1
|
Sugimoto Y, Masuda Y, Iwai S, Miyake Y, Kanao R, Masutani C. Novel mechanisms for the removal of strong replication-blocking HMCES- and thiazolidine-DNA adducts in humans. Nucleic Acids Res 2023; 51:4959-4981. [PMID: 37021581 PMCID: PMC10250235 DOI: 10.1093/nar/gkad246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are DNA lesions created under normal growth conditions that result in cytotoxicity, replication-blocks, and mutations. AP sites are susceptible to β-elimination and are liable to be converted to DNA strand breaks. HMCES (5-hydroxymethylcytosine binding, ES cell specific) protein interacts with AP sites in single stranded (ss) DNA exposed at DNA replication forks to generate a stable thiazolidine protein-DNA crosslink and protect cells against AP site toxicity. The crosslinked HMCES is resolved by proteasome-mediated degradation; however, it is unclear how HMCES-crosslinked ssDNA and the resulting proteasome-degraded HMCES adducts are processed and repaired. Here, we describe methods for the preparation of thiazolidine adduct-containing oligonucleotides and determination of their structure. We demonstrate that the HMCES-crosslink is a strong replication blocking adduct and that protease-digested HMCES adducts block DNA replication to a similar extent as AP sites. Moreover, we show that the human AP endonuclease APE1 incises DNA 5' to the protease-digested HMCES adduct. Interestingly, while HMCES-ssDNA crosslinks are stable, the crosslink is reversed upon the formation of dsDNA, possibly due to a catalytic reverse reaction. Our results shed new light on damage tolerance and repair pathways for HMCES-DNA crosslinks in human cells.
Collapse
Affiliation(s)
- Yohei Sugimoto
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Biber S, Pospiech H, Gottifredi V, Wiesmüller L. Multiple biochemical properties of the p53 molecule contribute to activation of polymerase iota-dependent DNA damage tolerance. Nucleic Acids Res 2020; 48:12188-12203. [PMID: 33166398 PMCID: PMC7708082 DOI: 10.1093/nar/gkaa974] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that p53 decelerates nascent DNA elongation in complex with the translesion synthesis (TLS) polymerase ι (POLι) which triggers a homology-directed DNA damage tolerance (DDT) pathway to bypass obstacles during DNA replication. Here, we demonstrate that this DDT pathway relies on multiple p53 activities, which can be disrupted by TP53 mutations including those frequently found in cancer tissues. We show that the p53-mediated DDT pathway depends on its oligomerization domain (OD), while its regulatory C-terminus is not involved. Mutation of residues S315 and D48/D49, which abrogate p53 interactions with the DNA repair and replication proteins topoisomerase I and RPA, respectively, and residues L22/W23, which disrupt formation of p53-POLι complexes, all prevent this DDT pathway. Our results demonstrate that the p53-mediated DDT requires the formation of a DNA binding-proficient p53 tetramer, recruitment of such tetramer to RPA-coated forks and p53 complex formation with POLι. Importantly, our mutational analysis demonstrates that transcriptional transactivation is dispensable for the POLι-mediated DDT pathway, which we show protects against DNA replication damage from endogenous and exogenous sources.
Collapse
Affiliation(s)
- Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Helmut Pospiech
- Project group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute, D-07745 Jena, Germany.,Faculty of Biochemistry and Molecular Medicine, FIN-90014 University of Oulu, Finland
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
3
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Experimental Study of CO2 Conversion into Methanol by Synthesized Photocatalyst (ZnFe2O4/TiO2) Using Visible Light as an Energy Source. Catalysts 2020. [DOI: 10.3390/catal10020163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ozone layer depletion is a serious threat due to the extensive release of greenhouse gases. The emission of carbon dioxide (CO2) from fossil fuel combustion is a major reason for global warming. Energy demands and climate change are coupled with each other. CO2is a major gas contributing to global warming; hence, the conversion of CO2 into useful products such as methanol, formic acid, formaldehyde, etc., under visible light is an attractive topic. Challenges associated with the current research include synthesizing a photocatalyst that is driven by visible light with a narrow band gap range between 2.5 and 3.0 eV, the separation of a mixed end product, and the two to three times faster recombination rate of an electron–hole pair compared with separation over yield. The purpose of the current research is to convert CO2 into useful fuel i.e., methanol; the current study focuses on the photocatalytic reduction of CO2into a useful product. This research is based on the profound analysis of published work, which allows the selection of appropriate methods and material for this research. In this study, zinc ferrite (ZnFe2O4) is synthesized via the modified sol–gel method and coupled with titanium dioxide (TiO2). Thereafter, the catalyst is characterized by Fourier transform infrared (FTIR), FE-SEM, UV–Vis, and XRD characterization techniques. UV–Vis illustrates that the synthesized catalyst has a low band gap and utilizes a major portion of visible light irradiation. The XRD pattern was confirmed by the formation of the desired catalyst. FE-SEM illustrated that the size of the catalyst ranges from 50 to 500 nm and BET analysis determined the surface area, which was 2.213 and 6.453 m2/g for ZnFe2O4 and ZnFe2O4/TiO2, respectively. The continuous gas flow photoreactor was used to study the activity of the synthesized catalyst, while titanium dioxide (TiO2) has been coupled with zinc ferrite (ZnFe2O4) under visible light in order to obtain the maximum yield of methanol as a single product and simultaneously avoid the conversion of CO2 into multiple products. The performance of ZnFe2O4/TiO2was mainly assessed through methanol yield with a variable amount of TiO2 over ZnFe2O4 (1:1, 1:2, 2:1, 1:3, and 3:1). The synthesized catalyst recycling ability has been tested up to five cycles. Finally, we concluded that the optimum conditions for maximum yield were found to be a calcination temperature of ZnFe2O4at 900 °C, and optimum yield was at a 1:1 w/w coupling ratio of ZnFe2O4/TiO2. It was observed that due to the enhancement in the electron–hole pair lifetime, the methanol yield at 141.22 μmol/gcat·h over ZnFe2O4/TiO2was found to be 7% higher than the earlier reported data.
Collapse
|
5
|
Thapar U, Demple B. Deployment of DNA polymerases beta and lambda in single-nucleotide and multinucleotide pathways of mammalian base excision DNA repair. DNA Repair (Amst) 2019; 76:11-19. [PMID: 30763888 DOI: 10.1016/j.dnarep.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
There exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or "short-patch" (SP-BER), and "long-patch" BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase β (Polβ) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER. In this study we explore the potential contribution of Polλ to both SP- and LP-BER in cell-free extracts. We measured BER activity in extracts of mouse embryonic fibroblasts using substrates with either a single uracil or the chemically stable abasic site analog tetrahydrofuran residue. The addition of purified Polλ complemented the pronounced BER deficiency of POLB-null cell extracts as efficiently as did Polβ itself. We have developed a new approach for determining the relative contributions of SP- and LP-BER pathways, exploiting mass-labeled nucleotides to distinguish single- and multinucleotide repair patches. Using this method, we found that uracil repair in wild-type and in Polβ-deficient cell extracts supplemented with Polλ was ∼80% SP-BER. The results show that recombinant Polλ can contribute to both SP- and LP-BER. However, endogenous Polλ, which is present at a level ˜50% that of Polβ in mouse embryonic fibroblasts, appears to make little contribution to BER in extracts. Thus Polλ in cells appears to be under some constraint, perhaps sequestered in a complex with other proteins, or post-translationally modified in a way that limits its ability to participate effectively in BER.
Collapse
Affiliation(s)
- Upasna Thapar
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, United States; Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, 11794, United States
| | - Bruce Demple
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, United States; Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, 11794, United States.
| |
Collapse
|
6
|
Yukutake M, Hayashida M, Shioi Aoki N, Kuraoka I. Oligo swapping method for in vitro DNA repair substrate containing a single DNA lesion at a specific site. Genes Environ 2018; 40:23. [PMID: 30459925 PMCID: PMC6231255 DOI: 10.1186/s41021-018-0112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background A wide variety of DNA lesions interfere with replication and transcription, leading to mutations and cell death. DNA repair mechanisms act upon these DNA lesions present in the genomic DNA. To investigate a DNA repair mechanism elaborately, an in vitro DNA repair substrate containing DNA lesions at a specific site is required. Previously, to prepare the substrate, phagemid ssDNA and DNA lesion-harboring oligonucleotides were employed with considerable amounts of DNA polymerase and DNA ligase. However, preparing in vitro DNA repair substrate in general is difficult and labor intensive. Results Here, we modified the construction method of in vitro mismatch repair substrate using a nicking-endonuclease, which produces gap corresponding to the ssDNA in the plasmid DNA, and swaps DNA lesion-containing oligonucleotide upon addition of restriction enzyme and T5 exonuclease. This modified method is able to produce in vitro DNA repair substrates containing adenine:cytosine mismatch basepair, 8-oxoG, and uracil. The DNA repair enzyme, each Fpg, hOGG1 could cleave an 8-oxoG-containing DNA substrate, the mixture of UDG and APE1 could cleave a uracil-containing DNA substrate. Omitting a column purification step, DNA repair substrates were prepared by one-pot synthesis. Conclusions We were able to prepare in vitro DNA repair substrates using this simple method involving restriction enzymes and T5 exonuclease. It is anticipated that this method, termed as "Oligo Swapping Method", will be valuable for understanding the DNA repair machinery.
Collapse
Affiliation(s)
- Mika Yukutake
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Mika Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Narumi Shioi Aoki
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| |
Collapse
|
7
|
Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci 2018; 75:2777-2792. [PMID: 29748894 PMCID: PMC11105623 DOI: 10.1007/s00018-018-2833-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.
Collapse
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Amy Winship
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
8
|
Bártová E, Suchánková J, Legartová S, Malyšková B, Hornáček M, Skalníková M, Mašata M, Raška I, Kozubek S. PCNA is recruited to irradiated chromatin in late S-phase and is most pronounced in G2 phase of the cell cycle. PROTOPLASMA 2017; 254:2035-2043. [PMID: 28168519 DOI: 10.1007/s00709-017-1076-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
DNA repair is a complex process that prevents genomic instability. Many proteins play fundamental roles in regulating the optimal repair of DNA lesions. Proliferating cell nuclear antigen (PCNA) is a key factor that initiates recombination-associated DNA synthesis after injury. Here, in very early S-phase, we show that the fluorescence intensity of mCherry-tagged PCNA after local micro-irradiation was less than the fluorescence intensity of non-irradiated mCherry-PCNA-positive replication foci. However, PCNA protein accumulated at locally irradiated chromatin in very late S-phase of the cell cycle, and this effect was more pronounced in the following G2 phase. In comparison to the dispersed form of PCNA, a reduced mobile fraction appeared in PCNA-positive replication foci during S-phase, and we observed similar recovery time after photobleaching at locally induced DNA lesions. This diffusion of mCherry-PCNA in micro-irradiated regions was not affected by cell cycle phases. We also studied the link between function of PCNA and A-type lamins in late S-phase. We found that the accumulation of PCNA at micro-irradiated chromatin is identical in wild-type and A-type lamin-deficient cells. Only micro-irradiation of the nuclear interior, and thus the irradiation of internal A-type lamins, caused the fluorescence intensity of mCherry-tagged PCNA to increase. In summary, we showed that PCNA begins to play a role in DNA repair in late S-phase and that PCNA function in repair is maintained during the G2 phase of the cell cycle. However, PCNA mobility is reduced after local micro-irradiation regardless of the cell cycle phase.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jana Suchánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Barbora Malyšková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Matúš Hornáček
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Magdalena Skalníková
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Martin Mašata
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
9
|
Abbotts R, Wilson DM. Coordination of DNA single strand break repair. Free Radic Biol Med 2017; 107:228-244. [PMID: 27890643 PMCID: PMC5443707 DOI: 10.1016/j.freeradbiomed.2016.11.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
The genetic material of all organisms is susceptible to modification. In some instances, these changes are programmed, such as the formation of DNA double strand breaks during meiotic recombination to generate gamete variety or class switch recombination to create antibody diversity. However, in most cases, genomic damage is potentially harmful to the health of the organism, contributing to disease and aging by promoting deleterious cellular outcomes. A proportion of DNA modifications are caused by exogenous agents, both physical (namely ultraviolet sunlight and ionizing radiation) and chemical (such as benzopyrene, alkylating agents, platinum compounds and psoralens), which can produce numerous forms of DNA damage, including a range of "simple" and helix-distorting base lesions, abasic sites, crosslinks and various types of phosphodiester strand breaks. More significant in terms of frequency are endogenous mechanisms of modification, which include hydrolytic disintegration of DNA chemical bonds, attack by reactive oxygen species and other byproducts of normal cellular metabolism, or incomplete or necessary enzymatic reactions (such as topoisomerases or repair nucleases). Both exogenous and endogenous mechanisms are associated with a high risk of single strand breakage, either produced directly or generated as intermediates of DNA repair. This review will focus upon the creation, consequences and resolution of single strand breaks, with a particular focus on two major coordinating repair proteins: poly(ADP-ribose) polymerase 1 (PARP1) and X-ray repair cross-complementing protein 1 (XRCC1).
Collapse
Affiliation(s)
- Rachel Abbotts
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
10
|
Abstract
Since the discovery of the base excision repair (BER) system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by
in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways
in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.
Collapse
Affiliation(s)
- Upasna Thapar
- Department of Pharmacological Sciences, Stony Brook University, School of Medicine, Stony Brook, NY, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University, School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
11
|
Beaver JM, Lai Y, Rolle SJ, Liu Y. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal. DNA Repair (Amst) 2016; 48:17-29. [PMID: 27793507 DOI: 10.1016/j.dnarep.2016.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022]
Abstract
DNA base lesions and base excision repair (BER) within trinucleotide repeat (TNR) tracts modulate repeat instability through the coordination among the key BER enzymes DNA polymerase β, flap endonuclease 1 (FEN1) and DNA ligase I (LIG I). However, it remains unknown whether BER cofactors can also alter TNR stability. In this study, we discovered that proliferating cell nuclear antigen (PCNA), a cofactor of BER, promoted CAG repeat deletion and removal of a CAG repeat hairpin during BER in a duplex CAG repeat tract and CAG hairpin loop, respectively. We showed that PCNA stimulated LIG I activity on a nick across a small template loop during BER in a duplex (CAG)20 repeat tract promoting small repeat deletions. Surprisingly, we found that during BER in a hairpin loop, PCNA promoted reannealing of the upstream flap of a double-flap intermediate, thereby facilitating the formation of a downstream flap and stimulating FEN1 cleavage activity and hairpin removal. Our results indicate that PCNA plays a critical role in preventing CAG repeat expansions by modulating the structures of dynamic DNA via cooperation with BER enzymes. We provide the first evidence that PCNA prevents CAG repeat expansions during BER by promoting CAG repeat deletion and removal of a TNR hairpin.
Collapse
Affiliation(s)
- Jill M Beaver
- Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Shantell J Rolle
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States; Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States; Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States.
| |
Collapse
|
12
|
Quiñones JL, Demple B. When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions. DNA Repair (Amst) 2016; 44:103-109. [PMID: 27264558 PMCID: PMC6420214 DOI: 10.1016/j.dnarep.2016.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Free radicals generate an array of DNA lesions affecting all parts of the molecule. The damage to deoxyribose receives less attention than base damage, even though the former accounts for ∼20% of the total. Oxidative deoxyribose fragments (e.g., 3'-phosphoglycolate esters) are removed by the Ape1 AP endonuclease and other enzymes in mammalian cells to enable DNA repair synthesis. Oxidized abasic sites are initially incised by Ape1, thus recruiting these lesions into base excision repair (BER) pathways. Lesions such as 2-deoxypentos-4-ulose can be removed by conventional (single-nucleotide) BER, which proceeds through a covalent Schiff base intermediate with DNA polymerase β (Polβ) that is resolved by hydrolysis. In contrast, the lesion 2-deoxyribonolactone (dL) must be processed by multinucleotide ("long-patch") BER: attempted repair via the single-nucleotide pathway leads to a dead-end, covalent complex with Polβ cross- linked to the DNA by an amide bond. We recently detected these stable DNA-protein crosslinks (DPC) between Polβ and dL in intact cells. The features of the DPC formation in vivo are exactly in keeping with the mechanistic properties seen in vitro: Polβ-DPC are formed by oxidative agents in line with their ability to form the dL lesion; they are not formed by non-oxidative agents; DPC formation absolutely requires the active-site lysine-72 that attacks the 5'-deoxyribose; and DPC formation depends on Ape1 to incise the dL lesion first. The Polβ-DPC are rapidly processed in vivo, the signal disappearing with a half-life of 15-30min in both mouse and human cells. This removal is blocked by inhibiting the proteasome, which leads to the accumulation of ubiquitin associated with the Polβ-DPC. While other proteins (e.g., topoisomerases) also form DPC under these conditions, 60-70% of the trapped ubiquitin depends on Polβ. The mechanism of ubiquitin targeting to Polβ-DPC, the subsequent processing of the expected 5'-peptidyl-dL, and the biological consequences of unrepaired DPC are important to assess. Many other lyase enzymes that attack dL can also be trapped in DPC, so the processing mechanisms may apply quite broadly.
Collapse
Affiliation(s)
- Jason Luis Quiñones
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Stony Brook, NY, 11794, USA
| | - Bruce Demple
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Stony Brook, NY, 11794, USA.
| |
Collapse
|
13
|
Wu Y, Lu J, Kang T. Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai) 2016; 48:671-7. [PMID: 27217471 DOI: 10.1093/abbs/gmw044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms. All processes related to DNA, such as replication, excision, repair, and recombination, require the participation of SSBs whose oligonucleotide/oligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA). For a long time, the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukaryotes to participate in ssDNA processing, while mitochondrial SSBs that are conserved with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria. In recent years, two new proteins, hSSB1 and hSSB2 (human SSBs 1/2), were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA. This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage, as well as their relationships with cancer.
Collapse
Affiliation(s)
- Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinping Lu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
14
|
Ganai RA, Zhang XP, Heyer WD, Johansson E. Strand displacement synthesis by yeast DNA polymerase ε. Nucleic Acids Res 2016; 44:8229-40. [PMID: 27325747 PMCID: PMC5041465 DOI: 10.1093/nar/gkw556] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022] Open
Abstract
DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3′–5′ exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo. We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3′–5′ exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5′ end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair.
Collapse
Affiliation(s)
- Rais A Ganai
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10016, USA
| | - Xiao-Ping Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
15
|
Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3125989. [PMID: 26649135 PMCID: PMC4663340 DOI: 10.1155/2016/3125989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
DNA oxidative lesions are widely considered as a potential risk factor for colorectal cancer development. The aim of this work was to determine the role of the efficiency of base excision repair, both in lymphocytes and in epithelial tissue, in patients with CRC and healthy subjects. SNPs were identified within genes responsible for steps following glycosylase action in BER, and patients and healthy subjects were genotyped. A radioisotopic BER assay was used for assessing repair efficiency and TaqMan for genotyping. Decreased BER activity was observed in lymphocyte extract from CRC patients and in cancer tissue extract, compared to healthy subjects. In addition, polymorphisms of EXO1, LIG3, and PolB may modulate the risk of colorectal cancer by decreasing (PolB) or increasing (LIG3 and EXO1) the chance of malignant transformation.
Collapse
|
16
|
Lee CC, Yang YC, Goodman SD, Chen S, Huang TY, Cheng WC, Lin LI, Fang WH. Deoxyinosine repair in nuclear extracts of human cells. Cell Biosci 2015; 5:52. [PMID: 26357532 PMCID: PMC4563847 DOI: 10.1186/s13578-015-0044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 09/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Deamination of adenine can occur spontaneously under physiological conditions generating the highly mutagenic lesion, hypoxanthine. This process is enhanced by ROS from exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat. Hypoxanthine in DNA can pair with cytosine which results in A:T to G:C transition mutations after DNA replication. In Escherichia coli, deoxyinosine (hypoxanthine deoxyribonucleotide, dI) is removed through an alternative excision repair pathway initiated by endonuclease V. However, the correction of dI in mammalian cells appears more complex and was not fully understood. RESULTS All four possible dI-containing heteroduplex DNAs, including A-I, C-I, G-I, and T-I were introduced to repair reactions containing extracts from human cells. The repair reaction requires magnesium, dNTPs, and ATP as cofactors. We found G-I was the best substrate followed by T-I, A-I and C-I, respectively. Moreover, judging from the repair requirements and sensitivity to specific polymerase inhibitors, there were overlapping repair activities in processing of dI in DNA. Indeed, a hereditable non-polyposis colorectal cancer cell line (HCT116) demonstrated lower dI repair activity that was partially attributed to lack of mismatch repair. CONCLUSIONS A plasmid-based convenient and non-radioisotopic method was created to study dI repair in human cells. Mutagenic dI lesions processed in vitro can be scored by restriction enzyme cleavage to evaluate the repair. The repair assay described in this study provides a good platform for further investigation of human repair pathways involved in dI processing and their biological significance in mutation prevention.
Collapse
Affiliation(s)
- Chia-Chia Lee
- />Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, #7, Chung-Shan South Road, Taipei, 10002 Taiwan ROC
| | - Ya-Chien Yang
- />Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, #7, Chung-Shan South Road, Taipei, 10002 Taiwan ROC
- />Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 10002 Taiwan ROC
| | - Steven D. Goodman
- />Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH USA
| | - Shi Chen
- />Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, #7, Chung-Shan South Road, Taipei, 10002 Taiwan ROC
| | - Teng-Yung Huang
- />Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, #7, Chung-Shan South Road, Taipei, 10002 Taiwan ROC
| | - Wern-Cherng Cheng
- />Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 10002 Taiwan ROC
| | - Liang-In Lin
- />Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, #7, Chung-Shan South Road, Taipei, 10002 Taiwan ROC
- />Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 10002 Taiwan ROC
| | - Woei-horng Fang
- />Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, #7, Chung-Shan South Road, Taipei, 10002 Taiwan ROC
- />Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 10002 Taiwan ROC
| |
Collapse
|
17
|
Narayan S, Sharma R. Molecular mechanism of adenomatous polyposis coli-induced blockade of base excision repair pathway in colorectal carcinogenesis. Life Sci 2015; 139:145-52. [PMID: 26334567 DOI: 10.1016/j.lfs.2015.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/31/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of death in both men and women in North America. Despite chemotherapeutic efforts, CRC is associated with a high degree of morbidity and mortality. Thus, to develop effective treatment strategies for CRC, one needs knowledge of the pathogenesis of cancer development and cancer resistance. It is suggested that colonic tumors or cell lines harbor truncated adenomatous polyposis coli (APC) without DNA repair inhibitory (DRI)-domain. It is also thought that the product of the APC gene can modulate base excision repair (BER) pathway through an interaction with DNA polymerase β (Pol-β) and flap endonuclease 1 (Fen-1) to mediate CRC cell apoptosis. The proposed therapy with temozolomide (TMZ) exploits this particular pathway; however, a high percentage of colorectal tumors continue to develop resistance to chemotherapy due to mismatch repair (MMR)-deficiency. In the present communication, we have comprehensively reviewed a critical issue that has not been addressed previously: a novel mechanism by which APC-induced blockage of single nucleotide (SN)- and long-patch (LP)-BER play role in DNA-alkylation damage-induced colorectal carcinogenesis.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610 United States.
| | - Ritika Sharma
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610 United States
| |
Collapse
|
18
|
Larmony S, Garnier F, Hoste A, Nadal M. A specific proteomic response of Sulfolobus solfataricus P2 to gamma radiations. Biochimie 2015; 118:270-7. [PMID: 26116887 DOI: 10.1016/j.biochi.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
Sulfolobus solfataricus is an acidophilic hyperthermophilic crenarchaeon living at 80 °C in aerobic conditions. As other thermophilic organisms, S. solfataricus is resistant to gamma irradiation and we studied the response of this microorganism to this ionizing irradiation by monitoring cell growth, DNA integrity and proteome variations. In aerobic conditions, the S. solfataricus genome was fragmented due to the multiple DNA double strand breakages induced by γ-rays and was fully restored within a couple of hours. Comparison of irradiated and unirradiated cell proteomes indicated that only few proteins changed. The proteins identified by mass spectrometry are involved in different cellular pathways including DNA replication, recombination and repair. Interestingly, we observed that some proteins are irradiation dose-specific while others are common to the cell response regardless of the irradiation dose. Most of the proteins highlighted in these conditions seem to act together to allow an efficient cell response to γ-irradiation.
Collapse
Affiliation(s)
- Sharon Larmony
- Université Versailles St-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles, France; Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Bât. 409, 91405 Orsay Cedex, France
| | - Florence Garnier
- Université Versailles St-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles, France; Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Bât. 409, 91405 Orsay Cedex, France
| | - Astrid Hoste
- Université Versailles St-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles, France; Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Bât. 409, 91405 Orsay Cedex, France
| | - Marc Nadal
- Université Versailles St-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles, France; Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Bât. 409, 91405 Orsay Cedex, France.
| |
Collapse
|
19
|
Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway. Toxicol Appl Pharmacol 2014; 275:221-31. [PMID: 24467951 DOI: 10.1016/j.taap.2014.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022]
Abstract
Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21.
Collapse
|
20
|
Abstract
Base excision repair (BER) is a frontline repair system that is responsible for maintaining genome integrity and thus preventing premature aging, cancer and many other human diseases by repairing thousands of DNA lesions and strand breaks continuously caused by endogenous and exogenous mutagens. This fundamental and essential function of BER not only necessitates tight control of the continuous availability of basic components for fast and accurate repair, but also requires temporal and spatial coordination of BER and cell cycle progression to prevent replication of damaged DNA. The major goal of this review is to critically examine controversial and newly emerging questions about mammalian BER pathways, mechanisms regulating BER capacity, BER responses to DNA damage and their links to checkpoint control of DNA replication.
Collapse
Affiliation(s)
- Grigory L Dianov
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
21
|
Dalhus B, Nilsen L, Korvald H, Huffman J, Forstrøm RJ, McMurray CT, Alseth I, Tainer JA, Bjørås M. Sculpting of DNA at abasic sites by DNA glycosylase homolog mag2. Structure 2012; 21:154-166. [PMID: 23245849 DOI: 10.1016/j.str.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/15/2022]
Abstract
Modifications and loss of bases are frequent types of DNA lesions, often handled by the base excision repair (BER) pathway. BER is initiated by DNA glycosylases, generating abasic (AP) sites that are subsequently cleaved by AP endonucleases, which further pass on nicked DNA to downstream DNA polymerases and ligases. The coordinated handover of cytotoxic intermediates between different BER enzymes is most likely facilitated by the DNA conformation. Here, we present the atomic structure of Schizosaccharomyces pombe Mag2 in complex with DNA to reveal an unexpected structural basis for nonenzymatic AP site recognition with an unflipped AP site. Two surface-exposed loops intercalate and widen the DNA minor groove to generate a DNA conformation previously only found in the mismatch repair MutS-DNA complex. Consequently, the molecular role of Mag2 appears to be AP site recognition and protection, while possibly facilitating damage signaling by structurally sculpting the DNA substrate.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Line Nilsen
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Hanne Korvald
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Joy Huffman
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rune Johansen Forstrøm
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Cynthia T McMurray
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mailstop: 83R0101, Berkeley, CA 94720, USA
| | - Ingrun Alseth
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway.
| | - John A Tainer
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Bioenergy/GTL and Structural Biology, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mailstop: 83R0101, Berkeley, CA 94720, USA.
| | - Magnar Bjørås
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway; Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Bosshard M, Markkanen E, van Loon B. Base excision repair in physiology and pathology of the central nervous system. Int J Mol Sci 2012. [PMID: 23203191 PMCID: PMC3546685 DOI: 10.3390/ijms131216172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthias Bosshard
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
23
|
Furda AM, Marrangoni AM, Lokshin A, Van Houten B. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair (Amst) 2012; 11:684-92. [PMID: 22766155 DOI: 10.1016/j.dnarep.2012.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H(2)O(2)) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60min treatment with H(2)O(2) causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60min treatment with 2mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Amy M Furda
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
24
|
Córdoba-Cañero D, Roldán-Arjona T, Ariza RR. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:693-702. [PMID: 21781197 DOI: 10.1111/j.1365-313x.2011.04720.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.
Collapse
|
25
|
Akbari M, Krokan HE. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei-implications for comparative studies. Mutat Res 2011; 736:33-8. [PMID: 21736882 DOI: 10.1016/j.mrfmmm.2011.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 06/08/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore, candidate proteins in extracts can be inhibited or depleted in a controlled way, making defined extracts an important source for mechanistic studies. The major drawback is that there is no standardized method of preparing nuclear extract for BER studies, and it does not appear to be a topic given much attention. Here we have examined BER activity of nuclear cell extracts from HeLa cells, using as substrate a circular DNA molecule with either uracil or an AP-site in a defined position. We show that BER activity of nuclear extracts from the same batch of cells varies inversely with the volume of nuclear extraction buffer relative to nuclei volume, in spite of identical protein concentrations in the BER assay mixture. Surprisingly, the uracil-DNA glycosylase activity (mainly UNG2), but not amount of UNG2, also correlated negatively with the volume of extraction buffer. These studies demonstrate that the method for preparation of nuclear extract is an important factor to consider for in vitro BER analysis and conditions used in comparative studies must be carefully worked out.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
26
|
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. ANNALS OF BOTANY 2011; 107:1127-40. [PMID: 21169293 PMCID: PMC3091797 DOI: 10.1093/aob/mcq243] [Citation(s) in RCA: 516] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. SCOPE This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. CONCLUSIONS Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Alicja Ziemienowicz
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- For correspondence. E-mail
| |
Collapse
|
27
|
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. ANNALS OF BOTANY 2011. [PMID: 21169293 DOI: 10.1093/aob/mcq43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. SCOPE This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. CONCLUSIONS Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | | |
Collapse
|
28
|
Kumar P, Bharti SK, Varshney U. Uracil excision repair in Mycobacterium tuberculosis cell-free extracts. Tuberculosis (Edinb) 2011; 91:212-8. [PMID: 21371942 DOI: 10.1016/j.tube.2011.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/27/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
Abstract
Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
29
|
Salem MMAEL, Shalbaf M, Gibbons NCJ, Chavan B, Thornton JM, Schallreuter KU. Enhanced DNA binding capacity on up‐regulated epidermal wild‐type p53 in vitiligo by H
2
O
2
‐mediated oxidation: a possible repair mechanism for DNA damage. FASEB J 2009; 23:3790-807. [PMID: 19641144 DOI: 10.1096/fj.09-132621] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed M. A. E. L. Salem
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - Mohammad Shalbaf
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - Nicholas C. J. Gibbons
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
- University of Bradford Bradford UK
| | - Bhaven Chavan
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - J. M. Thornton
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - Karin U. Schallreuter
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
- Institute for Pigmentary Disorders in association with E. M. Arndt University Greifswald Germany
| |
Collapse
|
30
|
Akbari M, Peña-Diaz J, Andersen S, Liabakk NB, Otterlei M, Krokan HE. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity. DNA Repair (Amst) 2009; 8:834-43. [PMID: 19442590 DOI: 10.1016/j.dnarep.2009.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/03/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
Base excision repair (BER) of damaged or inappropriate bases in DNA has been reported to take place by single nucleotide insertion or through incorporation of several nucleotides, termed short-patch and long-patch repair, respectively. We found that extracts from proliferating and non-proliferating cells both had capacity for single- and two-nucleotide insertion BER activity. However, patch size longer than two nucleotides was only detected in extracts from proliferating cells. Relative to extracts from proliferating cells, extracts from non-proliferating cells had approximately two-fold higher concentration of POLbeta, which contributed to most of two-nucleotide insertion BER. In contrast, two-nucleotide insertion in extracts from proliferating cells was not dependent on POLbeta. BER fidelity was two- to three-fold lower in extracts from the non-proliferating compared with extracts of proliferating cells. Furthermore, although one-nucleotide deletion was the predominant type of repair error in both extracts, the pattern of repair errors was somewhat different. These results establish two-nucleotide patch BER as a distinct POLbeta-dependent mechanism in non-proliferating cells and demonstrate that BER fidelity is lower in extracts from non-proliferating as compared with proliferating cells.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, NTNU, N-7489 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
31
|
Langerak P, Krijger PHL, Heideman MR, van den Berk PCM, Jacobs H. Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice. Philos Trans R Soc Lond B Biol Sci 2009; 364:621-9. [PMID: 19008189 PMCID: PMC2660925 DOI: 10.1098/rstb.2008.0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations—a phenotype similar to Polη and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Polη probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK164 modification.
Collapse
Affiliation(s)
- Petra Langerak
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Akbari M, Visnes T, Krokan HE, Otterlei M. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst) 2008; 7:605-16. [PMID: 18295553 DOI: 10.1016/j.dnarep.2008.01.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/28/2023]
Abstract
Base excision repair (BER) corrects a variety of small base lesions in DNA. The UNG gene encodes both the nuclear (UNG2) and the mitochondrial (UNG1) forms of the human uracil-DNA glycosylase (UDG). We prepared mitochondrial extracts free of nuclear BER proteins from human cell lines. Using these extracts we show that UNG is the only detectable UDG in mitochondria, and mitochondrial BER (mtBER) of uracil and AP sites occur by both single-nucleotide insertion and long-patch repair DNA synthesis. Importantly, extracts of mitochondria carry out repair of modified AP sites which in nuclei occurs through long-patch BER. Such lesions may be rather prevalent in mitochondrial DNA because of its proximity to the electron transport chain, the primary site of production of reactive oxygen species. Furthermore, mitochondrial extracts remove 5' protruding flaps from DNA which can be formed during long-patch BER, by a "flap endonuclease like" activity, although flap endonuclease (FEN1) is not present in mitochondria. In conclusion, combined short- and long-patch BER activities enable mitochondria to repair a broader range of lesions in mtDNA than previously known.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | | | |
Collapse
|
33
|
Sukhanova M, Khodyreva S, Lavrik O. Suppression of base excision repair reactions by apoptotic 24kDa-fragment of poly(ADP-ribose) polymerase 1 in bovine testis nuclear extract. DNA Repair (Amst) 2007; 6:615-25. [PMID: 17236819 DOI: 10.1016/j.dnarep.2006.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 11/18/2022]
Abstract
In this study, we examined the interaction of PARP1 and its apoptotic 24kDa-fragment with DNA duplexes mimicking different stages/pathways of base excision repair (BER) using a photocross-linking technique combined to in vitro functional assay. We found that endogenous PARP1 was photocross-linked to the gapped, nicked and flap containing DNA structures and its apoptotic 24kDa-fragment (p24), like PARP1, can interact with the same BER DNA intermediates. Effects of exogenous p24 on the repair of DNA duplexes containing a one nucleotide gap with furan phosphate or phosphate group at the 5'-end of the downstream primer were studied in bovine testis nuclear extract. We showed that the interaction of p24 with DNA, as a whole, inhibited the BER reactions. However, gap filling and nick sealing catalyzed by the enzymes of the extract with DNA substrates characteristic for short patch (SP) BER pathway cannot be completely inhibited by p24. In contrast, binding of p24 to DNA duplex with a 5'-furan or a 5'-flap at the 5'-side of a nick inhibits strand-displacement DNA synthesis and activity of FEN1 in the repair of DNA via long patch (LP) BER pathway. Stimulation of the LP BER reactions induced by the addition of FEN1 or PCNA to the extract is suppressed by p24 thereby indicating that p24 can efficiently compete with these proteins of LP BER. Addition of pol beta to the extract can partially overcome the inhibitory effect of p24 and restore strand-displacement DNA synthesis. Thus, the apoptotic 24kDa-fragment of PARP1 may be considered as more efficient in inhibition of the LP than SP pathway and the effect may depend on the ratio of p24 to the repair enzymes catalyzing precise stages of BER.
Collapse
Affiliation(s)
- Maria Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Prospect Lavrentieva 8, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
34
|
Sukhanova MV, Khodyreva SN, Lavrik OI. Influence of poly(ADP-ribose) polymerase-1 and its apoptotic 24-kD fragment on repair of DNA duplexes in bovine testis nuclear extract. BIOCHEMISTRY (MOSCOW) 2006; 71:736-48. [PMID: 16903828 DOI: 10.1134/s0006297906070066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of exogenous proteins poly(ADP-ribose) polymerase-1 (PARP1) and its 24-kD proteolytic fragment (p24) on the repair of DNA duplexes containing a one nucleotide gap with furan phosphate or phosphate group at the 5'-end of the downstream primer were studied in bovine testis nuclear extract. These damaged DNAs are repaired by the long-patch or short-patch subpathways of base excision repair (BER), respectively. Exogenous PARP1 and p24 decreased the efficiency of gap filling DNA synthesis for both duplexes, but did not influence the ligation stage in the repair of DNA duplex by the short-patch subpathway. Under the same conditions, these proteins inhibited strand-displacement DNA synthesis and decreased the efficiency of the flap endonuclease 1 (FEN1)-catalyzed endonuclease reaction in the nuclear extract, blocking repair of DNA duplex by the long-patch subpathway. Addition of exogenous PARP1 and p24 also reduced the efficiency of UV light crosslinking of extract BER proteins to the photoreactive BER intermediates carrying a nick. Thus, PARP1 and p24 interact with DNA intermediates of BER and compete with nuclear extract proteins for binding to DNA. The interaction of PARP1 and p24 with DNA intermediates of the long-patch subpathway of BER resulted in inhibition of subsequent stages of the repair mediated by this mechanism. However, on recovery of the intact structure of DNA duplex by the short-patch subpathway, PARP1 and p24 suppressed the repair of the one nucleotide gap less efficiently and failed to influence the final stage of the repair, ligation.
Collapse
Affiliation(s)
- M V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
35
|
|
36
|
Leach CA, Michael WM. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. ACTA ACUST UNITED AC 2005; 171:947-54. [PMID: 16344309 PMCID: PMC2171325 DOI: 10.1083/jcb.200508100] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The homotrimeric DNA replication protein proliferating cell nuclear antigen (PCNA) is regulated by both ubiquitylation and sumoylation. We study the appearance and the impact of these modifications on chromosomal replication in frog egg extracts. Xenopus laevis PCNA is modified on lysine 164 by sumoylation, monoubiquitylation, and diubiquitylation. Sumoylation and monoubiquitylation occur during the replication of undamaged DNA, whereas diubiquitylation occurs specifically in response to DNA damage. When lysine 164 modification is prevented, replication fork movement through undamaged DNA slows down and DNA polymerase δ fails to associate with replicating chromatin. When sumoylation alone is prevented, replication occurs normally and neither monoubiquitylation nor sumoylation are required for the replication of simple single-strand DNA templates. Our findings expand the repertoire of functions for PCNA ubiquitylation and sumoylation by elucidating a role for these modifications during the replication of undamaged DNA. Furthermore, they suggest that PCNA monoubiquitylation serves as a molecular gas pedal that controls the speed of replisome movement during S phase.
Collapse
Affiliation(s)
- Craig A Leach
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
37
|
Abstract
DNA in living cells is constantly subjected to different chemical and physical factors of the environment and to cell metabolites. Some changes altering DNA structure occur spontaneously. This raises the potential danger of harmful mutations that could be transmitted to offspring. To avoid the danger of mutations and changing genetic information, a cell is capable to switch on multiple mechanisms of DNA repair that remove damage and restore native structure. In many cases, removal of the same damage may involve several alternative pathways; this is very important for DNA repair under the most unfavorable conditions. This review summarizes data about all known mechanisms of eukaryotic DNA repair including excision repair (base excision repair and nucleotide excision repair), mismatch repair, repair of double-strand breaks, and cross-link repair. Special attention is given to the regulation of excision repair by different proteins--proliferating cell nuclear antigen (PCNA), p53, and proteasome. The review also highlights problem of bypassing irremovable lesions in DNA.
Collapse
Affiliation(s)
- N P Sharova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
38
|
Affiliation(s)
- J Christopher Fromme
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
39
|
Semenenko VA, Stewart RD, Ackerman EJ. Monte Carlo Simulation of Base and Nucleotide Excision Repair of Clustered DNA Damage Sites. I. Model Properties and Predicted Trends. Radiat Res 2005; 164:180-93. [PMID: 16038589 DOI: 10.1667/rr3402] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA is constantly damaged through endogenous processes and by exogenous agents, such as ionizing radiation. Base excision repair (BER) and nucleotide excision repair (NER) help maintain the stability of the genome by removing many different types of DNA damage. We present a Monte Carlo excision repair (MCER) model that simulates key steps in the short-patch and long-patch BER pathways and the NER pathway. The repair of both single and clustered damages, except double-strand breaks (DSBs), is simulated in the MCER model. Output from the model includes estimates of the probability that a cluster is repaired correctly, the fraction of the clusters converted into DSBs through the action of excision repair enzymes, the fraction of the clusters repaired with mutations, and the expected number of repair cycles needed to completely remove a clustered damage site. The quantitative implications of alternative hypotheses regarding the postulated repair mechanisms are investigated through a series of parameter sensitivity studies. These sensitivity studies are also used to help define the putative repair characteristics of clustered damage sites other than DSBs.
Collapse
Affiliation(s)
- V A Semenenko
- Purdue University, School of Health Sciences, West Lafayette, Indiana 47907-2051, USA
| | | | | |
Collapse
|
40
|
Beernink PT, Hwang M, Ramirez M, Murphy MB, Doyle SA, Thelen MP. Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein. J Biol Chem 2005; 280:30206-13. [PMID: 15987676 DOI: 10.1074/jbc.m502155200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein interactions critical to DNA repair and cell cycle control systems are often coordinated by modules that belong to a superfamily of structurally conserved BRCT domains. Because the mechanisms of BRCT interactions and their significance are not well understood, we sought to define the affinity and specificity of those BRCT modules that orchestrate base excision repair and single-strand break repair. Common to these pathways is the essential XRCC1 DNA repair protein, which interacts with at least nine other proteins and DNA. Here, we characterized the interactions of four purified BRCT domains, two from XRCC1 and their two partners from DNA ligase IIIalpha and poly(ADP-ribosyl) polymerase 1. A monoclonal antibody was selected that recognizes the ligase IIIalpha BRCT domain, but not the other BRCT domains, and was used to capture the relevant ligase IIIalpha BRCT complex. To examine the assembly states of isolated BRCT domains and pairwise domain complexes, we used size-exclusion chromatography coupled with on-line light scattering. This analysis indicated that isolated BRCT domains form homo-oligomers and that the BRCT complex between the C-terminal XRCC1 domain and the ligase IIIalpha domain is a heterotetramer with 2:2 stoichiometry. Using affinity capture and surface plasmon resonance methods, we determined that specific heteromeric interactions with high nanomolar dissociation constants occur between pairs of cognate BRCT domains. A structural model for a XRCC1 x DNA ligase IIIalpha heterotetramer is proposed as a core base excision repair complex, which constitutes a scaffold for higher order complexes to which other repair proteins and DNA are brought into proximity.
Collapse
Affiliation(s)
- Peter T Beernink
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | | | | | |
Collapse
|
41
|
López A, Xamena N, Marcos R, Velázquez A. Germline genomic instability in PCNA mutants of Drosophila: DNA fingerprinting and microsatellite analysis. Mutat Res 2005; 570:253-65. [PMID: 15708584 DOI: 10.1016/j.mrfmmm.2004.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/04/2004] [Accepted: 11/26/2004] [Indexed: 11/29/2022]
Abstract
PCNA participates in multiple processes of DNA metabolism with an essential role in DNA replication and intervening in DNA repair. Temperature-sensitive PCNA mutants of Drosophila (mus209) are sensitive to mutagens, impair developmental processes and suppress positional-effect variegation. To investigate the role of proliferating cell nuclear antigen (PCNA) in germline genomic stability, independent mus209-defective and mus209-normal lines were established and maintained over six generations. A time course study was carried out and general genomic alterations were analyzed in the progeny by using arbitrarily primed PCR (AP-PCR) and microsatellite analysis. The AP-PCR analysis has shown that a dysfunctional PCNA leads to germline genomic instability, being the amount of genomic alterations transmitted to the progeny directly related to the number of mus209B1 mutant alleles. In addition, we have found that the frequency of genomic alterations tends to increase over successive generations. Surprisingly, the highest microsatellite instability was found in the heterozygous mus209-defective lines, suggesting a greater mutation rate in these individuals, in comparison with the homozygous mus209-defective lines. In conclusion, our results clearly indicate that PCNA is an important factor to maintain genomic stability in germinal cells, both in the overall genome and in simple repeated sequences. The implication of PCNA mutations in transgenerational genomic instability and related to cancer susceptibility is also discussed.
Collapse
Affiliation(s)
- Arturo López
- Grup de Mutagènesi, Unitat de Genètica, Edifici Cn, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
42
|
Abstract
Developmentally regulated gene amplification serves to increase the number of templates for transcription, yielding greatly increased protein and/or RNA product for gene(s) at the amplified loci. It is observed with genes that are very actively transcribed and during narrow windows of developmental time where copious amounts of those particular gene products are required. Amplification results from repeated firing of origins at a few genomic loci, while the rest of the genome either does not replicate, or replicates to a lesser extent. As such, amplification is a striking exception to the once-and-only-once rule of DNA replication and may be informative as to that mechanism. Drosophila amplifies eggshell (chorion) genes in the follicle cells of the ovary to allow for rapid eggshell synthesis. Sciara amplifies multiple genes in larval salivary gland cells that encode proteins secreted in the saliva for the pupal case. Finally, Tetrahymena amplifies its rRNA genes several thousand-fold in the creation of the transcriptionally active macronucleus. Due to the ease of molecular and genetic analysis with these systems, the study of origin regulation has advanced rapidly. Comparisons reveal an evolutionarily conserved trans-regulatory apparatus and a similar organization of sequence-specific cis-regulatory replicator and origin elements. The studies indicate a regulatory role for chromatin structure and transcriptionally active genes near the origins.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
43
|
Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O'Connor TR. Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. J Mol Biol 2005; 346:1259-74. [PMID: 15713479 DOI: 10.1016/j.jmb.2005.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/29/2004] [Accepted: 01/05/2005] [Indexed: 01/26/2023]
Abstract
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.
Collapse
Affiliation(s)
- Liqun Xia
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
One strand of cellular DNA is generated as RNA-initiated discontinuous segments called Okazaki fragments that later are joined. The RNA terminated region is displaced into a 5' single-stranded flap, which is removed by the structure-specific flap endonuclease 1 (FEN1), leaving a nick for ligation. Similarly, in long-patch base excision repair, a damaged nucleotide is displaced into a flap and removed by FEN1. FEN1 is a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. As an endonuclease, FEN1 enters the flap from the 5' end and then tracks to cleave the flap base. Cleavage is oriented by the formation of a double flap. Analyses of FEN1 crystal structures suggest mechanisms for tracking and cleavage. Some flaps can form self-annealed and template bubble structures that interfere with FEN1. FEN1 interacts with other nucleases and helicases that allow it to act efficiently on structured flaps. Genetic and biochemical analyses continue to reveal many roles of FEN1.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
45
|
Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, Bhakat KK, Mitra S, Hazra TK. Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 2003; 193:43-65. [PMID: 14599767 DOI: 10.1016/s0300-483x(03)00289-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The DNA base excision repair (BER) is a ubiquitous mechanism for removing damage from the genome induced by spontaneous chemical reaction, reactive oxygen species (ROS) and also DNA damage induced by a variety of environmental genotoxicants. DNA repair is essential for maintaining genomic integrity. As we learn more about BER, a more complex mechanism emerges which supersedes the classical, simple pathway requiring only four enzymatic reactions. The key to understand the complete BER process is to elucidate how multiple proteins interact with one another in a coordinated process under specific physiological conditions.
Collapse
Affiliation(s)
- Tadahide Izumi
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1079, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
DNA single-strand breaks can arise indirectly, as normal intermediates of DNA base excision repair, or directly from damage to deoxyribose. Because single-strand breaks are induced by endogenous reactive molecules such as reactive oxygen species, these lesions pose a continuous threat to genetic integrity. XRCC1 protein plays a major role in facilitating the repair of single-strand breaks in mammalian cells, via an ability to interact with multiple enzymatic components of repair reactions. Here, the protein-protein interactions facilitated by XRCC1, and the repair processes in which these interactions operate, are reviewed. Models for the repair of single-strand breaks during base excision repair and at direct breaks are presented.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, BN1 9RQ, Falmer Brighton, UK.
| |
Collapse
|
47
|
Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 2003; 116:3051-60. [PMID: 12829735 DOI: 10.1242/jcs.00653] [Citation(s) in RCA: 834] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) was originally characterised as a DNA sliding clamp for replicative DNA polymerases and as an essential component of the eukaryotic chromosomal DNA replisome. Subsequent studies, however, have revealed its striking ability to interact with multiple partners, which are involved in several metabolic pathways, including Okazaki fragment processing, DNA repair, translesion DNA synthesis, DNA methylation, chromatin remodeling and cell cycle regulation. PCNA in mammalian cells thus appears to play a key role in controlling several reactions through the coordination and organisation of different partners. Two major questions have emerged: how do these proteins access PCNA in a coordinated manner, and how does PCNA temporally and spatially organise their functions? Structural and biochemical studies are starting to provide a first glimpse of how both tasks can be achieved.
Collapse
Affiliation(s)
- Giovanni Maga
- DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, via Abbiategrasso 207, I-27100 Pavia, Italy
| | | |
Collapse
|
48
|
Le Page F, Schreiber V, Dherin C, De Murcia G, Boiteux S. Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase beta. J Biol Chem 2003; 278:18471-7. [PMID: 12637553 DOI: 10.1074/jbc.m212905200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative DNA base damage is mainly corrected by the base excision repair (BER) pathway, which can be divided into two subpathways depending on the length of the resynthetized patch, either one nucleotide for short patch BER or several nucleotides for long patch BER. The role of proteins in the course of BER processes has been investigated in vitro using purified enzymes and cell-free extracts. In this study, we have investigated the repair of 8-oxo-7,8-dihydroguanine (8-oxoG) in vivo using wild-type, polymerase beta(-/-) (Polbeta(-/-)), poly(ADP-ribose) polymerase-1(-/-) (PARP-1(-/-)), and Polbeta(-/-)PARP-1(-/-) 3T3 cell lines. We used non replicating plasmids containing a 8-oxoG:C base pair to study the repair of the lesion located in a transcribed sequence (TS) or in a non-transcribed sequence (NTS). The results show that 8-oxoG repair in TS is not significantly impaired in cells deficient in Polbeta or PARP-1 or both. Whereas 8-oxoG repair in NTS is normal in Polbeta-null cells, it is delayed in PARP-1-null cells and greatly impaired in cells deficient in both Polbeta and PARP-1. The removal of 8-oxoG and presumably the cleavage at the resulting apurinic/apyrimidinic site are not affected in the PARP-1(-/-)Polbeta(-/-) cell lines. However, 8-oxoG repair is incomplete, yielding plasmid molecules with a nick at the site of the lesion. Therefore, PARP-1(-/-)Polbeta(-/-) cell lines cannot perform 5'-dRP removal and/or DNA repair synthesis. Furthermore, the poly(ADP-ribosyl)ation activity of PARP-1 is essential for 8-oxoG repair in a Polbeta(-/-) context, because expression of the catalytically inactive PARP-1 (E988K) mutant does not restore 8-oxoG repair, whereas an wild type PARP-1 does.
Collapse
Affiliation(s)
- Florence Le Page
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Département de Radiobiologie et Radiopathologie, Unité Mixte de Recherche 217 CNRS-CEA Radiobiologie Moléculaire et Cellulaire, 92265 Fontenay aux Roses, France.
| | | | | | | | | |
Collapse
|
49
|
Intano GW, Cho EJ, McMahan CA, Walter CA. Age-related base excision repair activity in mouse brain and liver nuclear extracts. J Gerontol A Biol Sci Med Sci 2003; 58:205-11. [PMID: 12634285 DOI: 10.1093/gerona/58.3.b205] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To assess DNA repair activity relative to age, in vitro base excision repair assays were performed using brain and liver nuclear extracts prepared from mice of various ages. An 85% decline in repair activity was observed in brain nuclear extracts and a 50% decrease in liver nuclear extracts prepared from old mice compared with 6-day-old mice. Brain nuclear extracts prepared from old mice showed a decreased abundance of DNA polymerase-beta, but the addition of purified protein did not restore base excision repair activity. Abundances of other tested base excision repair proteins did not change relative to age. The conclusion is that, during aging, a decline in DNA repair could contribute to increased levels of DNA damage and mutagenesis.
Collapse
Affiliation(s)
- Gabriel W Intano
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | |
Collapse
|
50
|
Xu YJ, DeMott MS, Hwang JT, Greenberg MM, Demple B. Action of human apurinic endonuclease (Ape1) on C1'-oxidized deoxyribose damage in DNA. DNA Repair (Amst) 2003; 2:175-85. [PMID: 12531388 DOI: 10.1016/s1568-7864(02)00194-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative damage to DNA includes diverse lesions in the sugar-phosphate backbone. The chemical "nuclease" bis(1,10-phenanthroline)copper complex [(OP)(2)Cu] is believed to generate a mixture of direct oxidative strand breaks and C1'-oxidized abasic sites (2-deoxyribonolactone; dL). We found that, under our conditions, the lesions produced by (OP)(2)Cu (50 microM) in synthetic duplex DNA were predominantly dL, accompanied by approximately 30% direct strand breaks with 3'-phosphates. For enzymatic studies, (OP)(2)Cu was used to introduce damage with limited sequence-selectivity, while photolysis of a site-specific 2'-deoxyuridine-1'-t-butyl ketone generated dL at a defined position. The results showed that Ape1, the major human abasic endonuclease, catalyzed 5'-incision of dL sites, but acted at least 10-fold less effectively to remove the 3'-phosphates at direct strand breaks. Kinetic analysis of Ape1 incision using the site-specific dL substrate revealed the same k(cat) for dL and regular (glycosylase-generated) abasic sites, but with K(m) approximately five-fold higher for dL substrate. The efficiency of Ape1 acting on dL, and the abundance of this enzyme in vivo, indicate that dL sites in vivo would be rapidly processed by the endonuclease. The recent observation that Ape1-cleaved dL sites can covalently trap DNA polymerase beta during the abasic excision process suggests that efficient incision of dL by Ape1 may potentiate further problems in DNA repair.
Collapse
Affiliation(s)
- Yong-jie Xu
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|