1
|
MacAlpine J, Daniel-Ivad M, Liu Z, Yano J, Revie NM, Todd RT, Stogios PJ, Sanchez H, O'Meara TR, Tompkins TA, Savchenko A, Selmecki A, Veri AO, Andes DR, Fidel PL, Robbins N, Nodwell J, Whitesell L, Cowen LE. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat Commun 2021; 12:6151. [PMID: 34686660 PMCID: PMC8536679 DOI: 10.1038/s41467-021-26390-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-β-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-β-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Junko Yano
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montreal, QC, Canada
| | - Alexei Savchenko
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL, USA
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Paul L Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Justin Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Castaneda JM, Miyata H, Archambeault DR, Satouh Y, Yu Z, Ikawa M, Matzuk MM. Mouse t-complex protein 11 is important for progressive motility in sperm†. Biol Reprod 2020; 102:852-862. [PMID: 31837139 PMCID: PMC7124965 DOI: 10.1093/biolre/ioz226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022] Open
Abstract
The t-complex is defined as naturally occurring variants of the proximal third of mouse chromosome 17 and has been studied by mouse geneticists for decades. This region contains many genes involved in processes from embryogenesis to sperm function. One such gene, t-complex protein 11 (Tcp11), was identified as a testis-specific gene whose protein is present in elongating spermatids. Later work on Tcp11 localized TCP11 to the sperm surface and acrosome cap and implicated TCP11 as important for sperm capacitation through the cyclic AMP/Protein Kinase A pathway. Here, we show that TCP11 is cytoplasmically localized to elongating spermatids and absent from sperm. In the absence of Tcp11, male mice have severely reduced fertility due to a significant decrease in progressively motile sperm; however, Tcp11-null sperm continues to undergo tyrosine phosphorylation, a hallmark of capacitation. Interestingly, null sperm displays reduced PKA activity, consistent with previous reports. Our work demonstrates that TCP11 functions in elongated spermatids to confer proper motility in mature sperm.
Collapse
Affiliation(s)
- Julio M Castaneda
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Denise R Archambeault
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Yuhkoh Satouh
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Zhifeng Yu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan and
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Li Y, Zhang X, Hu S, Liu H, Xu JR. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. PLoS Genet 2017; 13:e1006954. [PMID: 28806765 PMCID: PMC5570492 DOI: 10.1371/journal.pgen.1006954] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/24/2017] [Accepted: 08/04/2017] [Indexed: 11/29/2022] Open
Abstract
In the rice blast fungus Magnaporthe oryzae, the cAMP-PKA pathway regulates surface recognition, appressorium turgor generation, and invasive growth. However, deletion of CPKA failed to block appressorium formation and responses to exogenous cAMP. In this study, we generated and characterized the cpk2 and cpkA cpk2 mutants and spontaneous suppressors of cpkA cpk2 in M. oryzae. Our results demonstrate that CPKA and CPK2 have specific and overlapping functions, and PKA activity is essential for appressorium formation and plant infection. Unlike the single mutants, the cpkA cpk2 mutant was significantly reduced in growth and rarely produced conidia. It failed to form appressoria although the intracellular cAMP level and phosphorylation of Pmk1 MAP kinase were increased. The double mutant also was defective in plant penetration and Mps1 activation. Interestingly, it often produced fast-growing spontaneous suppressors that formed appressoria but were still non-pathogenic. Two suppressor strains of cpkA cpk2 had deletion and insertion mutations in the MoSFL1 transcription factor gene. Deletion of MoSFL1 or its C-terminal 93-aa (MoSFL1ΔCT) was confirmed to suppress the defects of cpkA cpk2 in hyphal growth but not appressorium formation or pathogenesis. We also isolated 30 spontaneous suppressors of the cpkA cpk2 mutant in Fusarium graminearum and identified mutations in 29 of them in FgSFL1. Affinity purification and co-IP assays showed that this C-terminal region of MoSfl1 was essential for its interaction with the conserved Cyc8-Tup1 transcriptional co-repressor, which was reduced by cAMP treatment. Furthermore, the S211D mutation at the conserved PKA-phosphorylation site in MoSFL1 partially suppressed the defects of cpkA cpk2. Overall, our results indicate that PKA activity is essential for appressorium formation and proper activation of Pmk1 or Mps1 in M. oryzae, and phosphorylation of MoSfl1 by PKA relieves its interaction with the Cyc8-Tup1 co-repressor and suppression of genes important for hyphal growth. The cAMP-PKA signaling pathway plays a critical role in regulating various cellular processes in eukaryotic cells in response to extracellular cues. In the rice blast fungus, this important pathway is involved in surface recognition, appressorium morphogenesis, and infection. However, the exact role of PKA is not clear due to the functional redundancy of two PKA catalytic subunits CPKA and CPK2. To further characterize their functions in growth and pathogenesis, in this study we generated and characterized the cpkA cpk2 double mutant and its suppressor strains. Unlike the single mutants, cpkA cpk2 mutant had severe defects in growth and conidiation and was defective in appressorium formation and plant infection. Interestingly, the double mutant was unstable and produced fast-growing suppressors. In two suppressor strains, mutations were identified in a transcription factor gene orthologous to SFL1, a downstream target of PKA in yeast. Deletion of the entire or C-terminal 93 residues of MoSFL1 could suppress the growth defect of cpkA cpk2. Furthermore, the terminal region of MoSfl1 was found to be essential for its interaction with the MoCyc8 co-repressor, which may be negatively regulated by PKA. Therefore, loss-of-function mutations in MoSFL1 can bypass PKA activity to suppress the growth defect of cpkA cpk2.
Collapse
Affiliation(s)
- Yang Li
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Xue Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shuai Hu
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
5
|
Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proc Natl Acad Sci U S A 2014; 111:18219-24. [PMID: 25489109 DOI: 10.1073/pnas.1421313111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington's disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q. Surprisingly, among the identified suppressors were three proteins with Q-rich, prion-like domains (PrDs): glycine threonine serine repeat protein (Gts1p), nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1. Overexpression of the PrD of Gts1p, containing an imperfect 28 residue glutamine-alanine repeat, was sufficient for suppression of toxicity. Association with this discontinuous polyQ domain did not prevent 103Q aggregation, but altered the physical properties of the aggregates, most likely early in the assembly pathway, as reflected in their increased SDS solubility. Molecular simulations suggested that Gts1p arrests the aggregation of polyQ molecules at the level of nonfibrillar species, acting as a cap that destabilizes intermediates on path to form large fibrils. Quantitative proteomic analysis of polyQ interactors showed that expression of Gts1p reduced the interaction between polyQ and other prion-like proteins, and enhanced the association of molecular chaperones with the aggregates. These findings demonstrate that short, Q-rich peptides are able to shield the interactive surfaces of toxic forms of polyQ proteins and direct them into nontoxic aggregates.
Collapse
|
6
|
Lu Y, Su C, Unoje O, Liu H. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proc Natl Acad Sci U S A 2014; 111:1975-80. [PMID: 24449897 PMCID: PMC3918812 DOI: 10.1073/pnas.1318690111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most common cause of invasive fungal infections in humans. Its ability to undergo the morphological transition from yeast to hyphal growth forms is critical for its pathogenesis. Hyphal initiation requires the activation of the cAMP-PKA pathway, which down-regulates the expression of NRG1, the major repressor of hyphal development. Hyphal initiation also requires inoculation of a small amount of C. albicans cells from overnight culture to fresh medium. This inoculation releases the inhibition from farnesol, a quorum-sensing molecule of C. albicans, that accumulated in the spent medium. Here, we show that farnesol inhibits hyphal initiation mainly through blocking the protein degradation of Nrg1. Through screening a kinase mutant library, we identified Sok1 as the kinase required for Nrg1 degradation during inoculation. SOK1 expression is transiently activated on inoculation during hyphal initiation, and overexpression of SOK1 overcomes the farnesol-mediated inhibition of hyphal initiation. Screening a collection of transcription factor mutants, the homeodomain-containing transcription repressor Cup9 is found to be responsible for the repression of SOK1 expression in response to farnesol inhibition. Interestingly, farnesol inhibits Cup9 degradation mediated by the N-end rule E3 ubiquitin ligase, Ubr1. Therefore, hyphal initiation requires both the cAMP-PKA pathway-dependent transcriptional down-regulation of NRG1 and Sok1-mediated degradation of Nrg1 protein. The latter is triggered by the release from farnesol inhibition of Cup9 degradation and consequently, derepression of SOK1 transcription. Neither pathway alone is sufficient for hyphal initiation.
Collapse
Affiliation(s)
| | | | - Ohimai Unoje
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| |
Collapse
|
7
|
Cdk8 regulates stability of the transcription factor Phd1 to control pseudohyphal differentiation of Saccharomyces cerevisiae. Mol Cell Biol 2011; 32:664-74. [PMID: 22124158 DOI: 10.1128/mcb.05420-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces differentiates into filamentous pseudohyphae when exposed to a poor source of nitrogen in a process involving a collection of transcription factors regulated by nutrient signaling pathways. Phd1 is important for this process in that it regulates expression of most other transcription factors involved in differentiation and can induce filamentation on its own when overproduced. In this article, we show that Phd1 is an unstable protein whose degradation is initiated through phosphorylation by Cdk8 of the RNA polymerase II mediator subcomplex. Phd1 is stabilized by cdk8 disruption, and the naturally filamenting Σ1278b strain was found to have a sequence polymorphism that eliminates a Cdk8 phosphorylation site, which both stabilizes the protein and contributes to enhanced differentiation. In nitrogen-starved cells, PHD1 expression is upregulated and the Phd1 protein becomes stabilized, which causes its accumulation during differentiation. PHD1 expression is partially dependent upon Ste12, which was also previously shown to be destabilized by Cdk8-dependent phosphorylations, but to a significantly smaller extent than Phd1. These observations demonstrate the central role that Cdk8 plays in initiation of differentiation. Cdk8 activity is inhibited in cells shifted to limiting nutrient conditions, and we argue that this effect drives the initiation of differentiation through stabilization of multiple transcription factors, including Phd1, that cause activation of genes necessary for filamentous response.
Collapse
|
8
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
10
|
Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK, Kaeberlein M. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS One 2008; 3:e3802. [PMID: 19030232 PMCID: PMC2583956 DOI: 10.1371/journal.pone.0003802] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/05/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. METHODOLOGY/PRINCIPAL FINDINGS We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. CONCLUSIONS/SIGNIFICANCE This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of network analysis of aging to be extensively validated in a biological system. The novel longevity genes identified in this study are likely to yield further insight into the molecular mechanisms of aging and age-associated disease.
Collapse
Affiliation(s)
- J. R. Managbanag
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tarynn M. Witten
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Danail Bonchev
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Lindsay A. Fox
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Mitsuhiro Tsuchiya
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
11
|
Goyard S, Knechtle P, Chauvel M, Mallet A, Prévost MC, Proux C, Coppée JY, Schwarz P, Schwartz P, Dromer F, Park H, Filler SG, Janbon G, d'Enfert C. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol Biol Cell 2008; 19:2251-66. [PMID: 18321992 DOI: 10.1091/mbc.e07-09-0960] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Members of the dual-specificity tyrosine-phosphorylated and regulated kinase (DYRK) family perform a variety of functions in eukaryotes. We used gene disruption, targeted pharmacologic inhibition, and genome-wide transcriptional profiling to dissect the function of the Yak1 DYRK in the human fungal pathogen Candida albicans. C. albicans strains with mutant yak1 alleles showed defects in the yeast-to-hypha transition and in maintaining hyphal growth. They also could not form biofilms. Despite their in vitro filamentation defect, C. albicans yak1Delta/yak1Delta mutants remained virulent in animal models of systemic and oropharyngeal candidiasis. Transcriptional profiling showed that Yak1 was necessary for the up-regulation of only a subset of hypha-induced genes. Although downstream targets of the Tec1 and Bcr1 transcription factors were down-regulated in the yak1Delta/yak1Delta mutant, TEC1 and BCR1 were not. Furthermore, 63% of Yak1-dependent, hypha-specific genes have been reported to be negatively regulated by the transcriptional repressor Tup1 and inactivation of TUP1 in the yak1Delta/yak1Delta mutant restored filamentation, suggesting that Yak1 may function upstream of Tup1 in governing hyphal emergence and maintenance.
Collapse
Affiliation(s)
- Sophie Goyard
- Unité Biologie et Pathogénicité Fongiques, Institut National de la Recherche Agronomique USC2019, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cheng C, Fabrizio P, Ge H, Longo VD, Li LM. Inference of transcription modification in long-live yeast strains from their expression profiles. BMC Genomics 2007; 8:219. [PMID: 17617911 PMCID: PMC1949827 DOI: 10.1186/1471-2164-8-219] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/06/2007] [Indexed: 11/25/2022] Open
Abstract
Background Three kinases: Sch9, PKA and TOR, are suggested to be involved in both the replicative and chronological ageing in yeast. They function in pathways whose down-regulation leads to life span extension. Several stress response proteins, including two transcription factors Msn2 and Msn4, mediate the longevity extension phenotype associated with decreased activity of either Sch9, PKA, or TOR. However, the mechanisms of longevity, especially the underlying transcription program have not been fully understood. Results We measured the gene expression profiles in wild type yeast and three long-lived mutants: sch9Δ, ras2Δ, and tor1Δ. To elucidate the transcription program that may account for the longevity extension, we identified the transcription factors that are systematically and significantly associated with the expression differentiation in these mutants with respect to wild type by integrating microarray expression data with motif and ChIP-chip data, respectively. Our analysis suggests that three stress response transcription factors, Msn2, Msn4 and Gis1, are activated in all the three mutants. We also identify some other transcription factors such as Fhl1 and Hsf1, which may also be involved in the transcriptional modification in the long-lived mutants. Conclusion Combining microarray expression data with other data sources such as motif and ChIP-chip data provides biological insights into the transcription modification that leads to life span extension. In the chronologically long-lived mutant: sch9Δ, ras2Δ, and tor1Δ, several common stress response transcription factors are activated compared with the wild type according to our systematic transcription inference.
Collapse
Affiliation(s)
- Chao Cheng
- Molecular and Computational biology program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Paola Fabrizio
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California,3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Huanying Ge
- Molecular and Computational biology program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Valter D Longo
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California,3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Lei M Li
- Molecular and Computational biology program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
- Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Ren M, Santhanam A, Lee P, Caplan A, Garrett S. Alteration of the protein kinase binding domain enhances function of the Saccharomyces cerevisiae molecular chaperone Cdc37. EUKARYOTIC CELL 2007; 6:1363-72. [PMID: 17573546 PMCID: PMC1951142 DOI: 10.1128/ec.00165-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cdc37 is a molecular chaperone that has a general function in the biogenesis of protein kinases. We identified mutations within the putative "protein kinase binding domain" of Cdc37 that alleviate the conditional growth defect of a strain containing a temperature-sensitive allele, tpk2(Ts), of the cyclic AMP-dependent protein kinase (PKA). These dominant mutations alleviate the temperature-sensitive growth defect by elevating PKA activity, as judged by their effects on PKA-regulated processes, localization and phosphorylation of the PKA effector Msn2, as well as in vitro PKA activity. Although the tpk2(Ts) growth defect is also alleviated by Cdc37 overproduction, the CDC37 dominant mutants contain wild-type Cdc37 protein levels. In addition, Saccharomyces cerevisiae Ste11 protein kinase has an elevated physical interaction with the altered Cdc37 protein. These results implicate specific amino-terminal residues in the interaction between Cdc37 and client protein kinases and provide further genetic and biochemical support for a model in which Cdc37 functions as a molecular chaperone for protein kinases.
Collapse
Affiliation(s)
- Min Ren
- Graduate School of Biomedical Sciences, Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, 225 Warren St., Newark, NJ 07101, USA
| | | | | | | | | |
Collapse
|
14
|
Brinkworth RI, Munn AL, Kobe B. Protein kinases associated with the yeast phosphoproteome. BMC Bioinformatics 2006; 7:47. [PMID: 16445868 PMCID: PMC1373605 DOI: 10.1186/1471-2105-7-47] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 01/31/2006] [Indexed: 02/08/2023] Open
Abstract
Background Protein phosphorylation is an extremely important mechanism of cellular regulation. A large-scale study of phosphoproteins in a whole-cell lysate of Saccharomyces cerevisiae has previously identified 383 phosphorylation sites in 216 peptide sequences. However, the protein kinases responsible for the phosphorylation of the identified proteins have not previously been assigned. Results We used Predikin in combination with other bioinformatic tools, to predict which of 116 unique protein kinases in yeast phosphorylates each experimentally determined site in the phosphoproteome. The prediction was based on the match between the phosphorylated 7-residue sequence and the predicted substrate specificity of each kinase, with the highest weight applied to the residues or positions that contribute most to the substrate specificity. We estimated the reliability of the predictions by performing a parallel prediction on phosphopeptides for which the kinase has been experimentally determined. Conclusion The results reveal that the functions of the protein kinases and their predicted phosphoprotein substrates are often correlated, for example in endocytosis, cytokinesis, transcription, replication, carbohydrate metabolism and stress response. The predictions link phosphoproteins of unknown function with protein kinases with known functions and vice versa, suggesting functions for the uncharacterized proteins. The study indicates that the phosphoproteins and the associated protein kinases represented in our dataset have housekeeping cellular roles; certain kinases are not represented because they may only be activated during specific cellular responses. Our results demonstrate the utility of our previously reported protein kinase substrate prediction approach (Predikin) as a tool for establishing links between kinases and phosphoproteins that can subsequently be tested experimentally.
Collapse
Affiliation(s)
- Ross I Brinkworth
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Australia
| | - Alan L Munn
- Institute for Molecular Bioscience and Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane 4072, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Boštjan Kobe
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Australia
- Institute for Molecular Bioscience and Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
15
|
Hodges JL, Leslie JH, Mosammaparast N, Guo Y, Shabanowitz J, Hunt DF, Pemberton LF. Nuclear import of TFIIB is mediated by Kap114p, a karyopherin with multiple cargo-binding domains. Mol Biol Cell 2005; 16:3200-10. [PMID: 15888545 PMCID: PMC1165404 DOI: 10.1091/mbc.e04-11-0990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear import and export is mediated by an evolutionarily conserved family of soluble transport factors, the karyopherins (referred to as importins and exportins). The yeast karyopherin Kap114p has previously been shown to import histones H2A and H2B, Nap1p, and a component of the preinitiation complex (PIC), TBP. Using a proteomic approach, we have identified several potentially new cargoes for Kap114p. These cargoes include another PIC component, the general transcription factor IIB or Sua7p, which interacted directly with Kap114p. Consistent with its role as a Sua7p import factor, deletion of KAP114 led to specific mislocalization of Sua7p to the cytoplasm. An interaction between Sua7p and TBP was also detected in cytosol, raising the possibility that both Sua7p and TBP can be coimported by Kap114p. We have also shown that Kap114p possesses multiple overlapping binding sites for its partners, Sua7p, Nap1p, and H2A and H2B, as well as RanGTP and nucleoporins. In addition, we have assembled an in vitro complex containing Sua7p, Nap1p, and histones H2A and H2B, suggesting that this Kap may import several proteins simultaneously. The import of more than one cargo at a time would increase the efficiency of each import cycle and may allow the regulation of coimported cargoes.
Collapse
Affiliation(s)
- Jennifer L Hodges
- Center for Cell Signaling, Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Anna-Arriola SS, Rodriguez AL, Aragon AD, Quiñones GA, Allen C, Werner-Washburne M. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 2004; 15:5295-305. [PMID: 15456898 PMCID: PMC532011 DOI: 10.1091/mbc.e03-11-0856] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Most cells on earth exist in a quiescent state. In yeast, quiescence is induced by carbon starvation, and exit occurs when a carbon source becomes available. To understand how cells survive in, and exit from this state, mRNA abundance was examined using oligonucleotide-based microarrays and quantitative reverse transcription-polymerase chain reaction. Cells in stationary-phase cultures exhibited a coordinated response within 5-10 min of refeeding. Levels of >1800 mRNAs increased dramatically (>or=64-fold), and a smaller group of stationary-phase mRNAs decreased in abundance. Motif analysis of sequences upstream of genes clustered by VxInsight identified an overrepresentation of Rap1p and BUF (RPA) binding sites in genes whose mRNA levels rapidly increased during exit. Examination of 95 strains carrying deletions in stationary-phase genes induced identified 32 genes essential for survival in stationary-phase at 37 degrees C. Analysis of these genes suggests that mitochondrial function is critical for entry into stationary-phase and that posttranslational modifications and protection from oxidative stress become important later. The phylogenetic conservation of stationary-phase genes, and our findings that two-thirds of the essential stationary-phase genes have human homologues and of these, many have human homologues that are disease related, demonstrate that yeast is a bona fide model system for studying the quiescent state of eukaryotic cells.
Collapse
Affiliation(s)
- M Juanita Martinez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schmelzle T, Beck T, Martin DE, Hall MN. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 2004; 24:338-51. [PMID: 14673167 PMCID: PMC303340 DOI: 10.1128/mcb.24.1.338-351.2004] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 07/18/2003] [Accepted: 10/01/2003] [Indexed: 11/20/2022] Open
Abstract
The TOR (target of rapamycin) and RAS/cyclic AMP (cAMP) signaling pathways are the two major pathways controlling cell growth in response to nutrients in yeast. In this study we examine the functional interaction between TOR and the RAS/cAMP pathway. First, activation of the RAS/cAMP signaling pathway confers pronounced resistance to rapamycin. Second, constitutive activation of the RAS/cAMP pathway prevents several rapamycin-induced responses, such as the nuclear translocation of the transcription factor MSN2 and induction of stress genes, the accumulation of glycogen, the induction of autophagy, the down-regulation of ribosome biogenesis (ribosomal protein gene transcription and RNA polymerase I and III activity), and the down-regulation of the glucose transporter HXT1. Third, many of these TOR-mediated responses are independent of the previously described TOR effectors TAP42 and the type 2A-related protein phosphatase SIT4. Conversely, TOR-controlled TAP42/SIT4-dependent events are not affected by the RAS/cAMP pathway. Finally, and importantly, TOR controls the subcellular localization of both the protein kinase A catalytic subunit TPK1 and the RAS/cAMP signaling-related kinase YAK1. Our findings suggest that TOR signals through the RAS/cAMP pathway, independently of TAP42/SIT4. Therefore, the RAS/cAMP pathway may be a novel TOR effector branch.
Collapse
Affiliation(s)
- Tobias Schmelzle
- Division of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
18
|
Chanet R, Heude M. Characterization of mutations that are synthetic lethal with pol3-13, a mutated allele of DNA polymerase delta in Saccharomyces cerevisiae. Curr Genet 2003; 43:337-50. [PMID: 12759774 DOI: 10.1007/s00294-003-0407-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Revised: 04/11/2003] [Accepted: 04/23/2003] [Indexed: 10/26/2022]
Abstract
The pol3-13 mutation is located in the C-terminal end of POL3, the gene encoding the catalytic subunit of polymerase delta, and confers thermosensitivity onto the Saccharomyces cerevisiae mutant strain. To get insight about DNA replication control, we performed a genetic screen to identify genes that are synthetic lethal with pol3-13. Mutations in genes encoding the two other subunits of DNA polymerase delta (HYS2, POL32) were identified. Mutations in two recombination genes (RAD50, RAD51) were also identified, confirming that homologous recombination is necessary for pol3-13 mutant strain survival. Other mutations were identified in genes involved in repair and genome stability (MET18/ MMS19), in the control of origin-firing and/or transcription (ABF1, SRB7), in the S/G2 checkpoint (RAD53), in the Ras-cAMP signal transduction pathway (MKS1), in nuclear pore metabolism (SEH1), in protein degradation (DOC1) and in folding (YDJ1). Finally, mutations in three genes of unknown function were isolated (NBP35, DRE2, TAH18). Synthetic lethality between pol3-13 and each of the three mutants pol32, mms19 and doc1 could be suppressed by a rad18 deletion, suggesting an important role of ubiquitination in DNA replication control. We propose that the pol3-13 mutant generates replicative problems that need both homologous recombination and an intact checkpoint machinery to be overcome.
Collapse
Affiliation(s)
- Roland Chanet
- Institut Curie Recherche, CNRS UMR2027/Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay Cédex, France.
| | | |
Collapse
|
19
|
Zhang Z, Smith MM, Mymryk JS. Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 2001; 12:699-710. [PMID: 11251081 PMCID: PMC30974 DOI: 10.1091/mbc.12.3.699] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2000] [Revised: 12/05/2000] [Accepted: 01/08/2000] [Indexed: 01/06/2023] Open
Abstract
The C-terminal portion of adenovirus E1A suppresses ras-induced metastasis and tumorigenicity in mammalian cells; however, little is known about the mechanisms by which this occurs. In the simple eukaryote Saccharomyces cerevisiae, Ras2p, the homolog of mammalian h-ras, regulates mitogen-activated protein kinase (MAPK) and cyclic AMP-dependent protein kinase A (cAMP/PKA) signaling pathways to control differentiation from the yeast form to the pseudohyphal form. When expressed in yeast, the C-terminal region of E1A induced pseudohyphal differentiation, and this was independent of both the MAPK and cAMP/PKA signaling pathways. Using the yeast two-hybrid system, we identified an interaction between the C-terminal region of E1A and Yak1p, a yeast dual-specificity serine/threonine protein kinase that functions as a negative regulator of growth. E1A also physically interacts with Dyrk1A and Dyrk1B, two mammalian homologs of Yak1p, and stimulates their kinase activity in vitro. We further demonstrate that Yak1p is required in yeast to mediate pseudohyphal differentiation induced by Ras2p-regulated signaling pathways. However, pseudohyphal differentiation induced by the C-terminal region of E1A is largely independent of Yak1p. These data suggest that mammalian Yak1p-related kinases may be targeted by the E1A oncogene to modulate cell growth.
Collapse
Affiliation(s)
- Z Zhang
- Departments of Oncology, Microbiology and Immunology and Pharmacology and Toxicology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario N6A 4L6, Canada
| | | | | |
Collapse
|
20
|
Pan X, Heitman J. Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 2000; 20:8364-72. [PMID: 11046133 PMCID: PMC102143 DOI: 10.1128/mcb.20.22.8364-8372.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to nitrogen limitation, Saccharomyces cerevisiae undergoes a dimorphic transition to filamentous pseudohyphal growth. In previous studies, the transcription factor Sok2 was found to negatively regulate pseudohyphal differentiation. By genome array and Northern analysis, we found that genes encoding the transcription factors Phd1, Ash1, and Swi5 were all induced in sok2/sok2 hyperfilamentous mutants. In accord with previous studies of others, Swi5 was required for ASH1 expression. Phd1 and Ash1 regulated expression of the cell surface protein Flo11, which is required for filamentous growth, and were largely required for filamentation of sok2/sok2 mutant strains. These findings reveal that a complex transcription factor cascade regulates filamentation. These findings also reveal a novel dual role for the transcription factor Swi5 in regulating filamentous growth. Finally, these studies illustrate how mother-daughter cell adhesion can be accomplished by two distinct mechanisms: one involving Flo11 and the other involving regulation of the endochitinase Cts1 and the endoglucanase Egt2 by Swi5.
Collapse
Affiliation(s)
- X Pan
- Departments of Genetics, Pharmacology and Cancer Biology, Microbiology, and Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
21
|
Jaspersen SL, Charles JF, Tinker-Kulberg RL, Morgan DO. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell 1998; 9:2803-17. [PMID: 9763445 PMCID: PMC25555 DOI: 10.1091/mbc.9.10.2803] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase-cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2, and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.
Collapse
Affiliation(s)
- S L Jaspersen
- Department of Physiology, University of California, San Francisco, California 94143-0444, USA
| | | | | | | |
Collapse
|
22
|
Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 1998; 17:3556-64. [PMID: 9649426 PMCID: PMC1170692 DOI: 10.1093/emboj/17.13.3556] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yeast cAMP-dependent protein kinase (PKA) activity is essential for growth and antagonizes induction of the general stress response as well as accumulation of glycogen stores. Previous studies have suggested that the PKA effects on the two latter processes result in part from transcription repression. Here we show that transcription derepression that accompanies PKA depletion is dependent upon the presence of two redundant Zn2+-finger transcription factors, Msn2p and Msn4p. The Msn2p and Msn4p proteins were shown previously to act as positive transcriptional factors in the stress response pathway, and our results suggest that Msn2p and Msn4p also mediate PKA-dependent effects on stress response as well as glycogen accumulation genes. Interestingly, PKA activity is dispensable in a strain lacking Msn2p and Msn4p activity. Thus, Msn2p and Msn4p may antagonize PKAdependent growth by stimulating expression of genes that inhibit growth. In agreement with this model, Msn2p/Msn4p function is required for expression of a gene, YAK1, previously shown to antagonize PKA-dependent growth. These results suggest that Msn2p/Msn4p-dependent gene expression may account for all, or at least most, of the pleiotropic effects of yeast PKA, including growth regulation, response to stress and carbohydrate store accumulation.
Collapse
Affiliation(s)
- A Smith
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
23
|
Hartley AD, Bogaerts S, Garrett S. cAMP inhibits bud growth in a yeast strain compromised for Ca2+ influx into the Golgi. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:556-64. [PMID: 8709962 DOI: 10.1007/bf02173645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biochemical and physiological studies have implicated cAMP and cAMP-dependent protein kinase (PKA) in a plethora of essential cellular processes. Here we show that yeast cells partially depleted of PKA activity (due to a tpkw mutation) and bearing a lesion in a Golgi-localized Ca2+ pump (Pmr1), arrest division with a small bud. The bud morphology of the arrested tpk1w pmr1 mutant cells is characteristic of cells in S phase; however, the terminal phenotype of processes such as DNA replication and nuclear division suggests arrest at the G2/M boundary. This small bud, G2-arrest phenotype is similar to that of strains with a defect in cell wall biosynthesis (pkc1) or membrane biogenesis (och1); however, the biochemical defect may be different since the tpk1w pmr1 double mutants retain viability. The growth defect of the tpk1w pmr1 mutant can be alleviated by preventing the increase in cellular cAMP levels that is known to be associated with a decrease in PKA activity, or by supplementing the medium with millimolar amounts of Ca2+. Although the biochemical consequences of this increase in cAMP concentration are not known, the small-bud phenotype of the double mutant and the known protein processing defect of the pmr1 lesion suggest that the localization or function of some membrane component might be compromised and susceptible to perturbations in cellular cAMP levels. One candidate for such a protein is the cAMP-binding membrane ectoprotein recently described in yeast.
Collapse
Affiliation(s)
- A D Hartley
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham NC 27710, USA
| | | | | |
Collapse
|
24
|
Ward MP, Gimeno CJ, Fink GR, Garrett S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 1995; 15:6854-63. [PMID: 8524252 PMCID: PMC230940 DOI: 10.1128/mcb.15.12.6854] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast cyclic AMP (cAMP)-dependent protein kinase (PKA) activity is essential for growth and cell cycle progression. Dependence on PKA function can be partially relieved by overexpression of a gene, SOK2, whose product has significant homology with several fungal transcription factors (StuA from Aspergillus nidulans and Phd1 from Saccharomyces cerevisiae) that are associated with cellular differentiation and development. Deletion of SOK2 is not lethal but exacerbates the growth defect of strains compromised for PKA activity. Alterations in Sok2 protein production also affect the expression of genes involved in several other PKA-regulated processes, including glycogen accumulation (GAC1) and heat shock resistance (SSA3). These results suggest SOK2 plays a general regulatory role in the PKA signal transduction pathway. Expression of the PKA catalytic subunit genes is unaltered by deletion or overexpression of SOK2. Because homozygous sok2/sok2 diploid strains form pseudohyphae at an accelerated rate, the Sok2 protein may inhibit the switch from unicellular to filamentous growth, a process that is dependent on cAMP. Thus, the product of SOK2 may act downstream of PKA to regulate the expression of genes important in growth and development.
Collapse
Affiliation(s)
- M P Ward
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Living cells, both prokaryotic and eukaryotic, employ specific sensory and signalling systems to obtain and transmit information from their environment in order to adjust cellular metabolism, growth, and development to environmental alterations. Among external factors that trigger such molecular communications are nutrients, ions, drugs and other compounds, and physical parameters such as temperature and pressure. One could consider stress imposed on cells as any disturbance of the normal growth condition and even as any deviation from optimal growth circumstances. It may be worthwhile to distinguish specific and general stress circumstances. Reasoning from this angle, the extensively studied response to heat stress on the one hand is a specific response of cells challenged with supra-optimal temperatures. This response makes use of the sophisticated chaperoning mechanisms playing a role during normal protein folding and turnover. The response is aimed primarily at protection and repair of cellular components and partly at acquisition of heat tolerance. In addition, heat stress conditions induce a general response, in common with other metabolically adverse circumstances leading to physiological perturbations, such as oxidative stress or osmostress. Furthermore, it is obvious that limitation of essential nutrients, such as glucose or amino acids for yeasts, leads to such a metabolic response. The purpose of the general response may be to promote rapid recovery from the stressful condition and resumption of normal growth. This review focuses on the changes in gene expression that occur when cells are challenged by stress, with major emphasis on the transcription factors involved, their cognate promoter elements, and the modulation of their activity upon stress signal transduction. With respect to heat shock-induced changes, a wealth of information on both prokaryotic and eukaryotic organisms, including yeasts, is available. As far as the concept of the general (metabolic) stress response is concerned, major attention will be paid to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- W H Mager
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|