1
|
Omar I, Alakhras A, Mutwali S, Bakhiet M. Molecular insights into T cell development, activation and signal transduction (Review). Biomed Rep 2025; 22:94. [PMID: 40247929 PMCID: PMC12001230 DOI: 10.3892/br.2025.1972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
T cell modulation plays a fundamental role to adaptive and innate immunity, which aids the recognition and defense against pathogens while also maintaining self-tolerance. Numerous molecular pathways participate in this process including thymic selection, T cell receptor and antigen-presenting cells cross linkage, along with co-stimulatory signaling cascades. The present review demonstrates a holistic analysis of various classic and novel mechanisms that govern T cell regulation and emerging therapeutic applications. Recent advancements have introduced novel roles in the journey of T cell modulation that can have a pivotal impact on the understanding of this process; for example, phase separation of the linker for activation of T cells, and the newer application of chimeric antigen receptor (CAR) T cell therapy in autoimmune diseases. While discoveries of proximal and distal signal transduction pathways have contributed to the comprehension of T cell anergy, cytokine-mediated differentiation and the delicate balance between immune activation and tolerance, there are still unresolved debates about further molecular mechanisms. There are also still questions about the long-term side effects of CAR-T cell therapy. Deeper research and analysis are required to further aid the understanding and use of this novel therapeutic approach.
Collapse
Affiliation(s)
- Isra Omar
- Department of Clinical Medicine, College of Medicine, Almaarefa University, 11597 Riyadh, Kingdom of Saudi Arabia
- Department of Clinical Medicine, College of Medicine, University of Medical Sciences and Technology, 3523 Kigali, Rwanda
- Royal College of Physicians of Ireland, Dublin D02 E434, Ireland
| | - Ahmed Alakhras
- Department of Clinical Medicine, College of Medicine, Almaarefa University, 11597 Riyadh, Kingdom of Saudi Arabia
| | - Samahir Mutwali
- TeleGeriatric Research Fellowship Program, Michigan State University, MI 48824, USA
| | - Moiz Bakhiet
- Department of Molecular Medicine and Medical Science, Arabian Gulf University, Manama 328, Kingdom of Bahrain
| |
Collapse
|
2
|
Tommasi A, Cappabianca D, Bugel M, Gimse K, Lund-Peterson K, Shrestha H, Arutyunov D, Williams JA, Police SR, Indurthi V, Davis SZ, Murtaza M, Capitini CM, Saha K. Efficient nonviral integration of large transgenes into human T cells using Cas9-CLIPT. Mol Ther Methods Clin Dev 2025; 33:101437. [PMID: 40123742 PMCID: PMC11930092 DOI: 10.1016/j.omtm.2025.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
CRISPR-Cas9 ribonucleoproteins (RNPs) combined with a nucleic acid template encoding a chimeric antigen receptor (CAR) transgene can edit human cells to produce CAR T cells with precise CAR insertion at a single locus. However, many human cells have adverse innate immune responses to foreign nucleic acids, particularly circular double-stranded DNA (dsDNA). Here, we introduce Cleaved, LInearized with Protein Template (Cas9-CLIPT), a circular plasmid containing a single target sequence for the Cas9 RNP, such that during manufacturing, Cas9-RNP binds and cleaves the plasmid to linearize the dsDNA in vitro. Cas9-RNP remains bound to the linearized template and is delivered to cells to promote precise knock-in via homology-directed repair with Cas9-CLIPT. Cas9-CLIPT Nanoplasmids generate up to 1.7-fold higher rates of precise knock-in relative to linearized dsDNA, reaching efficiencies up to 60% with non-homologous end joining inhibition. Cas9-CLIPT-manufactured GD2 TRAC-CAR T cells are potent against GD2+ neuroblastoma cells and exhibit an enriched stem cell memory phenotype. On several electroporation instruments and approaching clinically relevant yields, we successfully manufactured TRAC-CAR T cells using Cas9-CLIPT plasmids containing large (2-6 kb) transgenes. Cas9-CLIPT strategies have the potential to simplify donor template production and integrate large transgenes, allowing for more efficient nonviral manufacturing of multifunctional, genome-edited immune cell therapies.
Collapse
Affiliation(s)
- Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dan Cappabianca
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Madison Bugel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kirstan Gimse
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | | | | | | - Sage Z. Davis
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Muhammed Murtaza
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christian M. Capitini
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
3
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
4
|
Anft M, Zgoura P, Skrzypczyk S, Dürr M, Viebahn R, Westhoff TH, Stervbo U, Babel N. Effects of switching from twice-daily tacrolimus to once-daily extended-release meltdose tacrolimus on cellular immune response. FRONTIERS IN TRANSPLANTATION 2024; 3:1405070. [PMID: 39386200 PMCID: PMC11461451 DOI: 10.3389/frtra.2024.1405070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
Background LCP-Tacro [LCPT], a novel once-daily, extended-release formulation of tacrolimus, has a reduced Cmax with comparable AUC exposure, requiring a ∼30% dose reduction in contrast to immediate-release tacrolimus (IR-Tac). Once-daily LCPT in de novo kidney transplantation has a comparable efficacy and safety profile to that of IR-Tac with advantages in bioavailability and absorption. The present investigation intends to analyze the effects of conversion from IR-Tac to LCPT on phenotype and function of T-cells and B-cells. Methods 16 kidney transplant patients treated by triple standard immunosuppression with a stable graft function undergoing a switch from IR-Tac to LCPT were included in this observational prospective study. We measured the main immune cell types and performed an in-depth characterization of B cell, dendritic cells and T cells including regulatory T cells of the patients before, 4 and 8 weeks after IR-Tac to LCPT conversion using multi-parameter fl ow cytometry. Additionally, we analyzed T cells by assessing third-party antigens (Tetanus Diphtheria, TD)-reactive T cells, which could be analyzed by restimulation with tetanus vaccine. Results Overall, we found no significant alterations following LCPT conversion for the most immune cell populations with a few cell populations showing transient quantitative increase. Thus, 4 weeks after conversion, more regulatory T cells could be measured in the patients with a significant shift from memory to naïve Tregs. Furthermore, we found a transient B cell expansion 4 weeks after conversion from IR-Tac to LCPT. There were no changes in the percentage of other basic immune cell types and the antigen-reactive T cells were also not altered after changing the medication to LCP-tacrolimus. Conclusion Here, we demonstrate first insights into the immune system changes occurred under IR-Tac to LCPT conversion therapy in kidney transplant patients. While phenotypic and functional characteristics of the most immune cell populations did not change, we could observe an a transient expansion of regulatory T cells in peripheral blood following IR-Tac to LCTP conversion, which might additionally contribute to the overall immunosuppressive effect.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Panagiota Zgoura
- Clinic for Internal Medicine, St. Anna Hospital Herne, Herne, Germany
- Clinic for Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Michael Dürr
- Clinic for Internal Medicine, St. Anna Hospital Herne, Herne, Germany
- Clinic for Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
- Berlin Institute of Health, Berlin-BrandenburgCenter for Regenerative Therapies, and Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz, Berlin, Germany
| | - Richard Viebahn
- Clinic for Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Timm H. Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health, Berlin-BrandenburgCenter for Regenerative Therapies, and Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz, Berlin, Germany
| |
Collapse
|
5
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Jana M, Mondal S, Jana A, Pahan K. Induction of IL-2 by interleukin-12 p40 homodimer and IL-12, but not IL-23, in microglia and macrophages: Implications for multiple sclerosis. Cytokine 2024; 174:156457. [PMID: 38056248 PMCID: PMC10872483 DOI: 10.1016/j.cyto.2023.156457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The level of IL-2 increases markedly in serum and central nervous system (CNS) of patients with multiple sclerosis (MS) and animals with experimental allergic encephalomyelitis (EAE). However, mechanisms by which IL-2 is induced under autoimmune demyelinating conditions are poorly understood. The present study underlines the importance of IL-12p40 homodimer (p402), the so-called biologically inactive molecule, in inducing the expression of IL-2 in mouse BV-2 microglial cells, primary mouse and human microglia, mouse peritoneal macrophages, RAW264.7 macrophages, and T cells. Interestingly, we found that p402 and IL-12p70 (IL-12), but not IL-23, dose-dependently induced the production of IL-2 and the expression of IL-2 mRNA in microglial cells. Similarly, p402 also induced the activation of IL-2 promoter in microglial cells and RAW264.7 cells. Among various stimuli tested, p402 was the most potent stimulus followed by IFN-γ, bacterial lipopolysaccharide, HIV-1 gp120, and IL-12 in inducing the activation of IL-2 promoter in microglial cells. Moreover, p402, but not IL-23, increased NFATc2 mRNA expression and the transcriptional activity of NFAT. Furthermore, induction of IL-2 mRNA expression by over-expression of p40, but not by p19, cDNA indicated that p40, but not p19, is responsible for the induction of IL-2 mRNA in microglia. Finally, by using primary microglia from IL to 12 receptor β1 deficient (IL-12Rβ1-/-) and IL-12 receptor β2 deficient (IL-12Rβ2-/-) mice, we demonstrate that p402 induces the expression of IL-2 via IL-12Rβ1, but not IL-12Rβ2. In experimental autoimmune encephalomyelitis, an animal model of MS, neutralization of p402 by mAb a3-1d led to decrease in clinical symptoms and reduction in IL-2 in T cells and microglia. These results delineate a new biological function of p402, which is missing in the so-called autoimmune cytokine IL-23, and raise the possibility of controlling increased IL-2 and the disease process of MS via neutralization of p402.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Arundhati Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL, USA.
| |
Collapse
|
7
|
Weisshaar N, Ma S, Ming Y, Madi A, Mieg A, Hering M, Zettl F, Mohr K, Ten Bosch N, Stichling D, Buettner M, Poschet G, Klinke G, Schulz M, Kunze-Rohrbach N, Kerber C, Klein IM, Wu J, Wang X, Cui G. The malate shuttle detoxifies ammonia in exhausted T cells by producing 2-ketoglutarate. Nat Immunol 2023; 24:1921-1932. [PMID: 37813964 PMCID: PMC10602850 DOI: 10.1038/s41590-023-01636-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.
Collapse
Affiliation(s)
- Nina Weisshaar
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sicong Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Yanan Ming
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Alaa Madi
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alessa Mieg
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marvin Hering
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ferdinand Zettl
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nora Ten Bosch
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON)-A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Diana Stichling
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Buettner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Glynis Klinke
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Michael Schulz
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nina Kunze-Rohrbach
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Carolin Kerber
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Isabel Madeleine Klein
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jingxia Wu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| | - Guoliang Cui
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Helmholtz Institute for Translational Oncology (HI-TRON)-A Helmholtz Institute of the DKFZ, Mainz, Germany.
| |
Collapse
|
8
|
Patskovsky Y, Natarajan A, Patskovska L, Nyovanie S, Joshi B, Morin B, Brittsan C, Huber O, Gordon S, Michelet X, Schmitzberger F, Stein RB, Findeis MA, Hurwitz A, Van Dijk M, Chantzoura E, Yague AS, Pollack Smith D, Buell JS, Underwood D, Krogsgaard M. Molecular mechanism of phosphopeptide neoantigen immunogenicity. Nat Commun 2023; 14:3763. [PMID: 37353482 PMCID: PMC10290117 DOI: 10.1038/s41467-023-39425-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Altered protein phosphorylation in cancer cells often leads to surface presentation of phosphopeptide neoantigens. However, their role in cancer immunogenicity remains unclear. Here we describe a mechanism by which an HLA-B*0702-specific acute myeloid leukemia phosphoneoantigen, pMLL747-755 (EPR(pS)PSHSM), is recognized by a cognate T cell receptor named TCR27, a candidate for cancer immunotherapy. We show that the replacement of phosphoserine P4 with serine or phosphomimetics does not affect pMHC conformation or peptide-MHC affinity but abrogates TCR27-dependent T cell activation and weakens binding between TCR27 and pMHC. Here we describe the crystal structures for TCR27 and cognate pMHC, map of the interface produced by nuclear magnetic resonance, and a ternary complex generated using information-driven protein docking. Our data show that non-covalent interactions between the epitope phosphate group and TCR27 are crucial for TCR specificity. This study supports development of new treatment options for cancer patients through target expansion and TCR optimization.
Collapse
Grants
- P30 GM133893 NIGMS NIH HHS
- P30 CA016087 NCI NIH HHS
- U01 CA214354 NCI NIH HHS
- P50 CA225450 NCI NIH HHS
- R01 GM085586 NIGMS NIH HHS
- R01 GM124489 NIGMS NIH HHS
- R01 CA243486 NCI NIH HHS
- S10 OD016343 NIH HHS
- P41 GM118302 NIGMS NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- This work was supported by the NIH grant NIGMS R01 GM124489 (to M.K.), NCI R01 CA243486 (to M.K) and a Sponsored Research Agreement from Agenus to M.K. Results shown in this report are partially derived from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. SBC is operated by UChicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. Results in this report are partially derived from work performed at The Center for BioMolecular Structure (CBMS) primarily supported by the National Institutes of Health, National Institute of General Medical Sciences (NIGMS) through a Center Core P30 Grant (P30GM133893), and by the DOE Office of Biological and Environmental Research (KP1607011). As part of NSLS-II, a national user facility at Brookhaven National Laboratory, work performed at the CBMS is supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Program under contract number and DE-SC0012704. The NMR spectrometers at the NYU Chemistry Shared Instrumentation Facility were supported by NYU and the NIH Grant 1S10-OD016343. The facilities at the NYSBC were supported by the NIH Grant P41GM118302.
Collapse
Affiliation(s)
- Yury Patskovsky
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Aswin Natarajan
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Larysa Patskovska
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Samantha Nyovanie
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michelle Krogsgaard
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA.
| |
Collapse
|
9
|
Afsari F, McIntyre TM. D-2-Hydroxyglutarate Inhibits Calcineurin Phosphatase Activity to Abolish NF-AT Activation and IL-2 Induction in Stimulated Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:504-514. [PMID: 36602551 PMCID: PMC11071645 DOI: 10.4049/jimmunol.2200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Gliomas expressing mutant isocitrate dehydrogenases excessively synthesize d-2-hydroxyglutarate (D2HG), suppressing immune surveillance. A portion of this D2HG is released from these tumor cells, but the way environmental D2HG inhibits lymphocyte function is undefined. We incubated human PBLs or Jurkat T cells with D2HG at concentrations present within and surrounding gliomas or its obverse l-2-hydroxyglutarate (L2HG) stereoisomer. We quantified each 2HG stereoisomer within washed cells by N-(p-toluenesulfonyl)-l-phenylalanyl chloride derivatization with stable isotope-labeled D2HG and L2HG internal standards, HPLC separation, and mass spectrometry. D2HG was present in quiescent cells and was twice as abundant as L2HG. Extracellular 2HG rapidly increased intracellular levels of the provided stereoisomer by a stereoselective, concentration-dependent process. IL-2 expression, even when elicited by A23187 and PMA, was abolished by D2HG in a concentration-dependent manner, with significant reduction at just twice its basal level. In contrast, L2HG was only moderately inhibitory. IL-2 expression is regulated by increased intracellular Ca2+ that stimulates calcineurin to dephosphorylate cytoplasmic phospho-NF-AT, enabling its nuclear translocation. D2HG abolished stimulated expression of a stably integrated NF-AT-driven luciferase reporter that precisely paralleled its concentration-dependent inhibition of IL-2. D2HG did not affect intracellular Ca2+. Rather, surface plasmon resonance showed D2HG, but not L2HG, bound calcineurin, and D2HG, but not L2HG, inhibited Ca2+-dependent calcineurin phosphatase activity in stimulated Jurkat extracts. Thus, D2HG is a stereoselective calcineurin phosphatase inhibitor that prevents NF-AT dephosphorylation and so abolishes IL-2 transcription in stimulated lymphocytes. This occurs at D2HG concentrations found within and adjacent to gliomas independent of its metabolic or epigenetic transcriptional regulation.
Collapse
Affiliation(s)
- Faezeh Afsari
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Thomas M. McIntyre
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
10
|
Kim S, Ko E, Choi HG, Kim D, Luchi M, Khor B, Kim S. FRTX-02, a selective and potent inhibitor of DYRK1A, modulates inflammatory pathways in mouse models of psoriasis and atopic dermatitis. J Transl Autoimmun 2022; 6:100185. [PMID: 36654851 PMCID: PMC9841288 DOI: 10.1016/j.jtauto.2022.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) has been proposed as a novel regulator of adaptive immune homeostasis through modulating T cell polarization. Thus, DYRK1A could present a potential target in autoimmune disorders. Here, we identify FRTX-02 as a novel compound exhibiting potent and selective inhibition of DYRK1A. FRTX-02 induced transcriptional activity of the DYRK1A substrate NFAT in T cell lines. Correspondingly, FRTX-02 promoted ex vivo CD4+ polarization into anti-inflammatory Tregs and reduced their polarization into pro-inflammatory Th1 or Th17 cells. We show that FRTX-02 could also limit innate immune responses through negative regulation of the MyD88/IRAK4-NF-κB axis in a mast cell line. Finally, in mouse models of psoriasis and atopic dermatitis, both oral and topical formulations of FRTX-02 reduced inflammation and disease biomarkers in a dose-dependent manner. These results support further studies of DYRK1A inhibitors, including FRTX-02, as potential therapies for chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Soochan Kim
- R&D Center, Voronoi Inc., Incheon, South Korea
| | - Eunhwa Ko
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea,R&D Center, B2SBio Inc., Incheon, South Korea
| | - Hwan Geun Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea,R&D Center, B2SBio Inc., Incheon, South Korea
| | - Daekwon Kim
- R&D Center, Voronoi Inc., Incheon, South Korea
| | - Monica Luchi
- Fresh Tracks Therapeutics, Inc., Boulder, CO, 80301, USA,Corresponding author.
| | - Bernard Khor
- Benaroya Research Institute, Seattle, WA, 98195, USA
| | | |
Collapse
|
11
|
Anto NP, Arya AK, Muraleedharan A, Shaik J, Nath PR, Livneh E, Sun Z, Braiman A, Isakov N. Cyclophilin A associates with and regulates the activity of ZAP70 in TCR/CD3-stimulated T cells. Cell Mol Life Sci 2022; 80:7. [PMID: 36495335 PMCID: PMC11072327 DOI: 10.1007/s00018-022-04657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.
Collapse
Affiliation(s)
- Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Awadhesh Kumar Arya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Jakeer Shaik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Clinical and Translational Immunology Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1857, USA
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
12
|
Dai C, Zhou X, Wang L, Tan R, Wang W, Yang B, Zhang Y, Shi H, Chen D, Wei L, Chen Z. Rocaglamide Prolonged Allograft Survival by Inhibiting Differentiation of Th1/Th17 Cells in Cardiac Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2048095. [PMID: 35087613 PMCID: PMC8787457 DOI: 10.1155/2022/2048095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aglaia (Meliaceae) species are used for treating autoimmune disorders and allergic diseases in Asian countries. Rocaglamide, an extract obtained from Aglaia species, exhibits suppressive effect by regulating the T cell subset balance and cytokine network in cancer. However, whether it can be used in organ transplantation is unknown. In this study, we investigated the antirejection effect and mechanism of action of rocaglamide in a mouse cardiac allograft model. METHODS Survival studies were performed by administering mice with phosphate-buffered saline (PBS) (n = 6) and rocaglamide (n = 8). Heart grafts were monitored until they stopped beating. After grafting, the mice were sacrificed on day 7 for histological, mixed lymphocyte reaction (MLR), enzyme-linked immunosorbent assay (ELISA), and flow cytometric analyses. RESULTS Rocaglamide administration significantly prolonged the median survival of the grafts from 7 to 25 days compared with PBS treatment (P < 0.001). On posttransplantation day 7, the rocaglamide-treated group showed a significant decrease in the percentage of Th1 cells (7.9 ± 0.9% vs. 1.58 ± 0.5%, P < 0.001) in the lymph nodes and spleen (8.0 ± 2.5% vs. 2.4 ± 1.3%, P < 0.05). Rocaglamide treatment also significantly inhibited the production of Th17 cells (6.4 ± 1.0% vs. 1.8 ± 0.4%, P < 0.01) in the lymph nodes and spleen (5.9 ± 0.3% vs. 2.9 ± 0.8%, P < 0.01). Furthermore, the prolonged survival of the grafts was associated with a significant decrease in IFN-γ and IL-17 levels. Our results also showed that NF-AT activation was inhibited by rocaglamide, which also induced p38 and Jun N-terminal kinase (JNK) phosphorylation in Jurkat T cells. Furthermore, by using inhibitors that suppressed p38 and JNK phosphorylation, rocaglamide-mediated reduction in NF-AT protein levels was prevented. CONCLUSION We identified a new immunoregulatory property of rocaglamide, wherein it was found to regulate oxidative stress response and reduce inflammatory cell infiltration and organ injury, which have been associated with the inhibition of NF-AT activation in T cells.
Collapse
Affiliation(s)
- Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Rumeng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Huibo Shi
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| |
Collapse
|
13
|
Truong DJJ, Armbrust N, Geilenkeuser J, Lederer EM, Santl TH, Beyer M, Ittermann S, Steinmaßl E, Dyka M, Raffl G, Phlairaharn T, Greisle T, Živanić M, Grosch M, Drukker M, Westmeyer GG. Intron-encoded cistronic transcripts for minimally invasive monitoring of coding and non-coding RNAs. Nat Cell Biol 2022; 24:1666-1676. [PMID: 36344775 PMCID: PMC9643161 DOI: 10.1038/s41556-022-00998-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Despite their fundamental role in assessing (patho)physiological cell states, conventional gene reporters can follow gene expression but leave scars on the proteins or substantially alter the mature messenger RNA. Multi-time-point measurements of non-coding RNAs are currently impossible without modifying their nucleotide sequence, which can alter their native function, half-life and localization. Thus, we developed the intron-encoded scarless programmable extranuclear cistronic transcript (INSPECT) as a minimally invasive transcriptional reporter embedded within an intron of a gene of interest. Post-transcriptional excision of INSPECT results in the mature endogenous RNA without sequence alterations and an additional engineered transcript that leaves the nucleus by hijacking the nuclear export machinery for subsequent translation into a reporter or effector protein. We showcase its use in monitoring interleukin-2 (IL2) after T cell activation and tracking the transcriptional dynamics of the long non-coding RNA (lncRNA) NEAT1 during CRISPR interference-mediated perturbation. INSPECT is a method for monitoring gene transcription without altering the mature lncRNA or messenger RNA of the target of interest.
Collapse
Affiliation(s)
- Dong-Jiunn Jeffery Truong
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Niklas Armbrust
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julian Geilenkeuser
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva-Maria Lederer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Heinrich Santl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Beyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Ittermann
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emily Steinmaßl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Mariya Dyka
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerald Raffl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Teeradon Phlairaharn
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Greisle
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Milica Živanić
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Grosch
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Micha Drukker
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Katagiri T, Kameda H, Nakano H, Yamazaki S. Regulation of T cell differentiation by the AP-1 transcription factor JunB. Immunol Med 2021; 44:197-203. [PMID: 33470914 DOI: 10.1080/25785826.2021.1872838] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
JunB, a component of the activator protein-1 (AP-1) transcription factor, is known to exhibit an important role in bone formation and bone marrow cell proliferation. During T helper type 2 (Th2) cell differentiation, JunB contributes to the regulation of interleukin (IL)-4 expression, and AP-1 and nuclear factor of activated T cell (NFAT) constitute a heteromer and contribute to IL-2 production. However, the role of JunB in other T cells has not been investigated. In 2017, it was revealed that JunB, in collaboration with basic leucine zipper ATF-like transcription factor (BATF), regulates the expression of Th17-related genes. Furthermore, JunB was found to play an important role in regulatory T (Treg) cell differentiation, contributing to CD25 expression and IL-2 production. IL-2 is a T cell activator and has been shown as a necessary factor for Treg proliferation. Here, we review the role of JunB in T cells based on basic research data and discuss the potential for its clinical applications.
Collapse
Affiliation(s)
- Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hideto Kameda
- Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Papavassiliou AG, Musti AM. The Multifaceted Output of c-Jun Biological Activity: Focus at the Junction of CD8 T Cell Activation and Exhaustion. Cells 2020; 9:2470. [PMID: 33202877 PMCID: PMC7697663 DOI: 10.3390/cells9112470] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
c-Jun is a major component of the dimeric transcription factor activator protein-1 (AP-1), a paradigm for transcriptional response to extracellular signaling, whose components are basic-Leucine Zipper (bZIP) transcription factors of the Jun, Fos, activating transcription factor (ATF), ATF-like (BATF) and Jun dimerization protein 2 (JDP2) gene families. Extracellular signals regulate c-Jun/AP-1 activity at multiple levels, including transcriptional and posttranscriptional regulation of c-Jun expression and transactivity, in turn, establishing the magnitude and the duration of c-Jun/AP-1 activation. Another important level of c-Jun/AP-1 regulation is due to the capability of Jun family members to bind DNA as a heterodimer with every other member of the AP-1 family, and to interact with other classes of transcription factors, thereby acquiring the potential to integrate diverse extrinsic and intrinsic signals into combinatorial regulation of gene expression. Here, we review how these features of c-Jun/AP-1 regulation underlie the multifaceted output of c-Jun biological activity, eliciting quite distinct cellular responses, such as neoplastic transformation, differentiation and apoptosis, in different cell types. In particular, we focus on the current understanding of the role of c-Jun/AP-1 in the response of CD8 T cells to acute infection and cancer. We highlight the transcriptional and epigenetic regulatory mechanisms through which c-Jun/AP-1 participates in the productive immune response of CD8 T cells, and how its downregulation may contribute to the dysfunctional state of tumor infiltrating CD8 T cells. Additionally, we discuss recent insights pointing at c-Jun as a suitable target for immunotherapy-based combination approaches to reinvigorate anti-tumor immune functions.
Collapse
Affiliation(s)
- Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Maria Musti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
16
|
Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT, Barski A. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med 2020; 217:jem.20182009. [PMID: 31653690 PMCID: PMC7037242 DOI: 10.1084/jem.20182009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.
Collapse
Affiliation(s)
- Masashi Yukawa
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sushmitha Vallabh
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrey V Kartashov
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
17
|
Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:3023-3036. [PMID: 31666306 DOI: 10.4049/jimmunol.1900556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
Although the immune adaptor SH2 domain containing leukocyte phosphoprotein of 76 kDa (SLP-76) integrates and propagates the TCR signaling, the regulation of SLP-76 during the TCR signaling is incompletely studied. In this article, we report that SLP-76 interacts with the small ubiquitin-like modifier (SUMO) E2 conjugase Ubc9 and is a substrate for Ubc9-mediated SUMOylation in human and mouse T cells. TCR stimulation promotes SLP-76-Ubc9 binding, accompanied by an increase in SLP-76 SUMOylation. Ubc9 binds to the extreme C terminus of SLP-76 spanning residues 516-533 and SUMOylates SLP-76 at two conserved residues K266 and K284. In addition, SLP-76 and Ubc9 synergizes to augment the TCR-mediated IL-2 transcription by NFAT in a manner dependent of SUMOylation of SLP-76. Moreover, although not affecting the TCR proximal signaling events, the Ubc9-mediated SUMOylation of SLP-76 is required for TCR-induced assembly of Ubc9-NFAT complex for IL-2 transcription. Together, these results suggest that Ubc9 modulates the function of SLP-76 in T cell activation both by direct interaction and by SUMOylation of SLP-76 and that the Ubc9-SLP-76 module acts as a novel regulatory complex in the control of T cell activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and.,Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China;
| |
Collapse
|
18
|
Karapetyan AR, Chaipan C, Winkelbach K, Wimberger S, Jeong JS, Joshi B, Stein RB, Underwood D, Castle JC, van Dijk M, Seibert V. TCR Fingerprinting and Off-Target Peptide Identification. Front Immunol 2019; 10:2501. [PMID: 31695703 PMCID: PMC6817589 DOI: 10.3389/fimmu.2019.02501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 01/06/2023] Open
Abstract
Adoptive T cell therapy using patient T cells redirected to recognize tumor-specific antigens by expressing genetically engineered high-affinity T-cell receptors (TCRs) has therapeutic potential for melanoma and other solid tumors. Clinical trials implementing genetically modified TCRs in melanoma patients have raised concerns regarding off-target toxicities resulting in lethal destruction of healthy tissue, highlighting the urgency of assessing which off-target peptides can be recognized by a TCR. As a model system we used the clinically efficacious NY-ESO-1-specific TCR C259, which recognizes the peptide epitope SLLMWITQC presented by HLA-A*02:01. We investigated which amino acids at each position enable a TCR interaction by sequentially replacing every amino acid position outside of anchor positions 2 and 9 with all 19 possible alternative amino acids, resulting in 134 peptides (133 altered peptides plus epitope peptide). Each peptide was individually evaluated using three different in vitro assays: binding of the NY-ESOc259 TCR to the peptide, peptide-dependent activation of TCR-expressing cells, and killing of peptide-presenting target cells. To represent the TCR recognition kernel, we defined Position Weight Matrices (PWMs) for each assay by assigning normalized measurements to each of the 20 amino acids in each position. To predict potential off-target peptides, we applied a novel algorithm projecting the PWM-defined kernel into the human proteome, scoring NY-ESOc259 TCR recognition of 336,921 predicted human HLA-A*02:01 binding 9-mer peptides. Of the 12 peptides with high predicted score, we confirmed 7 (including NY-ESO-1 antigen SLLMWITQC) strongly activate human primary NY-ESOc259-expressing T cells. These off-target peptides include peptides with up to 7 amino acid changes (of 9 possible), which could not be predicted using the recognition motif as determined by alanine scans. Thus, this replacement scan assay determines the “TCR fingerprint” and, when coupled with the algorithm applied to the database of human 9-mer peptides binding to HLA-A*02:01, enables the identification of potential off-target antigens and the tissues where they are expressed. This platform enables both screening of multiple TCRs to identify the best candidate for clinical development and identification of TCR-specific cross-reactive peptide recognition and constitutes an improved methodology for the identification of potential off-target peptides presented on MHC class I molecules.
Collapse
|
19
|
Yahia-Cherbal H, Rybczynska M, Lovecchio D, Stephen T, Lescale C, Placek K, Larghero J, Rogge L, Bianchi E. NFAT primes the human RORC locus for RORγt expression in CD4 + T cells. Nat Commun 2019; 10:4698. [PMID: 31619674 PMCID: PMC6795897 DOI: 10.1038/s41467-019-12680-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
T helper 17 (Th17) cells have crucial functions in mucosal immunity and the pathogenesis of several chronic inflammatory diseases. The lineage-specific transcription factor, RORγt, encoded by the RORC gene modulates Th17 polarization and function, as well as thymocyte development. Here we define several regulatory elements at the human RORC locus in thymocytes and peripheral CD4+ T lymphocytes, with CRISPR/Cas9-guided deletion of these genomic segments supporting their role in RORγt expression. Mechanistically, T cell receptor stimulation induces cyclosporine A-sensitive histone modifications and P300/CBP acetylase recruitment at these elements in activated CD4+ T cells. Meanwhile, NFAT proteins bind to these regulatory elements and activate RORγt transcription in cooperation with NF-kB. Our data thus demonstrate that NFAT specifically regulate RORγt expression by binding to the RORC locus and promoting its permissive conformation. The master transcription factor RORγt, encoded by the RORC gene, controls the polarization of CD4+ T cells expressing interleukin-17 (Th17). Here the authors describe several regulatory elements at the RORC locus that are recognized by NFAT and NFkB to induce a permissive epigenetic configuration of the RORC gene for RORγt expression and Th17 differentiation.
Collapse
Affiliation(s)
- Hanane Yahia-Cherbal
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magda Rybczynska
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Laboratoire Colloides et Matériaux Divisés, École supérieure de Physique et de Chimie industrielles, Paris, France
| | - Domenica Lovecchio
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Tharshana Stephen
- Institut Pasteur, Unité de Technologie et Service Cytométrie et Biomarqueurs (UTechS CB), Centre de recherche translationnelle (CRT), Paris, France
| | - Chloé Lescale
- Institut Pasteur, Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Paris, France
| | - Katarzyna Placek
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.,Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jérome Larghero
- Assistance Publique-Hopitaux de Paris, Hôpital Saint-Louis, Cell Therapy Unit and Cord Blood Bank; CIC de Biothérapies, CBT501, Paris, France
| | - Lars Rogge
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France
| | - Elisabetta Bianchi
- Institut Pasteur, Immunoregulation Unit, Department of Immunology, Paris, France.
| |
Collapse
|
20
|
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 2019; 18:648-659. [PMID: 30089912 DOI: 10.1038/s41577-018-0046-y] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IL-2 was first identified as a growth factor capable of driving the expansion of activated human T cell populations. In the more than 40 years since its discovery, a tremendous amount has been learned regarding the mechanisms that regulate the expression of both IL-2 and its cell surface receptor, its mechanisms of signalling and its range of biological actions. More recently, the mechanisms by which IL-2 regulates CD4+ T cell differentiation and function have been elucidated. IL-2 also regulates the effector and memory responses of CD8+ T cells, and the loss of IL-2 or responsiveness to IL-2 at least in part explains the exhausted phenotype that occurs during chronic viral infections and in tumour responses. These basic mechanistic studies have led to the therapeutic ability to manipulate the action of IL-2 on regulatory T (Treg) cells for the treatment of autoimmune disease and on CD8+ T cells for immunotherapy of cancer. IL-2 can have either positive or deleterious effects, and we discuss here recent ideas and approaches for manipulating the actions and overall net effects of IL-2 in disease settings, including cancer.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Li
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Xu L, Song X, Su L, Zheng Y, Li R, Sun J. New therapeutic strategies based on IL-2 to modulate Treg cells for autoimmune diseases. Int Immunopharmacol 2019; 72:322-329. [PMID: 31005777 DOI: 10.1016/j.intimp.2019.03.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
Interleukin-2 (IL-2) is a multifunctional cytokine in immune regulation. It is essential for the differentiation, expansion and stability of CD25+Foxp3+ regulatory T (Treg) cells, which is an important factor in immune suppression and self-tolerance. Meanwhile, IL-2 also stimulate effector T (Teff) cells to promote immune responses. The opposite and diverse function of IL-2 impedes its application to boost Treg cell populations in autoimmune disease treatment. Thus, it became focus of the research to modulate IL-2 activities to enhance Treg cell functions selectively. Based on the characteristic properties of Treg cells such as constitutively expression of high affinity IL-2 receptors (IL-2Rs), multiple approaches, including IL-2/mAb complexes, IL-2 muteins and low-dose of IL-2 have emerged in recent years to selectively target Treg cells and treat autoimmunity. These therapeutic approaches have achieved favorable results in both clinical trials and experimental animal models, and provided engineering blueprints to develop novel strategies of IL-2 treatments for autoimmune diseases.
Collapse
Affiliation(s)
- Le Xu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China
| | - Xiaolei Song
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China
| | - Lili Su
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China
| | - Yong Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China.
| | - Ru Li
- Department of Rheumatology & Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, PR China.
| | - Jian Sun
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 30072, PR China.
| |
Collapse
|
22
|
Zhang M, Lu Q, Budden T, Wang J. NFAT1 protects articular cartilage against osteoarthritic degradation by directly regulating transcription of specific anabolic and catabolic genes. Bone Joint Res 2019; 8:90-100. [PMID: 30915215 PMCID: PMC6397328 DOI: 10.1302/2046-3758.82.bjr-2018-0114.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes. Methods Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Nfat1 -/- AC at the initiation stage of OA, and possessed at least four NFAT1 binding sites in the promoter of each gene, were selected and tested for NFAT1 transcriptional activities by chromatin immunoprecipitation (ChIP) and promoter luciferase reporter assays using chondrocytes isolated from the AC of three- to four-month-old wild-type mice or Nfat1 -/- mice with early OA phenotype. Results Chromatin immunoprecipitation assays revealed that NFAT1 bound directly to the promoter of 21 of the 25 tested genes encoding cartilage-matrix proteins, growth factors, inflammatory cytokines, matrix-degrading proteinases, and specific transcription factors. Promoter luciferase reporter assays of representative anabolic and catabolic genes demonstrated that NFAT1-DNA binding functionally regulated the luciferase activity of specific target genes in wild-type chondrocytes, but not in Nfat1 -/- chondrocytes or in wild-type chondrocytes transfected with plasmids containing mutated NFAT1 binding sequences. Conclusion NFAT1 protects AC against degradation by directly regulating the transcription of target genes in articular chondrocytes. NFAT1 deficiency causes defective transcription of specific anabolic and catabolic genes in articular chondrocytes, leading to increased matrix catabolism and osteoarthritic cartilage degradation.Cite this article: M. Zhang, Q. Lu, T. Budden, J. Wang. NFAT1 protects articular cartilage against osteoarthritic degradation by directly regulating transcription of specific anabolic and catabolic genes. Bone Joint Res 2019;8:90-100. DOI: 10.1302/2046-3758.82.BJR-2018-0114.R1.
Collapse
Affiliation(s)
- M Zhang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery; The Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Q Lu
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of KansasMedical Center, Kansas City, Kansas, USA
| | - T Budden
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of KansasMedical Center, Kansas City, Kansas, USA
| | - J Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery; and Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Duck IL-2 promoter cloning and the effects of methylation status on mRNA levels in immune tissues. Cent Eur J Immunol 2019; 43:389-398. [PMID: 30799986 PMCID: PMC6384428 DOI: 10.5114/ceji.2018.81350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022] Open
Abstract
Interleukin 2 (IL-2), a cytokine, plays an important role in animal immune systems. To investigate the influences of epigenetic modifications on transcription of the duck IL-2 gene, the promoter region of the duck IL-2 gene was cloned. Then, the DNA methylation status of the IL-2 gene promoter (-1337 bp/-924 bp) in immune tissues of ducks was determined using the Sequenom Mass Array methylation technique, and their corresponding expression levels were determined using real-time PCR. The results showed that 2850 bp of the duck IL-2 gene promoter region were obtained. There was one CpG island (-1231 bp/-902 bp) in which 11 CpG sites were distributed. The CpG1 and CpG2 sites are located between the binding sites of NFAT and AP-1, and they had higher homology methylation patterns in different individuals and tissues. The methylation frequencies of 28.5% CpG sites showed negative correlations with the expression levels of the IL-2 mRNA, whereas 71.5% showed positive correlations. These results indicate that the transcription of duck IL-2 may be distinct from that of mammals. CpG1 (-1284 bp) and CpG2 (-1264 bp) in the duck IL-2 promoter showed a higher homology of methylation patterns, indicating a similar regulatory effect on their gene expression, and these CpG sites may be essential for the regulation of transcription of duck IL-2. The methylation pattern of the IL-2 gene promoter in duck was tissue specific.
Collapse
|
24
|
Calcatera SM, Reicks D, Pratt SL. Novel and differentially abundant microRNAs in sperm cells, seminal plasma, and serum of boars due to porcine reproduction and respiratory syndrome virus infection. Anim Reprod Sci 2018; 199:60-71. [PMID: 30455097 DOI: 10.1016/j.anireprosci.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 01/10/2023]
Abstract
The objectives of this study were to identify and determine relative abundance of miRNAs in boar sperm, seminal plasma (SP), and serum pre- and post-viral infection. Functional enrichment analyses on predicted targets of miRNAs of interest were performed. Boars (n = 6) were inoculated with porcine reproductive and respiratory syndrome virus (PRRSv) strain 1-8-4 (Day 0). Semen and serum were collected on Day -2 and 6. Sperm and SP were separated and aliquots were flash frozen and stored at -80 °C. Serum was frozen and stored at -80 °C. Total RNA was isolated from sperm and SP samples and subjected to RNA sequencing. Microarray analysis was performed using the Day -2 and 6 RNA samples from serum, sperm and SP. Potential miRNA targets were predicted using miRanda 3.3a and targets were then analyzed for enrichment of Gene Ontology) and InterPro terms and were considered to be enriched if P < 0.01 using the Bonferroni correction. Microarray analyses resulted in 83, 13, and 10 miRNAs with differences in abundances in sperm, serum, and SP, respectively, when comparing Day -2 and 6. Results from enrichment analyses indicated that the predicted targets of 35, nine, and five miRNAs with differences in abundances for sperm, SP, and serum, respectively, that have functions and/or conserved protein domains that are enriched when compared to the pig genome. Enriched terms for P2X purinoceptors were identified for sperm, SP and serum. Enriched terms for cell adhesion were identified for sperm and serum transcripts. Enriched terms for cell signaling were identified for sperm and SP transcripts.
Collapse
Affiliation(s)
- Samantha M Calcatera
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States
| | - Darwin Reicks
- P.O. Box 314, 314 S. 3rd St., St. Peter, MN, 5608, United States
| | - Scott L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States.
| |
Collapse
|
25
|
Heim L, Friedrich J, Engelhardt M, Trufa DI, Geppert CI, Rieker RJ, Sirbu H, Finotto S. NFATc1 Promotes Antitumoral Effector Functions and Memory CD8 + T-cell Differentiation during Non-Small Cell Lung Cancer Development. Cancer Res 2018; 78:3619-3633. [PMID: 29691251 DOI: 10.1158/0008-5472.can-17-3297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Nuclear factor of activated T cells 1 (NFATc1) is a transcription factor activated by T-cell receptor (TCR) and Ca2+ signaling that affects T-cell activation and effector function. Upon tumor antigen challenge, TCR and calcium-release-activated channels are induced, promoting NFAT dephosphorylation and translocation into the nucleus. In this study, we report a progressive decrease of NFATc1 in lung tumor tissue and in tumor-infiltrating lymphocytes (TIL) of patients suffering from advanced-stage non-small cell lung cancer (NSCLC). Mice harboring conditionally inactivated NFATc1 in T cells (NFATc1ΔCD4) showed increased lung tumor growth associated with impaired T-cell activation and function. Furthermore, in the absence of NFATc1, reduced IL2 influenced the development of memory CD8+ T cells. We found a reduction of effector memory and CD103+ tissue-resident memory (TRM) T cells in the lung of tumor-bearing NFATc1ΔCD4 mice, underlining an impaired cytotoxic T-cell response and a reduced TRM tissue-homing capacity. In CD4+ICOS+ T cells, programmed cell death 1 (PD-1) was induced in the draining lymph nodes of these mice and associated with lung tumor cell growth. Targeting PD-1 resulted in NFATc1 induction in CD4+ and CD8+ T cells in tumor-bearing mice and was associated with increased antitumor cytotoxic functions. This study reveals a role of NFATc1 in the activation and cytotoxic functions of T cells, in the development of memory CD8+ T-cell subsets, and in the regulation of T-cell exhaustion. These data underline the indispensability of NFATc1 for successful antitumor immune responses in patients with NSCLC.Significance: The multifaceted role of NFATc1 in the activation and function of T cells during lung cancer development makes it a critical participant in antitumor immune responses in patients with NSCLC. Cancer Res; 78(13); 3619-33. ©2018 AACR.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Engelhardt
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
26
|
Lockyer P, Mao H, Fan Q, Li L, Yu-Lee LY, Eissa NT, Patterson C, Xie L, Pi X. LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Arterioscler Thromb Vasc Biol 2017; 37:1524-1535. [PMID: 28596374 DOI: 10.1161/atvbaha.117.309521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1β-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.
Collapse
Affiliation(s)
- Pamela Lockyer
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Hua Mao
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Qiying Fan
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Luge Li
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Li-Yuan Yu-Lee
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - N Tony Eissa
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Cam Patterson
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Liang Xie
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Xinchun Pi
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.).
| |
Collapse
|
27
|
Tetradecanol reduces EL-4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion. Eur J Pharmacol 2017; 799:135-142. [PMID: 28167257 DOI: 10.1016/j.ejphar.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Tetradecanol is a straight-chain saturated fatty alcohol purified from Dendropanax morbifera leaves. We found that tetradecanol (30μM) reduced specifically the growth of T cells such as EL-4 T cell and isolated murine CD4+ T cells. In this study, we investigated the effects of tetradecanol on the regulation of interlukin-2 (IL-2), a potent T cell growth factor. Tetradecanol significantly inhibited IL-2 secretion in EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) and also in isolated murine CD4+ T cells activated with anti-CD3 and anti-CD28 antibodies. Next, we examined the effect of tetradecanol on the transcriptional activity related to IL-2 production in T cells. Tetradecanol decreased PMA/Io-induced promoter activity of NF-κB in EL-4 T cells, but did not show any significant effects on the promoters of activator protein 1 (AP-1) and nuclear factor of activated T cells (NF-AT). Tetradecanol inhibited IκBα degradation and nuclear translocation of NF-κB subunit, p65 in PMA/Io-activated EL-4 T cells. These results suggest that tetradecanol might have immunosuppressive effects on T cell mediated disorders. Using a chronic allergic contact dermatitis model induced by repeated application of oxazolone, we showed that tetradecanol reduced ear thickness induced by oxazolone.
Collapse
|
28
|
The role of microRNA-31 and microRNA-21 as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients. Rheumatol Int 2016; 36:1617-1625. [PMID: 27510529 DOI: 10.1007/s00296-016-3550-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by familial aggregation and genetic predisposition. MicroRNAs (MiRNAs) serve as critical biomarkers in lupus patients because of their aberrant expression in different SLE stages. The study aimed to investigate the correlation of miR-31 and miR-21 with IL-2 in SLE patients as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients. Quantitative RT-PCR is carried out to estimate the expressions of miR-31 and miR-21, and IL-2 levels were determined using ELISA in plasma of 40 patients with SLE, 20 of their first-degree relatives and 20 healthy controls. The study also determined the systemic lupus erythematosus disease activity index (SLEDAI) score and proteinuria in SLE patients. The results revealed that miR-31 was lower expressed, while miR-21 was high expressed in SLE patients compared to their first-degree relatives and controls. MiR-31 was negatively correlated with SLEDAI and proteinuria in lupus patients, while miR-21 showed positive correlation with them. Also we found that there is a significant positive correlation between miR-31 and IL-2 in SLE patients, while miR-21 was negatively correlated with IL-2 level in patients. In conclusion, the study disclosed a significant association between miR-31 and miR-21 expression with IL-2 level in SLE patients. The regulatory biomarkers of miR-31 and miR-21 might have an impact on regulating IL-2 pathway expression and in turn on the activation of T lymphocytes in SLE.
Collapse
|
29
|
Miyajima C, Itoh Y, Inoue Y, Hayashi H. Positive Regulation of Interleukin-2 Expression by a Pseudokinase, Tribbles 1, in Activated T Cells. Biol Pharm Bull 2016; 38:1126-33. [PMID: 26235576 DOI: 10.1248/bpb.b15-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tribbles 1 (TRB1), a member of the Tribbles family, is a pseudokinase that is conserved among species and implicated in various human diseases including leukemia, cardiovascular diseases, and metabolic disorders. However, the role of TRB1 in the immune response is not understood. To evaluate this role, we examined regulation of TRB1 expression and the function of TRB1 in interleukin-2 (IL-2) induction in Jurkat cells, a human acute T cell leukemia cell line. We found that TRB1 was strongly induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin in these cells. IL-2 expression was induced in Jurkat cells activated by PMA and ionomycin; however, knockdown of TRB1 resulted in decreased induction of IL-2. TRB1 null Jurkat cells established using the CRISPR/Cas9 system also showed reduction of IL-2 expression on PMA/ionomycin stimulation. TRB1 knockdown also markedly inhibited IL-2 promoter activation. To determine the mechanism of the stimulatory effect on IL-2 induction, we focused on histone deacetylases (HDACs), and found that HDAC1 preferentially interacts with TRB1. TRB1 suppressed the interaction of HDAC1 with nuclear factor of activated T cells 2 (NFAT2), which is a crucial transcription factor for IL-2 induction. These results indicate that TRB1 is a positive regulator of IL-2 induction in activated T cells.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | | | | |
Collapse
|
30
|
Identification and interplay of sequence specific DNA binding proteins involved in regulation of human Pregnane and Xenobiotic Receptor gene. Exp Cell Res 2015; 339:187-96. [DOI: 10.1016/j.yexcr.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/20/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022]
|
31
|
Otero DC, Fares-Frederickson NJ, Xiao M, Baker DP, David M. IFN-β Selectively Inhibits IL-2 Production through CREM-Mediated Chromatin Remodeling. THE JOURNAL OF IMMUNOLOGY 2015; 194:5120-8. [PMID: 25888642 DOI: 10.4049/jimmunol.1403181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/24/2015] [Indexed: 01/14/2023]
Abstract
IFN-β is widely used in the treatment of multiple sclerosis, yet the mechanism facilitating its efficacy remains unclear. IL-2 production by activated T cells, including those mediating autoimmunity, and subsequent autocrine stimulation is vital for T cell expansion and function. In this study, we demonstrate that in mouse and human T cells, IFN-β specifically inhibits the production of IL-2 upon TCR engagement without affecting other cytokines or activation markers. Rather than disrupting TCR signaling, IFN-β alters histone modifications in the IL-2 promoter to retain the locus in an inaccessible configuration. This in turn is mediated through the upregulation of the transcriptional suppressor CREM by IFN-β and consequent recruitment of histone deacetylases to the IL-2 promoter. In accordance, ablation of CREM expression or inhibition of histone deacetylases activity eliminates the suppressive effects of IFN-β on IL-2 production. Collectively, these findings provide a molecular basis by which IFN-β limits T cell responses.
Collapse
Affiliation(s)
- Dennis C Otero
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | | | - Menghong Xiao
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | | | - Michael David
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
32
|
Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proc Natl Acad Sci U S A 2013; 110:15776-81. [PMID: 24019486 DOI: 10.1073/pnas.1304343110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
E26 transformation-specific sequence 1 (Ets-1), the prototype of the ETS family of transcription factors, is critical for the expression of IL-2 by murine Th cells; however, its mechanism of action is still unclear. Here we show that Ets-1 is also essential for optimal production of IL-2 by primary human Th cells. Although Ets-1 negatively regulates the expression of Blimp1, a known suppressor of IL-2 expression, ablation of B lymphocyte-induced maturation protein 1 (Blimp1) does not rescue the expression of IL-2 by Ets-1-deficient Th cells. Instead, Ets-1 physically and functionally interacts with the nuclear factor of activated T-cells (NFAT) and is required for the recruitment of NFAT to the IL-2 promoter. In addition, Ets-1 is located in both the nucleus and cytoplasm of resting Th cells. Nuclear Ets-1 quickly exits the nucleus in response to calcium-dependent signals and competes with NFAT proteins for binding to protein components of noncoding RNA repressor of NFAT complex (NRON), which serves as a cytoplasmic trap for phosphorylated NFAT proteins. This nuclear exit of Ets-1 precedes rapid nuclear entry of NFAT and Ets-1 deficiency results in impaired nuclear entry, but not dephosphorylation, of NFAT proteins. Thus, Ets-1 promotes the expression of IL-2 by modulating the activity of NFAT.
Collapse
|
33
|
Walters RD, Drullinger LF, Kugel JF, Goodrich JA. NFATc2 recruits cJun homodimers to an NFAT site to synergistically activate interleukin-2 transcription. Mol Immunol 2013; 56:48-56. [PMID: 23665382 DOI: 10.1016/j.molimm.2013.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 01/30/2023]
Abstract
Transcription of interleukin-2 (IL-2), a pivotal cytokine in the mammalian immune response, is induced by NFAT and AP-1 transcriptional activators in stimulated T cells. NFATc2 and cJun drive high levels of synergistic human IL-2 transcription, which requires a unique interaction between the C-terminal activation domain of NFATc2 and cJun homodimers. Here we studied the mechanism by which this interaction contributes to synergistic activation of IL-2 transcription. We found that NFATc2 can recruit cJun homodimers to the -45 NFAT element, which lacks a neighboring AP-1 site. The bZip domain of cJun is sufficient to interact with the C-terminal activation domain of NFATc2 in the absence of DNA and this interaction is inhibited by AP-1 DNA. When the -45 NFAT site was replaced by either an NFAT/AP-1 composite site or a single AP-1 site the specificity for cJun homodimers in synergistically activating IL-2 transcription was lost, and cJun/cFos heterodimers strongly activated transcription. These studies support a model in which IL-2 transcriptional synergy is mediated by the unique recruitment of a cJun homodimer to the -45 NFAT site by NFATc2, where it acts as a co-activator for IL-2 transcription.
Collapse
Affiliation(s)
- Ryan D Walters
- University of Colorado, Department of Chemistry and Biochemistry, Boulder, CO 80303-0596, United States
| | | | | | | |
Collapse
|
34
|
NF-κB controls Il2 and Csf2 expression during T cell development and activation process. Mol Biol Rep 2012; 40:1685-92. [PMID: 23079711 DOI: 10.1007/s11033-012-2219-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023]
Abstract
Aging and dysregulation of immune responds are closely associated through a complicated but unclear mechanism. Although many theories have been proposed as overall dysregulation involved in aging, mechanisms such as efficiency of DNA repairing, over-expression of transcription factors (such as NF-κB family), and shift of cell types, are among many factors that contribute to and affect aging process. It is of great interests to understand the possible mechanism that is involved in aging immune system. Here, we report that the inducible genes Il2 and Csf2 are increased as T cells undergo activation and aging. Of particular note were the findings that the relative composition of the circulating CD4(+) T cell population changes as animals mature with an increased percentage of the population being memory/effector type cells. In addition, mRNA levels of NF-κB family genes that are essential elements for cytokine activation in adult mice and activated T cells are significantly increased. We have demonstrated that the expression of inducible genes is accompanied by increased memory/effector type cells and by increased expression level of NF-κB family genes during cell activation and development.
Collapse
|
35
|
Liao JM, Zhou X, Zhang Y, Lu H. MiR-1246: a new link of the p53 family with cancer and Down syndrome. Cell Cycle 2012; 11:2624-30. [PMID: 22751441 PMCID: PMC3409007 DOI: 10.4161/cc.20809] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the discovery of miRNAs, a number of miRNAs have been identified as p53's transcriptional targets. Most of them are involved in regulation of the known p53 functions, such as cell cycle, apoptosis and senescence. Our recent study revealed miR-1246 as a novel target of p53 and its analogs p63 and p73 to suppress the expression of DYRK1A and consequently activate NFAT, both of which are associated with Down syndrome and possibly with tumorigenesis. This finding suggests that miR-1246 might serve as a likely link of the p53 family with Down syndrome. Here, we provide some prospective views on the potential role of the p53 family in Down syndrome via miR-1246 and propose a new p53-miR-1246-DYRK1A-NFAT pathway in cancer.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| | - Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| | - Yu Zhang
- Department of Obstetrics and Gynecology; Xiangya Hospital; Central South University; Hunan, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center; Tulane University School of Medicine; New Orleans, LA USA
| |
Collapse
|
36
|
Bendfeldt H, Benary M, Scheel T, Frischbutter S, Abajyan A, Radbruch A, Herzel H, Baumgrass R. Stable IL-2 decision making by endogenous c-Fos amounts in peripheral memory T-helper cells. J Biol Chem 2012; 287:18386-97. [PMID: 22474330 DOI: 10.1074/jbc.m112.358853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytokine IL-2 performs opposite functions supporting efficient immune responses and playing a key role in peripheral tolerance. Therefore, precise fine-tuning of IL-2 expression is crucial for adjusting the immune response. Combining transcription factor analysis at the single cell and the single nucleus level using flow cytometry with statistical analysis, we showed that physiological differences in the expression levels of c-Fos and NFATc2, but not of c-Jun and NF-κBp65, are limiting for the decision whether IL-2 is expressed in a strongly activated human memory T-helper (Th) cell. Variation in the expression of c-Fos leads to substantial diversity of IL-2 expression in ∼40% of the memory Th cells. The remaining cells exhibit an equally high c-Fos expression level, thereby ensuring robustness in IL-2 response within the population. These findings reveal how memory Th cells benefit from regulated variation in transcription factor expression to achieve a certain stability and variability of cytokine expression in a controlled manner.
Collapse
Affiliation(s)
- Hanna Bendfeldt
- Deutsches Rheuma-Forschungszentrum Berlin, A. Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Checker R, Sandur SK, Sharma D, Patwardhan RS, Jayakumar S, Kohli V, Sethi G, Aggarwal BB, Sainis KB. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PLoS One 2012; 7:e31318. [PMID: 22363615 PMCID: PMC3282718 DOI: 10.1371/journal.pone.0031318] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. METHODOLOGY/PRINCIPAL FINDINGS The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. CONCLUSIONS/SIGNIFICANCE The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology and Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Santosh K. Sandur
- Radiation Biology and Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Raghavendra S. Patwardhan
- Radiation Biology and Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai, India
| | - S. Jayakumar
- Radiation Biology and Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Vineet Kohli
- Medical Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Krishna B. Sainis
- Radiation Biology and Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
38
|
Park K, Park JH, Yang WJ, Lee JJ, Song MJ, Kim HP. Transcriptional activation of theIL31gene by NFAT and STAT6. J Leukoc Biol 2011; 91:245-57. [DOI: 10.1189/jlb.0111020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Venkatesha SH, Berman BM, Moudgil KD. Herbal medicinal products target defined biochemical and molecular mediators of inflammatory autoimmune arthritis. Bioorg Med Chem 2011; 19:21-9. [PMID: 21115252 PMCID: PMC3020797 DOI: 10.1016/j.bmc.2010.10.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating disease characterized by synovial inflammation, damage to cartilage and bone, and deformities of the joints. Several drugs possessing anti-inflammatory and immunomodulatory properties are being used in the conventional (allopathic) system of medicine to treat RA. However, the long-term use of these drugs is associated with harmful side effects. Therefore, newer drugs with low or no toxicity for the treatment of RA are actively being sought. Interestingly, several herbs demonstrate anti-inflammatory and anti-arthritic activity. In this review, we describe the role of the major biochemical and molecular mediators in the pathogenesis of RA, and highlight the sites of action of herbal medicinal products that have anti-arthritic activity. With the rapidly increasing use of CAM products by patients with RA and other inflammation-related disorders, our review presents timely information validating the scientific rationale for the use of natural therapeutic products.
Collapse
Affiliation(s)
- Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Brian M. Berman
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
40
|
Motegi H, Shimo Y, Akiyama T, Inoue JI. TRAF6 negatively regulates the Jak1-Erk pathway in interleukin-2 signaling. Genes Cells 2010; 16:179-89. [PMID: 21155952 DOI: 10.1111/j.1365-2443.2010.01474.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a critical role in establishing both innate and acquired immune responses by mediating signals from the TNF superfamily, the TLR/IL-1R family, and the T-cell receptor. Here, we report a previously unidentified function of TRAF6 in IL-2 signaling. CD3/CD28 stimulation-induced proliferation and Il2 mRNA expression in Traf6(-/-) CD4(+) T cells were dramatically enhanced. This enhancement is likely due to hyperactive IL-2 signaling, in which activation of the Jak1-Erk pathway was enhanced and the subsequent Fos gene expression was up-regulated. To elucidate the molecular mechanisms of the enhanced activation of Jak1, IL-2 signaling was reconstituted in mouse embryonic fibroblast (MEF) cells to investigate the interaction between TRAF6 and the TRAF6-binding site that overlaps with the Jak1-binding site present in the IL-2R β-chain. The Jak1-Erk pathway was activated upon IL-2 stimulation in Traf6(-/-) MEF cells, while a β-chain mutation that inactivates TRAF6 binding but retains Jak1 binding abrogated the TRAF6-dependent reduction in IL-2 signaling. These results indicate that the binding of TRAF6 to the TRAF6-binding site of the β-chain negatively regulates IL-2-induced Jak1 activation, which is likely to be involved in the proper regulation of T-cell activation and development.
Collapse
Affiliation(s)
- Hidehiko Motegi
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
41
|
Xiao Y, Li B, Zhou Z, Hancock WW, Zhang H, Greene MI. Histone acetyltransferase mediated regulation of FOXP3 acetylation and Treg function. Curr Opin Immunol 2010; 22:583-91. [PMID: 20869864 PMCID: PMC2967626 DOI: 10.1016/j.coi.2010.08.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 01/12/2023]
Abstract
Regulatory T cells (Tregs) are required for the maintenance of immune homeostasis as first clearly described by Herman Waldmann's laboratory. Dysfunction of Treg cells also leads to fatal autoimmunity in humans and mice. Conversely, the activation of different classes of Tregs operative systemically and within the cancer microenvironment can suppress host anti-tumor immune responses and promote tumor progression. Therefore, the development of new therapeutic approaches to regulate the activity of Treg cells may have considerable clinical potential. FOXP3 is the key transcriptional regulator of Treg development and function. The activity of FOXP3 is regulated by acetylation, a process catalyzed by distinct types of histone/protein acetyltransferases (HATs) that regulate the functions of many transcription factors, independently of FOXP3, as well as non-histone proteins, in addition to their effects on chromatin accessibility. Interactions between FOXP3 and these enzymes determine the suppressive function of FOXP3. Clearly, small molecules targeting these enzymes are candidates for the regulation of Treg function in vaccines and tumor therapies.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Bin Li
- Key Laboratory of Molecular Virology & Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, China 200031
| | - Zhaocai Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| |
Collapse
|
42
|
Nguyen TN, Kim LJ, Walters RD, Drullinger LF, Lively TN, Kugel JF, Goodrich JA. The C-terminal region of human NFATc2 binds cJun to synergistically activate interleukin-2 transcription. Mol Immunol 2010; 47:2314-22. [PMID: 20557936 DOI: 10.1016/j.molimm.2010.05.287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/17/2010] [Accepted: 05/23/2010] [Indexed: 11/27/2022]
Abstract
At eukaryotic promoters, multi-faceted protein-protein and protein-DNA interactions can result in synergistic transcriptional activation. NFAT and AP-1 proteins induce interleukin-2 (IL-2) transcription in stimulated T cells, but the contributions of individual members of these activator families to synergistically activating IL-2 transcription is not known. To investigate the combinatorial regulation of IL-2 transcription we tested the ability of different combinations of NFATc2, NFATc1, cJun, and cFos to synergistically activate transcription from the IL-2 promoter. We found that NFATc2 and cJun are exclusive in their ability to synergistically activate human IL-2 transcription. Protein-protein interaction assays revealed that in the absence of DNA, NFATc2, but not NFATc1, bound directly to cJun/cJun dimers, but not to cFos/cJun heterodimers. A region of NFATc2 C-terminal of the DNA binding domain was necessary and sufficient for interaction with cJun in the absence of DNA, and this same region of NFATc2 was required for the synergistic activation of IL-2 transcription in T cells. Moreover, expression of this C-terminal region of NFATc2 specifically repressed the synergistic activation of IL-2 transcription. These studies show that a previously unidentified interaction between human NFATc2 and cJun is necessary for synergistic activation of IL-2 transcription in T cells.
Collapse
Affiliation(s)
- Tuan N Nguyen
- University of Colorado, Department of Chemistry and Biochemistry, 215 UCB, Boulder, CO 80309-0215, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Yamashiro T, Kuge H, Zhang J, Honke K. Calcineurin mediates the angiotensin II-induced aldosterone synthesis in the adrenal glands by up-regulation of transcription of the CYP11B2 gene. J Biochem 2010; 148:115-23. [PMID: 20413672 DOI: 10.1093/jb/mvq037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aldosterone synthesis in the zona glomerulosa of the adrenal gland is catalysed by aldosterone synthase (CYP11B2). The CYP11B2 expression is induced by angiotensin II (Ang II), mediated by increase of intracellular Ca(2+) level. Since calcineurin (CN) is an important mediator activated by Ca(2+), we investigated the issue of whether CN is involved in the Ang II-induced CYP11B2 expression in human adrenocortical H295R cells. First, CN inhibitors, cyclosporine A (CysA) and tacrolimus (FK506) inhibited the Ang II-induced elevation of CYP11B2 mRNA level. Second, enforced expression of a constitutively active CN increased the CYP11B2 mRNA level. Third, depletion of CN by siRNA technique blocked the Ang II-induced elevation of CYP11B2 mRNA level. Fourth, in reporter assays using a luciferase gene connected to a 5'-flanking region (from -134 to +43 bp) of the hCYP11B2 gene, both CysA and FK506 inhibited the Ang II-mediated up-regulation of luciferase activity. Finally, activation of CN in living H295R cells following the Ang II treatment was confirmed using a fluorescence resonance energy transfer-based sensor. Taken together, we conclude that CN mediates the Ang II-induced aldosterone synthesis through up-regulation of the CYP11B2 transcription.
Collapse
Affiliation(s)
- Toshiyuki Yamashiro
- Department of Biochemistry, Kochi System Glycobiology Centre, Kochi University Medical School, Nankoku, Kochi 783-8505, Japan
| | | | | | | |
Collapse
|
44
|
Huang H, Chikazu D, Voznesensky OS, Herschman HR, Kream BE, Drissi H, Pilbeam CC. Parathyroid hormone induction of cyclooxygenase-2 in murine osteoblasts: role of the calcium-calcineurin-NFAT pathway. J Bone Miner Res 2010; 25:819-29. [PMID: 19821778 PMCID: PMC3153333 DOI: 10.1359/jbmr.091019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 08/25/2009] [Accepted: 10/09/2009] [Indexed: 12/17/2022]
Abstract
Murine MC3T3-E1 and MC-4 cells were stably transfected with -371/+70 bp of the murine cyclooxygenase-2 (COX-2) promoter fused to a luciferase reporter (Pluc371) or with Pluc371 carrying site-directed mutations. Mutations were made in (1) the cAMP response element (CRE) at -57/-52 bp, (2) the activating protein-1 (AP-1)-binding site at -69/-63 bp, (3) the nuclear factor of activated T-cells (NFAT)-binding site at -77/-73 bp, and (4) both the AP-1 and NFAT sites, which comprise a composite consensus sequence for NFAT/AP-1. Single mutation of CRE, AP-1, or NFAT sites decreased parathyroid hormone (PTH)-stimulated COX-2 promoter activity 40% to 60%, whereas joint mutation of NFAT and AP-1 abrogated the induction. On electrophoretic mobility shift analysis, PTH stimulated binding of phosphorylated CREB to an oligonucleotide spanning the CRE and binding of NFATc1, c-Fos, and c-Jun to an oligonucleotide spanning the NFAT/AP-1 composite site. Mutation of the NFAT site was less effective than mutation of the AP-1 site in competing binding to the composite element, suggesting that cooperative interactions of NFATc1 and AP-1 are more dependent on NFAT than on AP-1. Both PTH and forskolin, an activator of adenylyl cyclase, stimulated NFATc1 nuclear translocation. PTH- and forskolin-stimulated COX-2 promoter activity was inhibited 56% to 80% by calcium chelation or calcineurin inhibitors and 60% to 98% by protein kinase A (PKA) inhibitors. These results indicate an important role for the calcium-calcineurin-NFAT signaling pathway in the PTH induction of COX-2 and suggest that cross-talk between the cAMP/PKA pathway and the calcium-calcineurin-NFAT pathway may play a role in other functions of PTH in osteoblasts.
Collapse
Affiliation(s)
- Hechang Huang
- Department of Medicine, University of Connecticut Health CenterFarmington, CT, USA
| | - Daichi Chikazu
- Oral and Maxillofacial Surgery, University of TokyoTokyo, Japan
| | - Olga S Voznesensky
- Department of Medicine, University of Connecticut Health CenterFarmington, CT, USA
| | - Harvey R Herschman
- Department of Biological Chemistry, UCLA School of MedicineLos Angeles, CA, USA
| | - Barbara E Kream
- Department of Medicine, University of Connecticut Health CenterFarmington, CT, USA
| | - Hicham Drissi
- Department of Orthopaedics, University of Connecticut Health CenterFarmington, CT, USA
| | - Carol C Pilbeam
- Department of Medicine, University of Connecticut Health CenterFarmington, CT, USA
| |
Collapse
|
45
|
Chebel A, Rouault JP, Urbanowicz I, Baseggio L, Chien WW, Salles G, Ffrench M. Transcriptional activation of hTERT, the human telomerase reverse transcriptase, by nuclear factor of activated T cells. J Biol Chem 2010; 284:35725-34. [PMID: 19843528 DOI: 10.1074/jbc.m109.009183] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomerase is essential for telomere maintenance, and its activation is thought to be a critical step in cellular immortalization and tumorigenesis. Human telomerase reverse transcriptase (hTERT) is a major component of telomerase activity. We show here that hTERT is expressed soon after lymphocyte activation and that its expression is inhibited by rapamycin, wortmannin, and FK506, which was the most potent inhibitor. These results suggest a potential role for the transcription factor nuclear factor of activated T cells (NFAT) in the regulation of hTERT expression. Five putative NFAT-binding sites were identified in the hTERT promoter. In luciferase assays, the hTERT promoter was activated by overexpressed NFAT1. Moreover, serial deletions revealed that the promoter activation was mainly due to a -40 NFAT1-binding site flanked by two SP1-binding sites. Mutation of the -40 NFAT-binding site caused a 53% reduction in the transcriptional activity of hTERT promoter. Simultaneous mutations of the -40 NFAT-responsive element together with one or both SP1-binding sites led to a more dramatic decrease in luciferase activity than single mutations, suggesting a functional synergy between NFAT1 and SP1 in hTERT transcriptional regulation. NFAT1 overexpression in MCF7 and Jurkat cell lines induced an increase in endogenous hTERT mRNA expression. Inversely, its down-regulation was induced by NFAT1 silencing. Furthermore, chromatin immunoprecipitation assay demonstrated that NFAT1 directly binds to two sites (-40 and -775) in the endogenous hTERT promoter. Thus, we show for the first time the direct involvement of NFAT1 in the transcriptional regulation of hTERT.
Collapse
Affiliation(s)
- Amel Chebel
- Université Lyon 1, CNRS UMR 5239, Ecole Normale Supérieure (ENS), Université Claude Bernard, Hospices Civils de Lyon, Faculté Lyon-Sud, Oullins 69921
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The human polyomavirus BK virus (BKV) is a common virus for which 80 to 90% of the adult population is seropositive. BKV reactivation in immunosuppressed patients or renal transplant patients is the primary cause of polyomavirus-associated nephropathy (PVN). Using the Dunlop strain of BKV, we found that nuclear factor of activated T cells (NFAT) plays an important regulatory role in BKV infection. Luciferase reporter assays and chromatin immunoprecipitation assays demonstrated that NFAT4 bound to the viral promoter and regulated viral transcription and infection. The mutational analysis of the NFAT binding sites demonstrated complex functional interactions between NFAT, c-fos, c-jun, and the p65 subunit of NF-kappaB that together influence promoter activity and viral growth. These data indicate that NFAT is required for BKV infection and is involved in a complex regulatory network that both positively and negatively influences promoter activity and viral infection.
Collapse
|
47
|
Interaction of vitamin D receptor with HLA DRB1 0301 in type 1 diabetes patients from North India. PLoS One 2009; 4:e8023. [PMID: 19956544 PMCID: PMC2780726 DOI: 10.1371/journal.pone.0008023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 10/27/2009] [Indexed: 12/17/2022] Open
Abstract
Background Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where interaction and integration of immune response genes along with environmental factors play a role in autoimmune destruction of the insulin producing Pancreatic Beta cells. Methodology/Principal Findings We have studied four single nucleotide polymorphisms (FokI site in Exon 2, BsmI and ApaI sites in Intron 8 and TaqI site in exon 9) in the vitamin D receptor (VDR) gene using PCR-RFLP and HLA-DRB1 alleles using PCR and hybridization with sequence specific oligonucleotide probes and studied their interaction using LD based statistics for non-linked loci followed by sequence analysis of the vitamin D response element (VDRE) present in the promoter region of HLA-DRB1*0301. Haplotypes, constructed using SHEsis program for four single nucleotide polymorphisms in the VDR gene, were studied for their interaction with HLA-DRB1 alleles in 233 T1D patients and 191 healthy controls from North India. A significant increase of haplotypes FBAt and fBAT (p<0.02, OR = 1.44 and p<0.002, OR = 3.23 respectively) was observed in the patients. Both the haplotypes FBAt and fBAT were significantly increased in male patients with age at onset less than 18 years; however, fBAT was significantly increased in female patients irrespective of their age at onset. LD based statistics showed significant interaction between the high producer F and T alleles with HLA-DRB1*0301. F and T alleles of VDR have been shown to contribute to VDR mRNA independently. The promoter sequence analysis of HLA-DRB1*0301 showed presence of VDRE involved in higher expression of HLA-DRB1*030, which was confirmed by flow cytometry and real time PCR analysis. Conclusions/Significance These data suggest that the interaction between VDR and HLA alleles is mediated by VDRE present in the promoter region of HLA-DRB1*0301 allele, which may be detrimental for the manifestation of T1D in the absence of 1,25-(OH)2D3 in early childhood due to poor expression of DRB1*0301 in the thymus resulting in autoimmunity.
Collapse
|
48
|
Conrad DM, Furlong SJ, Doucette CD, Boudreau RT, Hoskin DW. Role of mitogen-activated protein kinases in Thy-1-induced T-lymphocyte activation. Cell Signal 2009; 21:1298-307. [DOI: 10.1016/j.cellsig.2009.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 03/03/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022]
|
49
|
Okamoto M, Van Stry M, Chung L, Koyanagi M, Sun X, Suzuki Y, Ohara O, Kitamura H, Hijikata A, Kubo M, Bix M. Mina, an Il4 repressor, controls T helper type 2 bias. Nat Immunol 2009; 10:872-9. [PMID: 19561615 DOI: 10.1038/ni.1747] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 05/06/2009] [Indexed: 12/15/2022]
Abstract
T helper type 2 (T(H)2) bias, which is the propensity of naive CD4(+) T cells to differentiate into interleukin 4 (IL-4)-secreting T(H)2 cells, is a genetic trait that affects susceptibility to infectious, autoimmune and allergic diseases. T(H)2 bias correlates with the amount of IL-4 initially secreted by newly activated helper T cells that feeds back positively through the pathway of the IL-4 receptor and the transcription factors STAT6 and GATA-3 to drive T(H)2 development. Here we identify Mina, a member of the jumonji C (JmjC) protein family, as a genetic determinant of T(H)2 bias. Mina specifically bound to and repressed the Il4 promoter. Mina overexpression in transgenic mice impaired Il4 expression, whereas its knockdown in primary CD4(+) T cells led to Il4 derepression. Our findings collectively provide mechanistic insight into an Il4-regulatory pathway that controls helper T cell differentiation and genetic variation in T(H)2 bias.
Collapse
Affiliation(s)
- Mariko Okamoto
- Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Blomberg KEM, Boucheron N, Lindvall JM, Yu L, Raberger J, Berglöf A, Ellmeier W, Smith CE. Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells. BMC Genomics 2009; 10:233. [PMID: 19450280 PMCID: PMC2689280 DOI: 10.1186/1471-2164-10-233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 05/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. RESULTS The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin A (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. CONCLUSION Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.
Collapse
Affiliation(s)
- K Emelie M Blomberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186 Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|