1
|
Carvalhal S, Bader I, Rooimans MA, Oostra AB, Balk JA, Feichtinger RG, Beichler C, Speicher MR, van Hagen JM, Waisfisz Q, van Haelst M, Bruijn M, Tavares A, Mayr JA, Wolthuis RMF, Oliveira RA, de Lange J. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. SCIENCE ADVANCES 2022; 8:eabk0114. [PMID: 35044816 PMCID: PMC8769543 DOI: 10.1126/sciadv.abk0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/24/2021] [Indexed: 05/14/2023]
Abstract
Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
Collapse
Affiliation(s)
- Sara Carvalhal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ingrid Bader
- Unit of Clinical Genetics, Paracelsus Medical University, Salzburg, Austria
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christine Beichler
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Johanna M. van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Mieke van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Martijn Bruijn
- Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, Netherlands
| | - Alexandra Tavares
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Raquel A. Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
2
|
Arnold N, Girke T, Sureshchandra S, Messaoudi I. Acute Simian Varicella Virus Infection Causes Robust and Sustained Changes in Gene Expression in the Sensory Ganglia. J Virol 2016; 90:10823-10843. [PMID: 27681124 PMCID: PMC5110160 DOI: 10.1128/jvi.01272-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Primary infection with varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, results in varicella. VZV establishes latency in the sensory ganglia and can reactivate later in life to cause herpes zoster. The relationship between VZV and its host during acute infection in the sensory ganglia is not well understood due to limited access to clinical specimens. Intrabronchial inoculation of rhesus macaques with simian varicella virus (SVV) recapitulates the hallmarks of VZV infection in humans. We leveraged this animal model to characterize the host-pathogen interactions in the ganglia during both acute and latent infection by measuring both viral and host transcriptomes on days postinfection (dpi) 3, 7, 10, 14, and 100. SVV DNA and transcripts were detected in sensory ganglia 3 dpi, before the appearance of rash. CD4 and CD8 T cells were also detected in the sensory ganglia 3 dpi. Moreover, lung-resident T cells isolated from the same animals 3 dpi also harbored SVV DNA and transcripts, suggesting that T cells may be responsible for trafficking SVV to the ganglia. Transcriptome sequencing (RNA-Seq) analysis showed that cessation of viral transcription 7 dpi coincides with a robust antiviral innate immune response in the ganglia. Interestingly, a significant number of genes that play a critical role in nervous system development and function remained downregulated into latency. These studies provide novel insights into host-pathogen interactions in the sensory ganglia during acute varicella and demonstrate that SVV infection results in profound and sustained changes in neuronal gene expression. IMPORTANCE Many aspects of VZV infection of sensory ganglia remain poorly understood, due to limited access to human specimens and the fact that VZV is strictly a human virus. Infection of rhesus macaques with simian varicella virus (SVV), a homolog of VZV, provides a robust model of the human disease. Using this model, we show that SVV reaches the ganglia early after infection, most likely by T cells, and that the induction of a robust innate immune response correlates with cessation of virus transcription. We also report significant changes in the expression of genes that play an important role in neuronal function. Importantly, these changes persist long after viral replication ceases. Given the homology between SVV and VZV, and the genetic and physiological similarities between rhesus macaques and humans, our results provide novel insight into the interactions between VZV and its human host and explain some of the neurological consequences of VZV infection.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
3
|
Shi L, Perin JC, Leipzig J, Zhang Z, Sullivan KE. Genome-wide analysis of interferon regulatory factor I binding in primary human monocytes. Gene 2011; 487:21-8. [PMID: 21803131 DOI: 10.1016/j.gene.2011.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 01/09/2023]
Abstract
IRF1 is a transcription factor that participates in interferon signaling. Previous studies of IRF1 binding have utilized in vitro assays. We used ChIP-seq in human monocytes to better define the recognition motif for IRF1. The newly identified 18bp motif (RAAASNGAAAGTGAAASY) is a refinement of the 13bp IRF1 motif commonly used. We utilized the 18bp consensus motif and identified 345 potential target genes. To compare the 18bp motif with the 13bp motif, we compared putative gene targets. Only 56 potential gene targets were defined by both consensus motifs. To compare biological effects of interferon on the 13bp and the 18bp consensus targets, we mined expression data from cells exposed to interferons or transfected with IRF1. In all cases, the 18bp consensus motif was more strongly associated with transcriptional responses than the 13bp motif. Therefore, the new 18bp consensus motif appears to have a greater association with biological activities of IRF1.
Collapse
Affiliation(s)
- Lihua Shi
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
4
|
Mason AC, Roy R, Simmons DT, Wold MS. Functions of alternative replication protein A in initiation and elongation. Biochemistry 2010; 49:5919-28. [PMID: 20545304 DOI: 10.1021/bi100380n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Replication protein A (RPA) is a single-stranded DNA-binding complex that is essential for DNA replication, repair, and recombination in eukaryotic cells. In addition to this canonical complex, we have recently characterized an alternative replication protein A complex (aRPA) that is unique to primates. aRPA is composed of three subunits: RPA1 and RPA3, also present in canonical RPA, and a primate-specific subunit RPA4, homologous to canonical RPA2. aRPA has biochemical properties similar to those of the canonical RPA complex but does not support DNA replication. We describe studies that aimed to identify what properties of aRPA prevent it from functioning in DNA replication. We show aRPA has weakened interaction with DNA polymerase alpha (pol alpha) and that aRPA is not able to efficiently stimulate DNA synthesis by pol alpha on aRPA-coated DNA. Additionally, we show that aRPA is unable to support de novo priming by pol alpha. Because pol alpha activity is essential for both initiation and Okazaki strand synthesis, we conclude that the inability of aRPA to support pol alpha loading causes aRPA to be defective in DNA replication. We also show that aRPA stimulates synthesis by DNA polymerase alpha in the presence of PCNA and RFC. This indicates that aRPA can support extension of DNA strands by DNA polymerase partial differential. This finding along with the previous observation that aRPA supports early steps of nucleotide excision repair and recombination indicates that aRPA can support DNA repair synthesis that requires polymerase delta, PCNA, and RFC and support a role for aRPA in DNA repair.
Collapse
Affiliation(s)
- Aaron C Mason
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Genomes contain a large number of genes that do not have recognizable homologues in other species. These genes, found in only one or a few closely related species, are known as orphan genes. Their limited distribution implies that many of them are probably involved in lineage-specific adaptive processes. One important question that has remained elusive to date is how orphan genes originate. It has been proposed that they might have arisen by gene duplication followed by a period of very rapid sequence divergence, which would have erased any traces of similarity to other evolutionarily related genes. However, this explanation does not seem plausible for genes lacking homologues in very closely related species. In the present article, we review recent efforts to identify the mechanisms of formation of primate orphan genes. These studies reveal an unexpected important role of transposable elements in the formation of novel protein-coding genes in the genomes of primates.
Collapse
|
6
|
Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill X, Albà MM. Origin of primate orphan genes: a comparative genomics approach. Mol Biol Evol 2008; 26:603-12. [PMID: 19064677 DOI: 10.1093/molbev/msn281] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genomes contain a large number of genes that do not have recognizable homologues in other species and that are likely to be involved in important species-specific adaptive processes. The origin of many such "orphan" genes remains unknown. Here we present the first systematic study of the characteristics and mechanisms of formation of primate-specific orphan genes. We determine that codon usage values for most orphan genes fall within the bulk of the codon usage distribution of bona fide human proteins, supporting their current protein-coding annotation. We also show that primate orphan genes display distinctive features in relation to genes of wider phylogenetic distribution: higher tissue specificity, more rapid evolution, and shorter peptide size. We estimate that around 24% are highly divergent members of mammalian protein families. Interestingly, around 53% of the orphan genes contain sequences derived from transposable elements (TEs) and are mostly located in primate-specific genomic regions. This indicates frequent recruitment of TEs as part of novel genes. Finally, we also obtain evidence that a small fraction of primate orphan genes, around 5.5%, might have originated de novo from mammalian noncoding genomic regions.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Evolutionary Genomics Group, Biomedical Informatics Research Programme, Fundació Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
We analysed the involvement of proteases during taxol-mediated cell death of human A549 non-small-cell lung carcinoma cells using a proteomics approach that specifically targets protein N termini and further detects newly formed N termini that are the result of protein processing. Our analysis revealed 27 protease-mediated cleavages, which we divided in sites C-terminal to aspartic acid (Asp) and sites C-terminal to non-Asp residues, as the result of caspase and non-caspase protease activities, respectively. Remarkably, some of the former were insensitive to potent pancaspase inhibitors, and we therefore suggest that previous inhibitor-based studies that report on the caspase-independent nature of taxol-induced cell death should be judged with care. Furthermore, many of the sites C-terminal to non-Asp residues were also uniquely observed in a model of cytotoxic granule-mediated cell death and/or found by in vitro cataloging human mu-calpain substrates using a similar proteomics technique. This thus raises the hypothesis that killing tumor cells by chemotherapy or by immune cells holds similar non-Asp-specific proteolytic components with strong indications to calpain activity.
Collapse
|
8
|
Chen G, Zeng W, Miyazato A, Billings E, Maciejewski JP, Kajigaya S, Sloand EM, Young NS. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood 2004; 104:4210-8. [PMID: 15315976 DOI: 10.1182/blood-2004-01-0103] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aneuploidy, especially monosomy 7 and trisomy 8, is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDSs). Patients with monosomy 7 and trisomy 8 have distinctly different clinical courses, responses to therapy, and survival probabilities. To determine disease-specific molecular characteristics, we analyzed the gene expression pattern in purified CD34 hematopoietic progenitor cells obtained from MDS patients with monosomy 7 and trisomy 8 using Affymetrix GeneChips. Two methods were employed: standard hybridization and a small-sample RNA amplification protocol for the limited amounts of RNA available from individual cases; results were comparable between these 2 techniques. Microarray data were confirmed by gene amplification and flow cytometry using individual patient samples. Genes related to hematopoietic progenitor cell proliferation and blood cell function were dysregulated in CD34 cells of both monosomy 7 and trisomy 8 MDS. In trisomy 8, up-regulated genes were primarily involved in immune and inflammatory responses, and down-regulated genes have been implicated in apoptosis inhibition. CD34 cells in monosomy 7 showed up-regulation of genes inducing leukemia transformation and tumorigenesis and apoptosis and down-regulation of genes controlling cell growth and differentiation. These results imply distinct molecular mechanisms for monosomy 7 and trisomy 8 MDS and implicate specific pathogenic pathways.
Collapse
Affiliation(s)
- Guibin Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Peptide dendrimers are radial or wedge-like branched macromolecules consisting of a peptidyl branching core and/or covalently attached surface functional units. The multimeric nature of these constructs, the unambiguous composition and ease of production make this type of dendrimer well suited to various biotechnological and biochemical applications. Applications include use as biomedical diagnostic reagents, protein mimetics, anticancer and antiviral agents, vaccines and drug and gene delivery vehicles. This review focuses on the different types of peptide dendrimers currently in use and the synthetic methods commonly employed to generate peptide dendrimers ranging from stepwise solid-phase synthesis to chemoselective and orthogonal ligation.
Collapse
Affiliation(s)
- Kristen Sadler
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
10
|
Kelley MR, Tritt R, Xu Y, New S, Freie B, Clapp DW, Deutsch WA. The Drosophila S3 multifunctional DNA repair/ribosomal protein protects Fanconi anemia cells against oxidative DNA damaging agents. Mutat Res 2001; 485:107-19. [PMID: 11182542 DOI: 10.1016/s0921-8777(00)00067-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells harvested from Fanconi anemia (FA) patients show an increased hypersensitivity to the multifunctional DNA damaging agent mitomycin C (MMC), which causes cross-links in DNA as well as 7,8-dihydro-8-oxoguanine (8-oxoG) adducts indicative of escalated oxidative DNA damage. We show here that the Drosophila multifunctional S3 cDNA, which encodes an N-glycosylase/apurinic/apyrimidinic (AP) lyase activity was found to correct the FA Group A (FA(A)) and FA Group C (FA(C)) sensitivity to MMC and hydrogen peroxide (H2O2). Furthermore, the Drosophila S3 cDNA was shown to protect AP endonuclease deficient E. coli cells against H(2)O(2) and MMC, and also protect 8-oxoG repair deficient mutM E. coli strains against MMC and H2O2 cell toxicity. Conversely, the human S3 protein failed to complement the AP endonuclease deficient E. coli strain, most likely because it lacks N-glycosylase activity for the repair of oxidatively-damaged DNA bases. Although the human S3 gene is clearly not the genetic alteration in FA cells, our results suggest that oxidative DNA damage is intimately involved in the overall FA phenotype, and the cytotoxic effect of selective DNA damaging agents in FA cells can be overcome by trans-complementation with specific DNA repair cDNAs. Based on these findings, we would predict other oxidative repair proteins, or oxidative scavengers, could serve as protective agents against the oxidative DNA damage that occurs in FA.
Collapse
Affiliation(s)
- M R Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, 702 Barnhill Dr., Room 2600, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7:249-62. [PMID: 11239454 DOI: 10.1016/s1097-2765(01)00173-3] [Citation(s) in RCA: 920] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.
Collapse
Affiliation(s)
- I Garcia-Higuera
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Centurion SA, Kuo HR, Lambert WC. Damage-resistant DNA synthesis in Fanconi anemia cells treated with a DNA cross-linking agent. Exp Cell Res 2000; 260:216-21. [PMID: 11035916 DOI: 10.1006/excr.2000.4995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is a recessive disorder associated with diverse congenital anomalies, progressive bone marrow failure, and a marked predisposition to develop cancer. At the cellular level, FA is characterized by a prolonged G(2) phase in proliferating cells and a marked hypersensitivity to both the cytotoxic and the clastogenic effects of agents which produce DNA interstrand cross-links. Treatment with these agents leads to even further prolongation of the G(2) phase in FA cells. We now show that FA cells, from four different complementation groups, fail to decrease their rates of replicative DNA synthesis, as do normal cells, following treatment with a DNA cross-linking agent. This may be responsible for the prolongation of the G2 phase seen in these cells, and suggests that the fundamental defect in response of FA cells to DNA cross-linking agents may be in the S phase, rather than the G(2) phase, of the cell cycle.
Collapse
Affiliation(s)
- S A Centurion
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, 07103-2714, USA
| | | | | |
Collapse
|
13
|
|
14
|
Clarke AA, Marsh JC, Gordon-Smith EC, Rutherford TR. Molecular genetics and Fanconi anaemia: new insights into old problems. Br J Haematol 1998; 103:287-96. [PMID: 9827894 DOI: 10.1046/j.1365-2141.1998.01018.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A A Clarke
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London
| | | | | | | |
Collapse
|
15
|
Abstract
Fanconi anemia (FA) is an autosomal genetic disease characterized by a complex array of developmental disorders, a high predisposition to bone marrow failure and to acute myelogenous leukemia. The chromosomal instability and the hypersensitivity to DNA cross-linking agents led to its classification with the DNA repair disorders. This review aimed at establishing whether it is still appropriate to consider 1/approximately FA within a DNA repair framework taking into account the recently discovered genetic heterogeneity characteristics of the defect (eight complementation groups). We discuss the possibility that the FA proteins interact to form a complex which may control different functions, including the processing of specific DNA lesions. Such a complex may act as a sensor to initiate protective systems as well as transcription of specific genes specifying, among others proteins, growth factors. Such steps may be organized as a linear cascade or more likely under the form of a web network.
Collapse
Affiliation(s)
- M Buchwald
- UMR 218 CNRS and LCR no. 1 CEA, Institut Curie-Recherche, Paris, France
| | | |
Collapse
|
16
|
Planitzer SA, Machl AW, Rueckels M, Kubbies M. Identification of a novel c-DNA overexpressed in Fanconi's anemia fibroblasts partially homologous to a putative L-3-phosphoserine-phosphatase. Gene 1998; 210:297-306. [PMID: 9573387 DOI: 10.1016/s0378-1119(98)00083-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We applied the cDNA differential display technique (DDT) in a DNA-repair deficient cell model to isolate genes involved in dysregulation of cell proliferation and development of cancer. The comparative analysis of mRNA expression patterns of human diploid fibroblasts from Fanconi's amemia (FA) and normal phenotype led to the identification of a novel cDNA CO9. Northern blot analysis reveals that CO9 is significantly upregulated in FA fibroblasts but downregulated or absent in fibroblasts from normal donors. CO9 was also highly expressed in FA B-cells of complementation group A and in Raji cells. However, CO9 is not expressed in FA complementation groups B, C, D and E. The full-length cDNA is 840 bp long and contains an open reading frame of 216 bp (72 amino acids), which encodes for a 7.6-kDa protein. The lengths of the 5' and 3' untranslated region are 165 and 459 bp, respectively. The N-terminal and C-terminal nucleotide sequence of CO9 shows homology to a putative human L-3-phosphoserine phosphatase identified recently (HSPSPASE, EMBL Accession No. Y10275) but lacks a 476-bp stretch in the open reading frame. The loss of nucleotides within the open reading frame introduces a new termination codon in the CO9 cDNA along with a novel COOH terminus resulting in a new protein product. Database chromosome mapping localized CO9 to chromosome 7q 11.2. We hypothesize that CO9 represents a novel protein being a partial homologue to the L-3-phosphoserine phosphatase but with a different regulatory cell function.
Collapse
Affiliation(s)
- S A Planitzer
- Boehringer Mannheim Research Center, Penzberg, Germany.
| | | | | | | |
Collapse
|
17
|
DNA Cross-Linker–Induced G2/M Arrest in Group C Fanconi Anemia Lymphoblasts Reflects Normal Checkpoint Function. Blood 1998. [DOI: 10.1182/blood.v91.1.275.275_275_287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells from individuals with Fanconi anemia (FA) arrest excessively in the G2/M cell cycle compartment after exposure to low doses of DNA cross-linking agents. The relationship of this abnormality to the fundamental genetic defect in such cells is unknown, but many investigators have speculated that the various FA genes directly regulate cell cycle checkpoints. We tested the hypothesis that the protein encoded by the FA group C complementing gene (FAC) functions to control a cell cycle checkpoint and that cells from group C patients (FA[C]) have abnormalities of cell cycle regulation directly related to the genetic mutation. We found that retroviral transduction of FA(C) lymphoblasts with wild-type FAC cDNA resulted in normalization of the cell cycle response to low-dose mitomycin C (MMC). However, when DNA damage was quantified in terms of cytogenetic damage or cellular cytotoxicity, we found similar degrees of G2/M arrest in response to equitoxic amounts of MMC in FA(C) cells as well as in normal lymphoblasts. Similar results were obtained using isogenic pairs of uncorrected, FAC- or mock-corrected (neo only) FA(C) cell lines. To test the function of other checkpoints we examined the effects of hydroxyurea (HU) and ionizing radiation on cell cycle kinetics of FA(C) and normal lymphoblasts as well as with isogenic pairs of uncorrected, FAC-corrected, or mock-corrected FA(C) cell lines. In all cases the cell cycle response of FA(C) and normal lymphoblasts to these two agents were identical. Based on these studies we conclude that the aberrant G2/M arrest that typifies the response of FA(C) cells to low doses of cross-linking agents does not represent an abnormal cell cycle response but instead represents a normal cellular response to the excessive DNA damage that results in FA(C) cells following exposure to low doses of cross-linking agents.
Collapse
|
18
|
DNA Cross-Linker–Induced G2/M Arrest in Group C Fanconi Anemia Lymphoblasts Reflects Normal Checkpoint Function. Blood 1998. [DOI: 10.1182/blood.v91.1.275] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCells from individuals with Fanconi anemia (FA) arrest excessively in the G2/M cell cycle compartment after exposure to low doses of DNA cross-linking agents. The relationship of this abnormality to the fundamental genetic defect in such cells is unknown, but many investigators have speculated that the various FA genes directly regulate cell cycle checkpoints. We tested the hypothesis that the protein encoded by the FA group C complementing gene (FAC) functions to control a cell cycle checkpoint and that cells from group C patients (FA[C]) have abnormalities of cell cycle regulation directly related to the genetic mutation. We found that retroviral transduction of FA(C) lymphoblasts with wild-type FAC cDNA resulted in normalization of the cell cycle response to low-dose mitomycin C (MMC). However, when DNA damage was quantified in terms of cytogenetic damage or cellular cytotoxicity, we found similar degrees of G2/M arrest in response to equitoxic amounts of MMC in FA(C) cells as well as in normal lymphoblasts. Similar results were obtained using isogenic pairs of uncorrected, FAC- or mock-corrected (neo only) FA(C) cell lines. To test the function of other checkpoints we examined the effects of hydroxyurea (HU) and ionizing radiation on cell cycle kinetics of FA(C) and normal lymphoblasts as well as with isogenic pairs of uncorrected, FAC-corrected, or mock-corrected FA(C) cell lines. In all cases the cell cycle response of FA(C) and normal lymphoblasts to these two agents were identical. Based on these studies we conclude that the aberrant G2/M arrest that typifies the response of FA(C) cells to low doses of cross-linking agents does not represent an abnormal cell cycle response but instead represents a normal cellular response to the excessive DNA damage that results in FA(C) cells following exposure to low doses of cross-linking agents.
Collapse
|
19
|
Abstract
AbstractFanconi anemia (FA) is an autosomal recessive disorder characterized by developmental defects, bone marrow failure, and cancer susceptibility. Cells derived from FA patients are sensitive to crosslinking agents and have a prolonged G2 phase, suggesting a cell cycle abnormality. Although transfection of type-C FA cells with the FAC cDNA corrects these cellular abnormalities, the molecular function of the FAC polypeptide remains unknown. In the current study we show that expression of the FAC polypeptide is regulated during cell cycle progression. In synchronized HeLa cells, FAC protein expression increased during S phase, was maximal at the G2 /M transition, and declined during M phase. In addition, the FAC protein coimmunoprecipitated with the cyclin-dependent kinase, cdc2. We next tested various mutant forms of the FAC polypeptide for binding to cdc2. A patient-derived mutant FAC polypeptide, containing a point mutation at L554P, failed to bind to cdc2. The FAC/cdc2 binding interaction therefore correlated with the functional activity of the FAC protein. Moreover, binding of FAC to cdc2 was mediated by the carboxyl-terminal 50 amino acids of FAC in a region of the protein required for FAC function. Taken together, our results suggest that the binding of FAC and cdc2 is required for normal G2 /M progression in mammalian cells. Absence of a functional interaction between FAC and cdc2 in FA cells may underlie the cell cycle abnormality and clinical abnormalities of FA.
Collapse
|
20
|
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder characterized by developmental defects, bone marrow failure, and cancer susceptibility. Cells derived from FA patients are sensitive to crosslinking agents and have a prolonged G2 phase, suggesting a cell cycle abnormality. Although transfection of type-C FA cells with the FAC cDNA corrects these cellular abnormalities, the molecular function of the FAC polypeptide remains unknown. In the current study we show that expression of the FAC polypeptide is regulated during cell cycle progression. In synchronized HeLa cells, FAC protein expression increased during S phase, was maximal at the G2 /M transition, and declined during M phase. In addition, the FAC protein coimmunoprecipitated with the cyclin-dependent kinase, cdc2. We next tested various mutant forms of the FAC polypeptide for binding to cdc2. A patient-derived mutant FAC polypeptide, containing a point mutation at L554P, failed to bind to cdc2. The FAC/cdc2 binding interaction therefore correlated with the functional activity of the FAC protein. Moreover, binding of FAC to cdc2 was mediated by the carboxyl-terminal 50 amino acids of FAC in a region of the protein required for FAC function. Taken together, our results suggest that the binding of FAC and cdc2 is required for normal G2 /M progression in mammalian cells. Absence of a functional interaction between FAC and cdc2 in FA cells may underlie the cell cycle abnormality and clinical abnormalities of FA.
Collapse
|
21
|
Abstract
The autosomal recessive genetic disease, Fanconi anaemia, is perceived as another manifestation of defective cellular DNA repair, just as in the autosomal recessive disease Xeroderma pigmentosum. The biochemistry and cellular biology of Xeroderma pigmentosum have been convincingly elucidated, but the same has not been true for Fanconi anaemia. In this review we consider the pleiotropic nature of Fanconi anaemia, its clinical and cellular variability and its genetic heterogeneity. We take into account the wealth of experimental findings available and offer a novel hypothesis involving feedback control of DNA replication during S phase of the cell cycle to explain the basic defect in the disease.
Collapse
Affiliation(s)
- M Digweed
- Institut für Humangenetik, Humboldt Universität zu Berlin, Germany
| | | |
Collapse
|
22
|
Bender O, Jones NJ, Sperling K, Digweed M. Identification of a HeLa mRNA fraction which corrects the mitomycin C sensitivity of irs1 cells. Mutat Res 1996; 363:9-14. [PMID: 8632780 DOI: 10.1016/0921-8777(95)00055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hamster cell mutant irs1 is defective in its response to DNA lesions caused by a variety of mutagens, particularly cross-linking agents. These cells have been assigned to complementation group 2 of X-ray-sensitive mutants and the mutated gene is called XRCC2(X-ray repair cross complementing). We have identified, by microinjection, a human mRNA fraction which can transiently correct the sensitivity of these cells to cross-linking agents. This fraction contains mRNAs of 3.5 kb (+/- 0.25) including, therefore, the transcript of the XRCC2 gene.
Collapse
Affiliation(s)
- O Bender
- Institut für Humangenetik, Virchow Klinikum, Humboldt Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
23
|
|