-37] [Citation(s) in RCA: 346] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using a selective screening strategy to enrich for active L1 elements, we isolated 13 full-length elements from a human genomic library. We tested these and two previously-isolated L1s (L1.3 and L1.4) for reverse transcriptase (RT) activity and the ability to retrotranspose in HeLa cells. Of the 13 newly-isolated L1s, eight had RT activity and three were able to retrotranspose. L1.3 and L1.4 possessed RT activity and retrotransposed at remarkably high frequencies. These studies bring the number of characterized active human L1 elements to seven. Based on these and other data, we estimate that 30-60 active L1 elements reside in the average diploid genome.
Collapse
Affiliation(s)
- D M Sassaman
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Transposable elements are discrete mobile DNA segments that can insert into non-homologous target sites. Diverse patterns of target site selectivity are observed: Some elements display considerable target site selectivity and others display little obvious selectivity, although none appears to be truly "random." A variety of mechanisms for target site selection are used: Some elements use direct interactions between the recombinase and target DNA whereas other elements depend upon interactions with accessory proteins that communicate both with the target DNA and the recombinase. The study of target site selectivity is useful in probing recombination mechanisms, in studying genome structure and function, and also in providing tools for genome manipulation.
Collapse
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
42
|
Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH. High frequency retrotransposition in cultured mammalian cells. Cell 1996; 87:917-27. [PMID: 8945518 DOI: 10.1016/s0092-8674(00)81998-4] [Citation(s) in RCA: 794] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously isolated two human L1 elements (L1.2 and LRE2) as the progenitors of disease-producing insertions. Here, we show these elements can actively retrotranspose in cultured mammalian cells. When stably expressed from an episome in HeLa cells, both elements retrotransposed into a variety of chromosomal locations at a high frequency. The retrotransposed products resembled endogenous L1 insertions, since they were variably 5' truncated, ended in poly(A) tracts, and were flanked by target-site duplications or short deletions. Point mutations in conserved domains of the L1.2-encoded proteins reduced retrotransposition by 100- to 1000-fold. Remarkably, L1.2 also retrotransposed in a mouse cell line, suggesting a potential role for L1-based vectors in random insertional mutagenesis.
Collapse
Affiliation(s)
- J V Moran
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Feng Q, Moran JV, Kazazian HH, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 1996; 87:905-16. [PMID: 8945517 DOI: 10.1016/s0092-8674(00)81997-2] [Citation(s) in RCA: 857] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human L1 elements are highly abundant poly(A) (non-LTR) retrotransposons whose second open reading frame (ORF2) encodes a reverse transcriptase (RT). We have identified an endonuclease (EN) domain at the L1 ORF2 N-terminus that is highly conserved among poly(A) retrotransposons and resembles the apurinic/apyrimidinic (AP) endonucleases. Purified L1 EN protein (L1 ENp) makes 5'-PO4, 3'-OH nicks in supercoiled plasmids, shows no preference for AP sites, and preferentially cleaves sequences resembling L1 in vivo target sequences. Mutations in conserved amino acid residues of L1 EN abolish its nicking activity and eliminate L1 retrotransposition. We propose that L1 EN cleaves the target site for L1 insertion and primes reverse transcription.
Collapse
Affiliation(s)
- Q Feng
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
44
|
Teng SC, Kim B, Gabriel A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 1996; 383:641-4. [PMID: 8857543 DOI: 10.1038/383641a0] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The abundance of short and long interspersed nuclear sequences (SINEs and LINEs) and pseudogenes in eukaryotic genomes indicates that reverse transcriptase (RT)-mediated phenomena are important in genome evolution. However, the mechanisms involved in their spread are largely unknown. We have developed a selection system in the yeast Saccharomyces cerevisiae to test whether RT-mediated events could be linked to the repair of double-strand breaks (DSBs). Here we show that DSBs can be fixed by the insertion of complementary DNAs at the break site. In the presence of functional RT (from human L1, yeast Tyl or Crithidia CRE1), and in the absence of homologous recombination, an HO endonuclease-induced DSB at the mating type (MAT) locus is the primary site at which a marked cDNA is observed among surviving cells. The structure and junctional sequences of these insertions suggest that repair occurs primarily by non-homologous recombination. Our data support a role for endogenous retroelements in the repair of chromosomal breaks.
Collapse
Affiliation(s)
- S C Teng
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | |
Collapse
|
45
|
Patience C, Simpson GR, Colletta AA, Welch HM, Weiss RA, Boyd MT. Human endogenous retrovirus expression and reverse transcriptase activity in the T47D mammary carcinoma cell line. J Virol 1996; 70:2654-7. [PMID: 8642702 PMCID: PMC190118 DOI: 10.1128/jvi.70.4.2654-2657.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have examined the human mammary tumor cell line T47D and have found that these cells produce virus-like particles which band at the typical density for retroviral particles on a sucrose gradient, possess reverse transcriptase activity, and package HERV-K10-like sequences. Using this information and a bacterial expression system to identify long open reading frames, we have identified individual clones which have full-length open reading frames for reverse transcriptase and RNase H and which could encode the reverse transcriptase activity detected in these cells.
Collapse
Affiliation(s)
- C Patience
- Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Zhao Y, Daggett LP, Hardies SC. Mus spretus LINE-1s in the Mus musculus domesticus inbred strain C57BL/6J are from two different Mus spretus LINE-1 subfamilies. Genetics 1996; 142:549-55. [PMID: 8852852 PMCID: PMC1206987 DOI: 10.1093/genetics/142.2.549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A LINE-1 element, LIC105, was found in the Mus musculus domesticus inbred strain, C57BL/6J. Upon sequencing, this element was found to belong to a M. spretus LINE-1 subfamily originating within the last 0.2 million years. This is the second spretus-specific LINE-1 subfamily found to be represented in C57BL/6J. Although it is unclear how these M. spretus LINE-1s transferred from M. spretus to M. m. domesticus, it is now clear that at least two different spretus LINE-1 sequences have recently transferred. The limited divergence between the C57BL/6J spretus-like LINE-1s and their closest spretus ancestors suggests that the transfer did not involve an exceptionally long lineage of sequential transpositions.
Collapse
Affiliation(s)
- Y Zhao
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA
| | | | | |
Collapse
|
47
|
Schmid CW. Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:283-319. [PMID: 8650306 DOI: 10.1016/s0079-6603(08)60148-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C W Schmid
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| |
Collapse
|
48
|
Affiliation(s)
- M F Singer
- Carnegie Institution of Washington, Washington, D.C. 20005, USA
| |
Collapse
|