1
|
Hazeslip L, Zafar MK, Chauhan MZ, Byrd AK. Genome Maintenance by DNA Helicase B. Genes (Basel) 2020; 11:E578. [PMID: 32455610 PMCID: PMC7290933 DOI: 10.3390/genes11050578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
DNA Helicase B (HELB) is a conserved helicase in higher eukaryotes with roles in the initiation of DNA replication and in the DNA damage and replication stress responses. HELB is a predominately nuclear protein in G1 phase where it is involved in initiation of DNA replication through interactions with DNA topoisomerase 2-binding protein 1 (TOPBP1), cell division control protein 45 (CDC45), and DNA polymerase α-primase. HELB also inhibits homologous recombination by reducing long-range end resection. After phosphorylation by cyclin-dependent kinase 2 (CDK2) at the G1 to S transition, HELB is predominately localized to the cytosol. However, this cytosolic localization in S phase is not exclusive. HELB has been reported to localize to chromatin in response to replication stress and to localize to the common fragile sites 16D (FRA16D) and 3B (FRA3B) and the rare fragile site XA (FRAXA) in S phase. In addition, HELB is phosphorylated in response to ionizing radiation and has been shown to localize to chromatin in response to various types of DNA damage, suggesting it has a role in the DNA damage response.
Collapse
Affiliation(s)
- Lindsey Hazeslip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Muhammad Zain Chauhan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
- Winthrop P. Rockefeller Cancer Institute, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Characterization of the 5'-flanking region of the human DNA helicase B (HELB) gene and its response to trans-Resveratrol. Sci Rep 2016; 6:24510. [PMID: 27079536 PMCID: PMC4832242 DOI: 10.1038/srep24510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022] Open
Abstract
Human DNA helicase B (HELB/HDHB) regulates DNA replication through association with human DNA polymerase α-primase. In the present study, an 866-base pair (bp) of the 5′-flanking region of the human HELB gene-containing Luciferase (Luc) reporter plasmid, pHDHB-Luc was transfected into various cell lines and Luc activity was analyzed. Deletion analyses revealed that a 121-bp containing the major transcription start site (TSS) was essential for the basal promoter activity in all tested cells. TF-SEARCH analysis indicated that GC-box/Sp1 and duplicated GGAA-motifs containing putative STAT-x and c-ETS binding sites are located close to the TSS. Furthermore, chromatin immunoprecipitation (ChIP) analysis showed that PU.1 and Sp1 bind to the 121-bp region. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analyses showed the HELB gene and protein expression was up-regulated by trans-Resveratrol (Rsv) treatment in HeLa S3 cells. Moreover, transfection experiment indicated that mutations on the GC-boxes and the duplicated GGAA-motif greatly reduced promoter activity and the response to Rsv in HeLa S3 cells. These results suggest that Rsv, which is a natural compound that has been found to elongate the lifespan of various organisms, regulates HELB promoter activity through co-operation of the GC-boxes and the duplicated GGAA-motif in the 121-bp.
Collapse
|
3
|
Guler GD, Liu H, Vaithiyalingam S, Arnett DR, Kremmer E, Chazin WJ, Fanning E. Human DNA helicase B (HDHB) binds to replication protein A and facilitates cellular recovery from replication stress. J Biol Chem 2011; 287:6469-81. [PMID: 22194613 DOI: 10.1074/jbc.m111.324582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Maintenance of genomic stability in proliferating cells depends on a network of proteins that coordinate chromosomal replication with DNA damage responses. Human DNA helicase B (HELB or HDHB) has been implicated in chromosomal replication, but its role in this coordinated network remains undefined. Here we report that cellular exposure to UV irradiation, camptothecin, or hydroxyurea induces accumulation of HDHB on chromatin in a dose- and time-dependent manner, preferentially in S phase cells. Replication stress-induced recruitment of HDHB to chromatin is independent of checkpoint signaling but correlates with the level of replication protein A (RPA) recruited to chromatin. We show using purified proteins that HDHB physically interacts with the N-terminal domain of the RPA 70-kDa subunit (RPA70N). NMR spectroscopy and site-directed mutagenesis reveal that HDHB docks on the same RPA70N surface that recruits S phase checkpoint signaling proteins to chromatin. Consistent with this pattern of recruitment, cells depleted of HDHB display reduced recovery from replication stress.
Collapse
Affiliation(s)
- Gulfem Dilek Guler
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Sugiyama T, Chino M, Tsurimoto T, Nozaki N, Ishimi Y. Interaction of heliquinomycin with single-stranded DNA inhibits MCM4/6/7 helicase. ACTA ACUST UNITED AC 2011; 151:129-37. [DOI: 10.1093/jb/mvr130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Gu J, Xia X, Yan P, Liu H, Podust VN, Reynolds AB, Fanning E. Cell cycle-dependent regulation of a human DNA helicase that localizes in DNA damage foci. Mol Biol Cell 2004; 15:3320-32. [PMID: 15146062 PMCID: PMC452586 DOI: 10.1091/mbc.e04-03-0227] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutational studies of human DNA helicase B (HDHB) have suggested that its activity is critical for the G1/S transition of the cell cycle, but the nature of its role remains unknown. In this study, we show that during G1, ectopically expressed HDHB localizes in nuclear foci induced by DNA damaging agents and that this focal pattern requires active HDHB. During S and G2/M, HDHB localizes primarily in the cytoplasm. A carboxy-terminal domain from HDHB confers cell cycle-dependent localization, but not the focal pattern, to a reporter protein. A cluster of potential cyclin-dependent kinase phosphorylation sites in this domain was modified at the G1/S transition and maintained through G2/M of the cell cycle in vivo, coincident with nuclear export of HDHB. Serine 967 of HDHB was the major site phosphorylated in vivo and in vitro by cyclin-dependent kinases. Mutational analysis demonstrated that phosphorylation of serine 967 is crucial in regulating the subcellular localization of ectopically expressed HDHB. We propose that the helicase of HDHB operates primarily during G1 to process endogenous DNA damage before the G1/S transition, and it is largely sequestered in the cytoplasm during S/G2.
Collapse
Affiliation(s)
- Jinming Gu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Taneja P, Gu J, Peng R, Carrick R, Uchiumi F, Ott RD, Gustafson E, Podust VN, Fanning E. A dominant-negative mutant of human DNA helicase B blocks the onset of chromosomal DNA replication. J Biol Chem 2002; 277:40853-61. [PMID: 12181327 DOI: 10.1074/jbc.m208067200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA encoding a human ortholog of mouse DNA helicase B, which may play a role in DNA replication, has been cloned and expressed as a recombinant protein. The predicted human DNA helicase B (HDHB) protein contains conserved helicase motifs (superfamily 1) that are strikingly similar to those of bacterial recD and T4 dda proteins. The HDHB gene is expressed at low levels in liver, spleen, kidney, and brain and at higher levels in testis and thymus. Purified recombinant HDHB hydrolyzed ATP and dATP in the presence of single-stranded DNA, displayed robust 5'-3' DNA helicase activity, and interacted physically and functionally with DNA polymerase alpha-primase. HDHB proteins with mutations in the Walker A or B motif lacked ATPase and helicase activity but retained the ability to interact with DNA polymerase alpha-primase, suggesting that the mutants might be dominant over endogenous HDHB in human cells. When purified HDHB protein was microinjected into the nucleus of cells in early G(1), the mutant proteins inhibited DNA synthesis, whereas the wild type protein had no effect. Injection of wild type or mutant protein into cells at G(1)/S did not prevent DNA synthesis. The results suggest that HDHB function is required for S phase entry.
Collapse
Affiliation(s)
- Poonam Taneja
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tada S, Kobayashi T, Omori A, Kusa Y, Okumura N, Kodaira H, Ishimi Y, Seki M, Enomoto T. Molecular cloning of a cDNA encoding mouse DNA helicase B, which has homology to Escherichia coli RecD protein, and identification of a mutation in the DNA helicase B from tsFT848 temperature-sensitive DNA replication mutant cells. Nucleic Acids Res 2001; 29:3835-40. [PMID: 11557815 PMCID: PMC55905 DOI: 10.1093/nar/29.18.3835] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA helicase B is a major DNA helicase in mouse FM3A cells. A temperature-sensitive mutant defective in DNA replication, tsFT848, isolated from FM3A cells, has a heat-labile DNA helicase B. In this study, we purified DNA helicase B from mouse FM3A cells and determined partial amino acid sequences of the purified protein. By using a DNA probe synthesized according to one of the partial amino acid sequences, a cDNA was isolated, which encoded a 121.5 kDa protein containing seven conserved motifs for DNA/RNA helicase superfamily members. A database search revealed similarity between DNA helicase B and the alpha subunit of exodeoxyribonuclease V of a number of prokaryotes including Escherichia coli RecD protein, but no homologous protein was found in yeast. The cDNA encoding DNA helicase B from tsFT848 was sequenced and a mutation was found between DNA/RNA helicase motifs IV and V.
Collapse
Affiliation(s)
- S Tada
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
You Z, Komamura Y, Ishimi Y. Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mol Cell Biol 1999; 19:8003-15. [PMID: 10567526 PMCID: PMC84885 DOI: 10.1128/mcb.19.12.8003] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mcm proteins play an essential role in eukaryotic DNA replication, but their biochemical functions are poorly understood. Recently, we reported that a DNA helicase activity is associated with an Mcm4-Mcm6-Mcm7 (Mcm4,6,7) complex, suggesting that this complex is involved in the initiation of DNA replication as a DNA-unwinding enzyme. In this study, we have expressed and isolated the mouse Mcm2, 4,6,7 proteins from insect cells and characterized various mutant Mcm4,6,7 complexes in which the conserved ATPase motifs of the Mcm4 and Mcm6 proteins were mutated. The activities associated with such preparations demonstrated that the DNA helicase activity is intrinsically associated with the Mcm4,6,7 complex. Biochemical analyses of these mutant Mcm4,6,7 complexes indicated that the ATP binding activity of the Mcm6 protein in the complex is critical for DNA helicase activity and that the Mcm4 protein may play a role in the single-stranded DNA binding activity of the complex. The results also indicated that the two activities of DNA helicase and single-stranded DNA binding can be separated.
Collapse
Affiliation(s)
- Z You
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | |
Collapse
|
9
|
Vessey CJ, Norbury CJ, Hickson ID. Genetic disorders associated with cancer predisposition and genomic instability. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:189-221. [PMID: 10506832 DOI: 10.1016/s0079-6603(08)60723-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genomic instability in its broadest sense is a feature of virtually all neoplastic cells. In addition to the mutations and/or gene amplifications that appear to be a prerequisite for the acquisition of a neoplastic phenotype, human cancers exhibit other "markers" of genomic instability--in particular, a high degree of aneuploidy. Indeed, many studies have shown that aneuploidy is an almost invariant feature of cancer cells, and it has been argued by some that the emergence of aneuploid cells is a necessary step during tumorigenesis. The functional link between genomic instability and cancer is strengthened by the existence of several "genetic instability" disorders of humans that are associated with a moderate to severe increase in the incidence of cancers. These disorders include ataxia telangiectasia, Bloom's syndrome, Fanconi anemia, xeroderma pigmentosum, and Nijmegen breakage syndrome, all of which are very rare and are inherited in a recessive manner. Analysis of the cells from such cancer-prone individuals is clearly a potentially fruitful approach for delineating the genetic basis for instability in the genome. It is assumed that by identifying the underlying cause of genetic instability in these disorders, one can derive valuable information not only about the basis of particular genetic diseases, but also about the underlying causes of genomic instability in sporadic cancers in the general population. In this article, we review the clinical and cellular properties of genetic instability disorders associated with cancer predisposition. In particular, we focus on the rapid advances made in our understanding of these disorders that have derived from the cloning of the genes mutated in each case. Because in many instances the affected genes have analogs in lower eukaryotic species, we shall discuss how studies in yeasts in particular have proved valuable in our understanding of human diseases and predisposition to cancer.
Collapse
Affiliation(s)
- C J Vessey
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | |
Collapse
|
10
|
Fry M, Loeb LA. Human werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J Biol Chem 1999; 274:12797-802. [PMID: 10212265 DOI: 10.1074/jbc.274.18.12797] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of hairpin and tetrahelical structures by a d(CGG) trinucleotide repeat sequence is thought to cause expansion of this sequence and to engender fragile X syndrome. Here we show that human Werner syndrome DNA helicase (WRN), a member of the RecQ family of helicases, efficiently unwinds G'2 bimolecular tetraplex structures of d(CGG)7. Unwinding of d(CGG)7 by WRN requires hydrolyzable ATP and Mg2+ and is proportional to the amount of added helicase and to the time of incubation. The efficiencies of unwinding of G'2 d(CGG)7 tetraplex with 7 nucleotide-long single-stranded tails at their 3' or 5' ends are, respectively, 3.5- and 2-fold greater than that of double-stranded DNA. By contrast, WRN is unable to unwind a blunt-ended d(CGG)7 tetraplex, bimolecular tetraplex structures of a telomeric sequence 5'-d(TAGACATG(TTAGGG)2TTA)-3', or tetramolecular quadruplex forms of an IgG switch region sequence 5'-d(TACAGGGGAGCTGGGGTAGA)-3'. The ability of WRN to selectively unwind specific tetrahelices may reflect a specific role of this helicase in DNA metabolism.
Collapse
Affiliation(s)
- M Fry
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P. O. Box 9649, Haifa 31096, Israel.
| | | |
Collapse
|
11
|
Abstract
BLM, the gene that is defective in Bloom's syndrome, encodes a protein homologous to RecQ subfamily helicases that functions as a 3'-5' DNA helicase in vitro. We now report that the BLM helicase can unwind G4 DNA. The BLM G4 DNA unwinding activity is ATP-dependent and requires a short 3' region of single-stranded DNA. Strikingly, G4 DNA is a preferred substrate of the BLM helicase, as measured both by efficiency of unwinding and by competition. These results suggest that G4 DNA may be a natural substrate of BLM in vivo and that the failure to unwind G4 DNA may cause the genomic instability and increased frequency of sister chromatid exchange characteristic of Bloom's syndrome.
Collapse
Affiliation(s)
- H Sun
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two different DNA polymerases, a single-stranded DNA-binding protein, a clamp-loading complex, and a polymerase clamp combine to replicate DNA. Okazaki fragment synthesis involves a DNA polymerase-switching mechanism, and maturation occurs by the recruitment of specific nucleases, a helicase, and a ligase. The process of DNA replication is also coupled to cell-cycle progression and to DNA repair to maintain genome integrity.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
13
|
Abstract
All six minichromosome maintenance (MCM) proteins have DNA-dependent ATPase motifs in the central domain which is conserved from yeast to mammals. Our group purified MCM protein complexes consisting of MCM2, -4 (Cdc21), -6 (Mis5), and -7 (CDC47) proteins from HeLa cells by using histone-Sepharose column chromatography (Ishimi, Y., Ichinose, S., Omori, A., Sato K., and Kimura, H. (1996) J. Biol. Chem. 271, 24115-24122). The present study revealed that both ATPase activity and DNA helicase activity that displaces oligonucleotides annealed to single-stranded circular DNA are associated with an MCM protein complex. Both ATPase and DNA helicase activities were co-purified with a 600-kDa protein complex that is consisted of equal amounts of MCM4, -6, and -7 proteins. An immunodepletion of the MCM protein complex from the purified fraction using anti-MCM4 antibody resulted in the severe reduction of the DNA helicase activity. Displacement of DNA fragments by the DNA helicase suggested that it migrated along single-stranded DNA in the 3' to 5' direction, and the DNA helicase activity was detected only in the presence of hydrolyzable ATP or dATP. These results suggest that this helicase may be involved in the initiation of DNA replication as a DNA unwinding enzyme.
Collapse
Affiliation(s)
- Y Ishimi
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194, Japan.
| |
Collapse
|
14
|
Ohba R, Matsumoto K, Ishimi Y. Induction of DNA replication by transcription in the region upstream of the human c-myc gene in a model replication system. Mol Cell Biol 1996; 16:5754-63. [PMID: 8816489 PMCID: PMC231576 DOI: 10.1128/mcb.16.10.5754] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An important relationship between transcription and initiation of DNA replication in both eukaryotes and prokaryotes has been suggested. In an attempt to understand the molecular mechanism of this interaction, we examined whether transcription can induce DNA replication in vitro by constructing a system in which both replication and transcription were combined. Relaxed circular DNA possessing a replication initiation zone located upstream of the human c-myc gene and a T7 promoter near the P1 promoter of the gene was replicated in the presence of T7 RNA polymerase. In our model system, replication was carried out with the proteins required for simian virus 40 DNA replication. DNA synthesis, which was dependent on both T7 RNA polymerase and the replication proteins, was detected mainly in the promoter and upstream regions of the c-myc gene. Blocking RNA synthesis at the initial stage of the reaction severely reduced DNA synthesis, suggesting that RNA chain elongation is required to induce DNA synthesis. The results indicated that transcription can induce DNA replication in the upstream region of the transcribed gene, most likely by introducing negative supercoiling into the region, which results in unwinding of the DNA duplex.
Collapse
Affiliation(s)
- R Ohba
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Matsumoto K, Seki M, Masutani C, Tada S, Enomoto T, Ishimi Y. Stimulation of DNA synthesis by mouse DNA helicase B in a DNA replication system containing eukaryotic replication origins. Biochemistry 1995; 34:7913-22. [PMID: 7794903 DOI: 10.1021/bi00024a016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of DNA helicases have been isolated from mammalian cells, but their abilities to stimulate DNA replication accompanied with DNA unwinding have not been addressed so far. We constructed a model DNA replication system using the yeast autonomously replicating sequence (ARS) as the replication origin. In this system, SV40 T antigen as a DNA helicase assembles to the replication origin where the DNA duplex is unwound by torsional stress due to the negative supercoiling of template DNA, which leads to bidirectional DNA replication from the origin. We report here that DNA helicase B isolated from mouse FM3A cells can greatly stimulate DNA synthesis in this replication system in place of SV40 T antigen. DNA synthesis was dependent on the presence of single-stranded DNA binding protein (RP-A), DNA polymerase alpha/primase from mouse cells, and Escherichia coli DNA gyrase. DNA gyrase was required not only at elongation as a DNA swivelase but also at initiation to increase negative superhelical density of template DNA with the assistance of RP-A. A mammalian DNA fragment containing a replication initiation zone upstream of the c-myc gene as well as the yeast ARS fragment acted as a cis-element in this system using DNA helicase B. Both DNA helicase B and SV40 T antigen have the ability to extensively unwind the template DNA in the presence of RP-A and DNA gyrase, which may be crucial for stimulation of DNA synthesis in this system.
Collapse
Affiliation(s)
- K Matsumoto
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Saitoh A, Tada S, Katada T, Enomoto T. Stimulation of mouse DNA primase-catalyzed oligoribonucleotide synthesis by mouse DNA helicase B. Nucleic Acids Res 1995; 23:2014-8. [PMID: 7596831 PMCID: PMC306977 DOI: 10.1093/nar/23.11.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many prokaryotic and viral DNA helicases involved in DNA replication stimulate their cognate DNA primase activity. To assess the stimulation of DNA primase activity by mammalian DNA helicases, we analyzed the synthesis of oligoribonucleotides by mouse DNA polymerase alpha-primase complex on single-stranded circular M13 DNA in the presence of mouse DNA helicase B. DNA helicase B was purified by sequential chromatography through eight columns. When the purified DNA helicase B was applied to a Mono Q column, the stimulatory activity for DNA primase-catalyzed oligoribonucleotide synthesis and DNA helicase and DNA-dependent ATPase activities of DNA helicase B were co-eluted from the column. The synthesis of oligoribonucleotides 5-10 nt in length was markedly stimulated by DNA helicase B. The synthesis of longer species of oligoribonucleotides, which were synthesized at a low level in the absence of DNA helicase B, was inhibited by DNA helicase B. The stimulatory effect of DNA helicase B was marked at low template concentrations and little or no effect was observed at high concentrations. The mouse single-stranded DNA binding protein, replication protein A (RP-A), inhibited the primase activity of the DNA polymerase alpha-primase complex and DNA helicase B partially reversed the inhibition caused by RP-A.
Collapse
Affiliation(s)
- A Saitoh
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|