1
|
Xu S, Peng C, Ren R, Lu H, Zhao H, Xia S, Shen Y, Xu B, Zhang H, Cheng X, Blobel GA, Lan X. SWI/SNF complex-mediated ZNF410 cooperative binding maintains chromatin accessibility and enhancer activity. Cell Rep 2025; 44:115476. [PMID: 40158221 DOI: 10.1016/j.celrep.2025.115476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/21/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The clustering of multiple transcription factor binding sites (TFBSs) for the same TF has proved to be a pervasive feature of cis-regulatory elements in the eukaryotic genome. However, the contribution of binding sites within the homotypic clusters of TFBSs (HCTs) to TF binding and target gene expression remains to be understood. Here, we characterize the CHD4 enhancers that harbor unique functional ZNF410 HCTs genome wide. We uncover that ZNF410 controls chromatin accessibility and activity of the CHD4 enhancer regions. We demonstrate that ZNF410 binds to the HCTs in a collaborative fashion, further conferring transcriptional activation. In particular, three ZNF410 motifs (sub-HCTs) located at 3' end of the distal enhancer act as "switch motifs" to control chromatin accessibility and enhancer activity. Mechanistically, the SWI/SNF complex is selectively required to mediate cooperative ZNF410 binding for CHD4 expression. Together, our findings expose a complex functional hierarchy of homotypic clustered motifs, which cooperate to fine-tune target gene expression.
Collapse
Affiliation(s)
- Siyuan Xu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chuxuan Peng
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haowen Lu
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Han Zhao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Sijian Xia
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Yijie Shen
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Dalal K, McAnany C, Weilert M, McKinney MC, Krueger S, Zeitlinger J. Interpreting regulatory mechanisms of Hippo signaling through a deep learning sequence model. CELL GENOMICS 2025; 5:100821. [PMID: 40174587 PMCID: PMC12008814 DOI: 10.1016/j.xgen.2025.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/23/2024] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Signaling pathway components are well studied, but how they mediate cell-type-specific transcription responses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show that the DNA binding of signaling effectors is driven by cell-type-specific sequence rules that can be learned genome wide by deep learning models. Through model interpretation and experimental validation, we show that motifs for the cell-type-specific transcription factor TFAP2C enhance TEAD4/YAP1 binding in a nucleosome-range and distance-dependent manner, driving synergistic enhancer activation. We also discovered that Tead double motifs are widespread, highly active canonical response elements. Molecular dynamics simulations suggest that TEAD4 binds them cooperatively through surprisingly labile protein-protein interactions that depend on the DNA template. These results show that the response to signaling pathways is encoded in the cis-regulatory sequences and that interpreting the rules reveals insights into the mechanisms by which signaling effectors influence cell-type-specific enhancer activity.
Collapse
Affiliation(s)
- Khyati Dalal
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Charles McAnany
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis. Nat Commun 2025; 16:929. [PMID: 39843425 PMCID: PMC11754732 DOI: 10.1038/s41467-025-56187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood. Here we show that Cdx2-a lineage defining transcription factor that binds distinct targets in developing versus adult intestinal epithelial cells-has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic Cdx2 targets and methylated state of the CpG during development enables selective Cdx2 binding and activation of developmental enhancers and genes. In adult cells, demethylation at these enhancers prevents ectopic Cdx2 binding, instead directing Cdx2 to its canonical motif without a CpG. This shift in Cdx2 binding facilitates Ctcf and Hnf4 recruitment, establishing super-enhancers during development and homeostatic enhancers in adult cells, respectively. Induced DNA methylation in adult mouse epithelium or cultured cells recruits Cdx2 to developmental targets, promoting corecruitment of partner transcription factors. Thus, Cdx2's differential CpG motif preferences enable it to navigate distinct DNA methylation profiles, activating genes specific to appropriate developmental stages.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
5
|
Jana Lang T, Brodsky S, Manadre W, Vidavski M, Valinsky G, Mindel V, Ilan G, Carmi M, Jonas F, Barkai N. Massively parallel binding assay (MPBA) reveals limited transcription factor binding cooperativity, challenging models of specificity. Nucleic Acids Res 2024; 52:12227-12243. [PMID: 39413205 PMCID: PMC11551769 DOI: 10.1093/nar/gkae846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
DNA-binding domains (DBDs) within transcription factors (TFs) recognize short sequence motifs that are highly abundant in genomes. In vivo, TFs bind only a small subset of motif occurrences, which is often attributed to the cooperative binding of interacting TFs at proximal motifs. However, large-scale testing of this model is still lacking. Here, we describe a novel method allowing parallel measurement of TF binding to thousands of designed sequences within yeast cells and apply it to quantify the binding of dozens of TFs to libraries of regulatory regions containing clusters of binding motifs, systematically mutating all motif combinations. With few exceptions, TF occupancies were well explained by independent binding to individual motifs, with motif cooperation being of only limited effects. Our results challenge the general role of motif combinatorics in directing TF genomic binding and open new avenues for exploring the basis of protein-DNA interactions within cells.
Collapse
Affiliation(s)
- Tamar Jana Lang
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Wajd Manadre
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Matan Vidavski
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Gili Valinsky
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Vladimir Mindel
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Guy Ilan
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Kobayashi W, Sappler AH, Bollschweiler D, Kümmecke M, Basquin J, Arslantas EN, Ruangroengkulrith S, Hornberger R, Duderstadt K, Tachibana K. Nucleosome-bound NR5A2 structure reveals pioneer factor mechanism by DNA minor groove anchor competition. Nat Struct Mol Biol 2024; 31:757-766. [PMID: 38409506 PMCID: PMC11102866 DOI: 10.1038/s41594-024-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Gene expression during natural and induced reprogramming is controlled by pioneer transcription factors that initiate transcription from closed chromatin. Nr5a2 is a key pioneer factor that regulates zygotic genome activation in totipotent embryos, pluripotency in embryonic stem cells and metabolism in adult tissues, but the mechanism of its pioneer activity remains poorly understood. Here, we present a cryo-electron microscopy structure of human NR5A2 bound to a nucleosome. The structure shows that the conserved carboxy-terminal extension (CTE) loop of the NR5A2 DNA-binding domain competes with a DNA minor groove anchor of the nucleosome and releases entry-exit site DNA. Mutational analysis showed that NR5A2 D159 of the CTE is dispensable for DNA binding but required for stable nucleosome association and persistent DNA 'unwrapping'. These findings suggest that NR5A2 belongs to an emerging class of pioneer factors that can use DNA minor groove anchor competition to destabilize nucleosomes and facilitate gene expression during reprogramming.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Anna H Sappler
- Structure and Dynamics of Molecular Machines, MPIB, Munich, Germany
| | | | - Maximilian Kümmecke
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Crystallization Facility, MPIB, Munich, Germany
| | - Eda Nur Arslantas
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | | | - Renate Hornberger
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Karl Duderstadt
- Structure and Dynamics of Molecular Machines, MPIB, Munich, Germany
- Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany.
| |
Collapse
|
7
|
Nie XY, Menet JS. Circadian regulation of stereotypic chromatin conformations at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590818. [PMID: 38712031 PMCID: PMC11071494 DOI: 10.1101/2024.04.24.590818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cooperation between the circadian transcription factor (TF) CLOCK:BMAL1 and other TFs at cis-regulatory elements (CREs) is critical to daily rhythms of transcription. Yet, the modalities of this cooperation are unclear. Here, we analyzed the co-binding of multiple TFs on single DNA molecules in mouse liver using single molecule footprinting (SMF). We found that SMF reads clustered in stereotypic chromatin states that reflect distinguishable organization of TFs and nucleosomes, and that were remarkably conserved between all samples. DNA protection at CLOCK:BMAL1 binding motif (E-box) varied between CREs, from E-boxes being solely bound by CLOCK:BMAL1 to situations where other TFs competed with CLOCK:BMAL1 for E-box binding. SMF also uncovered CLOCK:BMAL1 cooperative binding at E-boxes separated by 250 bp, which structurally altered the CLOCK:BMAL1-DNA interface. Importantly, we discovered multiple nucleosomes with E-boxes at entry/exit sites that were removed upon CLOCK:BMAL1 DNA binding, thereby promoting the formation of open chromatin states that facilitate DNA binding of other TFs and that were associated with rhythmic transcription. These results demonstrate the utility of SMF for studying how CLOCK:BMAL1 and other TFs regulate stereotypical chromatin states at CREs to promote transcription.
Collapse
Affiliation(s)
- Xinyu Y. Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
| | - Jerome S. Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX
| |
Collapse
|
8
|
Pomp W, Meeussen JVW, Lenstra TL. Transcription factor exchange enables prolonged transcriptional bursts. Mol Cell 2024; 84:1036-1048.e9. [PMID: 38377994 PMCID: PMC10962226 DOI: 10.1016/j.molcel.2024.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Single-molecule imaging inside living cells has revealed that transcription factors (TFs) bind to DNA transiently, but a long-standing question is how this transient binding is related to transcription activation. Here, we devised a microscopy method to simultaneously measure transient TF binding at a single locus and the effect of these binding events on transcription. We show that DNA binding of the yeast TF Gal4 activates transcription of a target gene within a few seconds, with at least ∼20% efficiency and with a high initiation rate of ∼1 RNA/s. Gal4 DNA dissociation decreases transcription rapidly. Moreover, at a gene with multiple binding sites, individual Gal4 molecules only rarely stay bound throughout the entire burst but instead frequently exchange during a burst to increase the transcriptional burst duration. Our results suggest a mechanism for enhancer regulation in more complex eukaryotes, where TF cooperativity and exchange enable robust and responsive transcription regulation.
Collapse
Affiliation(s)
- Wim Pomp
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Joseph V W Meeussen
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. DNA methylation-dependent and -independent binding of CDX2 directs activation of distinct developmental and homeostatic genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579850. [PMID: 38405700 PMCID: PMC10888781 DOI: 10.1101/2024.02.11.579850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise spatiotemporal and cell type-specific gene expression is essential for proper tissue development and function. Transcription factors (TFs) guide this process by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of TFs. However, how TFs navigate various chromatin features and selectively bind a small portion of the millions of possible genomic target loci is still not well understood. Here we show that Cdx2 - a pioneer TF that binds distinct targets in developing versus adult intestinal epithelial cells - has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic and fetal Cdx2 target loci and the specifically methylated state of the CpG during development allows selective Cdx2 binding and activation of developmental enhancers and linked genes. Conversely, demethylation at these enhancers prohibits ectopic Cdx2 binding in adult cells, where Cdx2 binds its canonical motif without a CpG. This differential Cdx2 binding allows for corecruitment of Ctcf and Hnf4, facilitating the establishment of intestinal superenhancers during development and enhancers mediating adult homeostatic functions, respectively. Induced gain of DNA methylation in the adult mouse epithelium or cultured cells causes ectopic recruitment of Cdx2 to the developmental target loci and facilitates cobinding of the partner TFs. Together, our results demonstrate that the differential CpG motif requirements for Cdx2 binding to developmental versus adult target sites allow it to navigate different DNA methylation profiles and activate cell type-specific genes at appropriate times.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| |
Collapse
|
10
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. G3 (BETHESDA, MD.) 2024; 14:jkad269. [PMID: 38124496 PMCID: PMC11090500 DOI: 10.1093/g3journal/jkad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
During gene regulation, DNA accessibility is thought to limit the availability of transcription factor (TF) binding sites, while TFs can increase DNA accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events in the modulation of gene expression remain unknown for the vast majority of genes. We utilized deeply sequenced ATAC-Seq data and site-specific knock-in reporter genes to investigate the relationship between the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of Cebpa during macrophage-neutrophil differentiation. While the enhancers upregulate reporter expression during the earliest stages of differentiation, there is little corresponding increase in their total accessibility. Conversely, total accessibility peaks during the last stages of differentiation without any increase in enhancer activity. The accessibility of positions neighboring C/EBP-family TF binding sites, which indicates TF occupancy, does increase significantly during early differentiation, showing that the early upregulation of enhancer activity is driven by TF binding. These results imply that a generalized increase in DNA accessibility is not sufficient, and binding by enhancer-specific TFs is necessary, for the upregulation of gene expression. Additionally, high-coverage ATAC-Seq combined with time-series expression data can infer the sequence of regulatory events at binding-site resolution.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| |
Collapse
|
11
|
Brennan KJ, Weilert M, Krueger S, Pampari A, Liu HY, Yang AWH, Morrison JA, Hughes TR, Rushlow CA, Kundaje A, Zeitlinger J. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev Cell 2023; 58:1898-1916.e9. [PMID: 37557175 PMCID: PMC10592203 DOI: 10.1016/j.devcel.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
Collapse
Affiliation(s)
- Kaelan J Brennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA
| | - Hsiao-Yun Liu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Ally W H Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA; Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
Ramalingam V, Yu X, Slaughter BD, Unruh JR, Brennan KJ, Onyshchenko A, Lange JJ, Natarajan M, Buck M, Zeitlinger J. Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development. Nat Commun 2023; 14:5862. [PMID: 37735176 PMCID: PMC10514308 DOI: 10.1038/s41467-023-41408-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene activation. Lola-I mediates this function by depleting promoter nucleosomes, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers and reveal a mechanism for the de novo establishment of paused Pol II at promoters.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Michael Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA.
| |
Collapse
|
13
|
Laureano A, Kim J, Martinez E, Kwan KY. Chromodomain helicase DNA binding protein 4 in cell fate decisions. Hear Res 2023; 436:108813. [PMID: 37329862 PMCID: PMC10463912 DOI: 10.1016/j.heares.2023.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Loss of spiral ganglion neurons (SGNs) in the cochlea causes hearing loss. Understanding the mechanisms of cell fate transition accelerates efforts that employ directed differentiation and lineage conversion to repopulate lost SGNs. Proposed strategies to regenerate SGNs rely on altering cell fate by activating transcriptional regulatory networks, but repressing networks for alternative cell lineages is also essential. Epigenomic changes during cell fate transitions suggest that CHD4 represses gene expression by altering the chromatin status. Despite limited direct investigations, human genetic studies implicate CHD4 function in the inner ear. The possibility of CHD4 in suppressing alternative cell fates to promote inner ear regeneration is discussed.
Collapse
Affiliation(s)
- Alejandra Laureano
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jihyun Kim
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Edward Martinez
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Banks OGB, Harms MJ, McKnight JN, McKnight LE. Simultaneous Mapping of DNA Binding and Nucleosome Positioning with SpLiT-ChEC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547581. [PMID: 37461563 PMCID: PMC10349973 DOI: 10.1101/2023.07.03.547581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The organization of chromatin - including the positions of nucleosomes and the binding of other proteins to DNA - helps define transcriptional profiles in eukaryotic organisms. While techniques like ChIP-Seq and MNase-Seq can map protein-DNA and nucleosome localization separately, assays designed to simultaneously capture nucleosome positions and protein-DNA interactions can produce a detailed picture of the chromatin landscape. Most assays that monitor chromatin organization and protein binding rely on antibodies, which often exhibit nonspecific binding, and/or the addition of bulky adducts to the DNA-binding protein being studied, which can affect their expression and activity. Here, we describe SpyCatcher Linked Targeting of Chromatin Endogenous Cleavage (SpLiT-ChEC), where a 13-amino acid SpyTag peptide, appended to a protein of interest, serves as a highly-specific targeting moiety for in situ enzymatic digestion. The SpyTag/SpyCatcher system forms a covalent bond, linking the target protein and a co-expressed MNase-SpyCatcher fusion construct. SpyTagged proteins are expressed from endogenous loci, whereas MNase-SpyCatcher expression is induced immediately before harvesting cultures. MNase is activated with high concentrations of calcium, which primarily digests DNA near target protein binding sites. By sequencing the DNA fragments released by targeted MNase digestion, we found that this method recovers information on protein binding and proximal nucleosome positioning. SpLiT-ChEC provides precise temporal control that we anticipate can be used to monitor chromatin under various conditions and at distinct points in the cell cycle.
Collapse
Affiliation(s)
- Orion G. B. Banks
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA
| | - Michael J. Harms
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403, USA
| | - Jeffrey. N. McKnight
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA
- Knight Campus for Accelerated Research, University of Oregon, Eugene OR 97403, USA
| | - Laura E. McKnight
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA
- Knight Campus for Accelerated Research, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
15
|
Michael AK, Stoos L, Crosby P, Eggers N, Nie XY, Makasheva K, Minnich M, Healy KL, Weiss J, Kempf G, Cavadini S, Kater L, Seebacher J, Vecchia L, Chakraborty D, Isbel L, Grand RS, Andersch F, Fribourgh JL, Schübeler D, Zuber J, Liu AC, Becker PB, Fierz B, Partch CL, Menet JS, Thomä NH. Cooperation between bHLH transcription factors and histones for DNA access. Nature 2023; 619:385-393. [PMID: 37407816 PMCID: PMC10338342 DOI: 10.1038/s41586-023-06282-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lisa Stoos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolas Eggers
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Xinyu Y Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Kristina Makasheva
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Minnich
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kelly L Healy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luca Vecchia
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Deyasini Chakraborty
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Florian Andersch
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Andrew C Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
16
|
Donovan BT, Chen H, Eek P, Meng Z, Jipa C, Tan S, Bai L, Poirier MG. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol Cell 2023; 83:1251-1263.e6. [PMID: 36996811 PMCID: PMC10182836 DOI: 10.1016/j.molcel.2023.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Priit Eek
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiyuan Meng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caroline Jipa
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529579. [PMID: 37090616 PMCID: PMC10120690 DOI: 10.1101/2023.02.22.529579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The upregulation of gene expression by enhancers depends upon the interplay between the binding of sequence-specific transcription factors (TFs) and DNA accessibility. DNA accessibility is thought to limit the ability of TFs to bind to their sites, while TFs can increase accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events underlying the modulation of gene expression during cellular differentiation remain unknown for the vast majority of genes. We investigated the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of an important neutrophil gene, Cebpa, during macrophage-neutrophil differentiation. Reporter genes were integrated in a site-specific manner in PUER cells, which are progenitors that can be differentiated into neutrophils or macrophages in vitro by activating the pan-leukocyte TF PU.1. Time series data show that two enhancers upregulate reporter expression during the first 48 hours of neutrophil differentiation. Surprisingly, there is little or no increase in the total accessibility, measured by ATAC-Seq, of the enhancers during the same time period. Conversely, total accessibility peaks 96 hrs after PU.1 activation-consistent with its role as a pioneer-but the enhancers do not upregulate gene expression. Combining deeply sequenced ATAC-Seq data with a new bias-correction method allowed the profiling of accessibility at single-nucleotide resolution and revealed protected regions in the enhancers that match all previously characterized TF binding sites and ChIP-Seq data. Although the accessibility of most positions does not change during early differentiation, that of positions neighboring TF binding sites, an indicator of TF occupancy, did increase significantly. The localized accessibility changes are limited to nucleotides neighboring C/EBP-family TF binding sites, showing that the upregulation of enhancer activity during early differentiation is driven by C/EBP-family TF binding. These results show that increasing the total accessibility of enhancers is not sufficient for upregulating their activity and other events such as TF binding are necessary for upregulation. Also, TF binding can cause upregulation without a perceptible increase in total accessibility. Finally, this study demonstrates the feasibility of comprehensively mapping individual TF binding sites as footprints using high coverage ATAC-Seq and inferring the sequence of events in gene regulation by combining with time-series gene expression data.
Collapse
Affiliation(s)
- Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, 58202-9019 ND, USA
| |
Collapse
|
18
|
Kumar Mishra S, Bhattacherjee A. Understanding the Target Search by Multiple Transcription Factors on Nucleosomal DNA. Chemphyschem 2023; 24:e202200644. [PMID: 36602094 DOI: 10.1002/cphc.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
The association of multiple Transcription Factors (TFs) in the cis-regulatory region is imperative for developmental changes in eukaryotes. The underlying process is exceedingly complex, and it is not at all clear what orchestrates the overall search process by multiple TFs. In this study, by developing a theoretical model based on a discrete-state stochastic approach, we investigated the target search mechanism of multiple TFs on nucleosomal DNA. Experimental kinetic rate constants of different TFs are taken as input to estimate the Mean-First-Passage time to recognize the binding motifs by two TFs on a dynamic nucleosome model. The theory systematically analyzes when the TFs search their binding motifs hierarchically and when simultaneously by proceeding via the formation of a protein-protein complex. Our results, validated by extensive Monte Carlo simulations, elucidate the molecular basis of the complex target search phenomenon of multiple TFs on nucleosomal DNA.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
19
|
Abstract
Genomic DNA wraps around core histones to form nucleosomes, which provides steric constraints on how transcription factors (TFs) can interact with gene regulatory sequences. It is increasingly apparent that well-positioned, accessible nucleosomes are an inherent feature of active enhancers and can facilitate cooperative TF binding, referred to as nucleosome-mediated cooperativity. Thus, profiling chromatin and nucleosome properties (accessibility, positioning, and occupancy) on the genome is crucial to understand cell-type-specific gene regulation. Here we describe a simplified protocol to profile accessible nucleosomes in the mammalian genome using low-level and high-level micrococcal nuclease (MNase) digestion followed by genome-wide sequencing.
Collapse
Affiliation(s)
- Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Frederick MA, Williamson KE, Fernandez Garcia M, Ferretti MB, McCarthy RL, Donahue G, Luzete Monteiro E, Takenaka N, Reynaga J, Kadoch C, Zaret KS. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat Struct Mol Biol 2023; 30:31-37. [PMID: 36536103 PMCID: PMC10004348 DOI: 10.1038/s41594-022-00886-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
To determine how different pioneer transcription factors form a targeted, accessible nucleosome within compacted chromatin and collaborate with an ATP-dependent chromatin remodeler, we generated nucleosome arrays in vitro with a central nucleosome containing binding sites for the hematopoietic E-Twenty Six (ETS) factor PU.1 and Basic Leucine Zipper (bZIP) factors C/EBPα and C/EBPβ. Our long-read sequencing reveals that each factor can expose a targeted nucleosome on linker histone-compacted arrays, but with different nuclease sensitivity patterns. The DNA binding domain of PU.1 binds mononucleosomes, but requires an additional intrinsically disordered domain to bind and open compacted chromatin. The canonical mammalian SWI/SNF (cBAF) remodeler was unable to act upon two forms of locally open chromatin unless cBAF was enabled by a separate transactivation domain of PU.1. cBAF potentiates the PU.1 DNA binding domain to weakly open chromatin in the absence of the PU.1 disordered domain. Our findings reveal a hierarchy by which chromatin is opened and show that pioneer factors can provide specificity for action by nucleosome remodelers.
Collapse
Affiliation(s)
- Megan A Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylyn E Williamson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Meilin Fernandez Garcia
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan L McCarthy
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edgar Luzete Monteiro
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janice Reynaga
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
22
|
Takizawa Y, Kurumizaka H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194851. [PMID: 35952957 DOI: 10.1016/j.bbagrm.2022.194851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Chromatin is a dynamic molecular complex composed of DNA and proteins that package the DNA in the nucleus of eukaryotic cells. The basic structural unit of chromatin is the nucleosome core particle, composed of ~150 base pairs of genomic DNA wrapped around a histone octamer containing two copies each of four histones, H2A, H2B, H3, and H4. Individual nucleosome core particles are connected by short linker DNAs, forming a nucleosome array known as a beads-on-a-string fiber. Higher-order structures of chromatin are closely linked to nuclear events such as replication, transcription, recombination, and repair. Recently, a variety of chromatin structures have been determined by single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), and their structural details have provided clues about the chromatin architecture functions in the cell. In this review, we highlight recent cryo-EM structural studies of a fundamental chromatin unit to clarify the functions of chromatin.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
23
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Arimura Y, Shih RM, Froom R, Funabiki H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol Cell 2021; 81:4377-4397.e12. [PMID: 34478647 PMCID: PMC8571072 DOI: 10.1016/j.molcel.2021.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Rochelle M Shih
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Bergenholm D, Dabirian Y, Ferreira R, Siewers V, David F, Nielsen J. Rational gRNA design based on transcription factor binding data. Synth Biol (Oxf) 2021; 6:ysab014. [PMID: 34712839 PMCID: PMC8546606 DOI: 10.1093/synbio/ysab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has become a standard tool in many genome engineering endeavors. The endonuclease-deficient version of Cas9 (dCas9) is also a powerful programmable tool for gene regulation. In this study, we made use of Saccharomyces cerevisiae transcription factor (TF) binding data to obtain a better understanding of the interplay between TF binding and binding of dCas9 fused to an activator domain, VPR. More specifically, we targeted dCas9–VPR toward binding sites of Gcr1–Gcr2 and Tye7 present in several promoters of genes encoding enzymes engaged in the central carbon metabolism. From our data, we observed an upregulation of gene expression when dCas9–VPR was targeted next to a TF binding motif, whereas a downregulation or no change was observed when dCas9 was bound on a TF motif. This suggests a steric competition between dCas9 and the specific TF. Integrating TF binding data, therefore, proved to be useful for designing guide RNAs for CRISPR interference or CRISPR activation applications.
Collapse
Affiliation(s)
- David Bergenholm
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yasaman Dabirian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int 2021; 21:468. [PMID: 34488773 PMCID: PMC8422731 DOI: 10.1186/s12935-021-02179-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) induces breast cancer malignancy. Recent clinical and preclinical studies have demonstrated an association between overexpressed and activated STAT3 and breast cancer progression, proliferation, metastasis, and chemoresistance. Resveratrol (RES), a naturally occurring phytoalexin, has demonstrated anti-cancer activity in several disease models. Furthermore, RES has also been shown to regulate the STAT3 signaling cascade via its anti-oxidant and anti-inflammatory effects. In the present review, we describe the STAT3 cascade signaling pathway and address the therapeutic targeting of STAT3 by RES as a tool to mitigate breast cancer.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
27
|
de Sousa LO, Oliveira LN, Naves RB, Pereira ALA, Santiago Freitas E Silva K, de Almeida Soares CM, de Sousa Lima P. The dual role of SrbA from Paracoccidioides lutzii: a hypoxic regulator. Braz J Microbiol 2021; 52:1135-1149. [PMID: 34148216 PMCID: PMC8382145 DOI: 10.1007/s42770-021-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
The fungus Paracoccidioides lutzii is one of the species of the Paracoccidioides genus, responsible for a neglected human mycosis, endemic in Latin America, the paracoccidioidomycosis (PCM). In order to survive in the host, the fungus overcomes a hostile environment under low levels of oxygen (hypoxia) during the infectious process. The hypoxia adaptation mechanisms are variable among human pathogenic fungi and worthy to be investigated in Paracoccidoides spp. Previous proteomic results identified that P. lutzii responds to hypoxia and it has a functional homolog of the SrbA transcription factor, a well-described hypoxic regulator. However, the direct regulation of genes by SrbA and the biological processes it governs while performing protein interactions have not been revealed yet. The goal of this study was to demonstrate the potential of SrbA targets genes in P. lutzii. In addition, to show the SrbA three-dimensional aspects as well as a protein interaction map and important regions of interaction with predicted targets. The results show that SrbA-regulated genes were involved with several biological categories, such as metabolism, energy, basal processes for cell maintenance, fungal morphogenesis, defense, virulence, and signal transduction. Moreover, in order to investigate the SrbA's role as a protein, we performed a 3D simulation and also a protein-protein network linked to this hypoxic regulator. These in silico analyses revealed relevant aspects regarding the biology of this pathogen facing hypoxia and highlight the potential of SrbA as an antifungal target in the future.
Collapse
Affiliation(s)
- Lorena Ordones de Sousa
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Raphaela Barbosa Naves
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - André Luiz Araújo Pereira
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Kleber Santiago Freitas E Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil.
| |
Collapse
|
28
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
29
|
Morrison EA, Baweja L, Poirier MG, Wereszczynski J, Musselman CA. Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility. Nucleic Acids Res 2021; 49:4750-4767. [PMID: 33856458 PMCID: PMC8096233 DOI: 10.1093/nar/gkab246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/07/2021] [Accepted: 03/28/2021] [Indexed: 01/30/2023] Open
Abstract
Hexasomes and tetrasomes are intermediates in nucleosome assembly and disassembly. Their formation is promoted by histone chaperones, ATP-dependent remodelers, and RNA polymerase II. In addition, hexasomes are maintained in transcribed genes and could be an important regulatory factor. While nucleosome composition has been shown to affect the structure and accessibility of DNA, its influence on histone tails is largely unknown. Here, we investigate the conformational dynamics of the H3 tail in the hexasome and tetrasome. Using a combination of NMR spectroscopy, MD simulations, and trypsin proteolysis, we find that the conformational ensemble of the H3 tail is regulated by nucleosome composition. As has been found for the nucleosome, the H3 tails bind robustly to DNA within the hexasome and tetrasome, but upon loss of the H2A/H2B dimer, we determined that the adjacent H3 tail has an altered conformational ensemble, increase in dynamics, and increase in accessibility. Similar to observations of DNA dynamics, this is seen to be asymmetric in the hexasome. Our results indicate that nucleosome composition has the potential to regulate chromatin signaling and ultimately help shape the chromatin landscape.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lokesh Baweja
- Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Michael G Poirier
- Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Graduate Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
30
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
31
|
Rao S, Ahmad K, Ramachandran S. Cooperative binding between distant transcription factors is a hallmark of active enhancers. Mol Cell 2021; 81:1651-1665.e4. [PMID: 33705711 DOI: 10.1016/j.molcel.2021.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Enhancers harbor binding motifs that recruit transcription factors (TFs) for gene activation. While cooperative binding of TFs at enhancers is known to be critical for transcriptional activation of a handful of developmental enhancers, the extent of TF cooperativity genome-wide is unknown. Here, we couple high-resolution nuclease footprinting with single-molecule methylation profiling to characterize TF cooperativity at active enhancers in the Drosophila genome. Enrichment of short micrococcal nuclease (MNase)-protected DNA segments indicates that the majority of enhancers harbor two or more TF-binding sites, and we uncover protected fragments that correspond to co-bound sites in thousands of enhancers. From the analysis of co-binding, we find that cooperativity dominates TF binding in vivo at the majority of active enhancers. Cooperativity is highest between sites spaced 50 bp apart, indicating that cooperativity occurs without apparent protein-protein interactions. Our findings suggest nucleosomes promoting cooperativity because co-binding may effectively clear nucleosomes and promote enhancer function.
Collapse
Affiliation(s)
- Satyanarayan Rao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
32
|
LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat Commun 2021; 12:626. [PMID: 33504790 PMCID: PMC7840934 DOI: 10.1038/s41467-020-20883-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor APETALA1 (AP1), is a pioneer transcription factor. In vitro, LFY binds to the endogenous AP1 target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including AP1. Upon binding, LFY 'unlocks' chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor.
Collapse
|
33
|
Bennett H, Troutman TD, Sakai M, Glass CK. Epigenetic Regulation of Kupffer Cell Function in Health and Disease. Front Immunol 2021; 11:609618. [PMID: 33574817 PMCID: PMC7870864 DOI: 10.3389/fimmu.2020.609618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Kupffer cells, the resident macrophages of the liver, comprise the largest pool of tissue macrophages in the body. Within the liver sinusoids Kupffer cells perform functions common across many tissue macrophages including response to tissue damage and antigen presentation. They also engage in specialized activities including iron scavenging and the uptake of opsonized particles from the portal blood. Here, we review recent studies of the epigenetic pathways that establish Kupffer cell identity and function. We describe a model by which liver-environment specific signals induce lineage determining transcription factors necessary for differentiation of Kupffer cells from bone-marrow derived monocytes. We conclude by discussing how these lineage determining transcription factors (LDTFs) drive Kupffer cell behavior during both homeostasis and disease, with particular focus on the relevance of Kupffer cell LDTF pathways in the setting of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hunter Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ty D Troutman
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Srivastava D, Aydin B, Mazzoni EO, Mahony S. An interpretable bimodal neural network characterizes the sequence and preexisting chromatin predictors of induced transcription factor binding. Genome Biol 2021; 22:20. [PMID: 33413545 PMCID: PMC7788824 DOI: 10.1186/s13059-020-02218-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transcription factor (TF) binding specificity is determined via a complex interplay between the transcription factor's DNA binding preference and cell type-specific chromatin environments. The chromatin features that correlate with transcription factor binding in a given cell type have been well characterized. For instance, the binding sites for a majority of transcription factors display concurrent chromatin accessibility. However, concurrent chromatin features reflect the binding activities of the transcription factor itself and thus provide limited insight into how genome-wide TF-DNA binding patterns became established in the first place. To understand the determinants of transcription factor binding specificity, we therefore need to examine how newly activated transcription factors interact with sequence and preexisting chromatin landscapes. RESULTS Here, we investigate the sequence and preexisting chromatin predictors of TF-DNA binding by examining the genome-wide occupancy of transcription factors that have been induced in well-characterized chromatin environments. We develop Bichrom, a bimodal neural network that jointly models sequence and preexisting chromatin data to interpret the genome-wide binding patterns of induced transcription factors. We find that the preexisting chromatin landscape is a differential global predictor of TF-DNA binding; incorporating preexisting chromatin features improves our ability to explain the binding specificity of some transcription factors substantially, but not others. Furthermore, by analyzing site-level predictors, we show that transcription factor binding in previously inaccessible chromatin tends to correspond to the presence of more favorable cognate DNA sequences. CONCLUSIONS Bichrom thus provides a framework for modeling, interpreting, and visualizing the joint sequence and chromatin landscapes that determine TF-DNA binding dynamics.
Collapse
Affiliation(s)
- Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Begüm Aydin
- Department of Biology, New York University, New York, NY, USA
| | | | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
35
|
Lan X, Ren R, Feng R, Ly LC, Lan Y, Zhang Z, Aboreden N, Qin K, Horton JR, Grevet JD, Mayuranathan T, Abdulmalik O, Keller CA, Giardine B, Hardison RC, Crossley M, Weiss MJ, Cheng X, Shi J, Blobel GA. ZNF410 Uniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression. Mol Cell 2020; 81:239-254.e8. [PMID: 33301730 DOI: 10.1016/j.molcel.2020.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lana C Ly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Yemin Lan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeremy D Grevet
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Sönmezer C, Kleinendorst R, Imanci D, Barzaghi G, Villacorta L, Schübeler D, Benes V, Molina N, Krebs AR. Molecular Co-occupancy Identifies Transcription Factor Binding Cooperativity In Vivo. Mol Cell 2020; 81:255-267.e6. [PMID: 33290745 DOI: 10.1016/j.molcel.2020.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Gene activation requires the cooperative activity of multiple transcription factors at cis-regulatory elements (CREs). Yet, most transcription factors have short residence time, questioning the requirement of their physical co-occupancy on DNA to achieve cooperativity. Here, we present a DNA footprinting method that detects individual molecular interactions of transcription factors and nucleosomes with DNA in vivo. We apply this strategy to quantify the simultaneous binding of multiple transcription factors on single DNA molecules at mouse CREs. Analysis of the binary occupancy patterns at thousands of motif combinations reveals that high DNA co-occupancy occurs for most types of transcription factors, in the absence of direct physical interaction, at sites of competition with nucleosomes. Perturbation of pairwise interactions demonstrates the function of molecular co-occupancy in binding cooperativity. Our results reveal the interactions regulating CREs at molecular resolution and identify DNA co-occupancy as a widespread cooperativity mechanism used by transcription factors to remodel chromatin.
Collapse
Affiliation(s)
- Can Sönmezer
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dilek Imanci
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory (EMBL), GeneCore, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Sciences, Petersplatz 1, 4001 Basel, Switzerland
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), GeneCore, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg-CNRS-INSERM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Arnaud Regis Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
37
|
Eck E, Liu J, Kazemzadeh-Atoufi M, Ghoreishi S, Blythe SA, Garcia HG. Quantitative dissection of transcription in development yields evidence for transcription-factor-driven chromatin accessibility. eLife 2020; 9:e56429. [PMID: 33074101 PMCID: PMC7738189 DOI: 10.7554/elife.56429] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different framework. Here, we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.
Collapse
Affiliation(s)
- Elizabeth Eck
- Biophysics Graduate Group, University of California at BerkeleyBerkeleyUnited States
| | - Jonathan Liu
- Department of Physics, University of California at BerkeleyBerkeleyUnited States
| | | | - Sydney Ghoreishi
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at BerkeleyBerkeleyUnited States
- Department of Physics, University of California at BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Institute for Quantitative Biosciences-QB3, University of California at BerkeleyBerkeleyUnited States
| |
Collapse
|
38
|
de Jonge WJ, Brok M, Lijnzaad P, Kemmeren P, Holstege FCP. Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function. Mol Syst Biol 2020; 16:e9885. [PMID: 33280256 PMCID: PMC7586999 DOI: 10.15252/msb.20209885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Protein-DNA interactions are dynamic, and these dynamics are an important aspect of chromatin-associated processes such as transcription or replication. Due to a lack of methods to study on- and off-rates across entire genomes, protein-DNA interaction dynamics have not been studied extensively. Here, we determine in vivo off-rates for the Saccharomyces cerevisiae chromatin organizing factor Abf1, at 191 sites simultaneously across the yeast genome. Average Abf1 residence times span a wide range, varying between 4.2 and 33 min. Sites with different off-rates are associated with different functional characteristics. This includes their transcriptional dependency on Abf1, nucleosome positioning and the size of the nucleosome-free region, as well as the ability to roadblock RNA polymerase II for termination. The results show how off-rates contribute to transcription factor function and that DIVORSEQ (Determining In Vivo Off-Rates by SEQuencing) is a meaningful way of investigating protein-DNA binding dynamics genome-wide.
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | |
Collapse
|
39
|
Stergachis AB, Debo BM, Haugen E, Churchman LS, Stamatoyannopoulos JA. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 2020; 368:1449-1454. [PMID: 32587015 DOI: 10.1126/science.aaz1646] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/12/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Gene regulation is chiefly determined at the level of individual linear chromatin molecules, yet our current understanding of cis-regulatory architectures derives from fragmented sampling of large numbers of disparate molecules. We developed an approach for precisely stenciling the structure of individual chromatin fibers onto their composite DNA templates using nonspecific DNA N6-adenine methyltransferases. Single-molecule long-read sequencing of chromatin stencils enabled nucleotide-resolution readout of the primary architecture of multikilobase chromatin fibers (Fiber-seq). Fiber-seq exposed widespread plasticity in the linear organization of individual chromatin fibers and illuminated principles guiding regulatory DNA actuation, the coordinated actuation of neighboring regulatory elements, single-molecule nucleosome positioning, and single-molecule transcription factor occupancy. Our approach and results open new vistas on the primary architecture of gene regulation.
Collapse
Affiliation(s)
- Andrew B Stergachis
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian M Debo
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA. .,Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Bunina D, Abazova N, Diaz N, Noh KM, Krijgsveld J, Zaugg JB. Genomic Rewiring of SOX2 Chromatin Interaction Network during Differentiation of ESCs to Postmitotic Neurons. Cell Syst 2020; 10:480-494.e8. [PMID: 32553182 PMCID: PMC7322528 DOI: 10.1016/j.cels.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Cellular differentiation requires dramatic changes in chromatin organization, transcriptional regulation, and protein production. To understand the regulatory connections between these processes, we generated proteomic, transcriptomic, and chromatin accessibility data during differentiation of mouse embryonic stem cells (ESCs) into postmitotic neurons and found extensive associations between different molecular layers within and across differentiation time points. We observed that SOX2, as a regulator of pluripotency and neuronal genes, redistributes from pluripotency enhancers to neuronal promoters during differentiation, likely driven by changes in its protein interaction network. We identified ATRX as a major SOX2 partner in neurons, whose co-localization correlated with an increase in active enhancer marks and increased expression of nearby genes, which we experimentally confirmed for three loci. Collectively, our data provide key insights into the regulatory transformation of SOX2 during neuronal differentiation, and we highlight the significance of multi-omic approaches in understanding gene regulation in complex systems. Complex interplay of RNA, protein, and chromatin during neuronal differentiation Multi-omic profiling reveals divergent roles of SOX2 in stem cells and neurons SOX2 on-chromatin interaction network changes from pluripotent to neuronal factors ATRX interacts with SOX2 in neurons and co-binds highly expressed neuronal genes
Collapse
Affiliation(s)
- Daria Bunina
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany; Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany
| | - Nade Abazova
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Collaboration for joint PhD degree between the European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Nichole Diaz
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany.
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Heidelberg University, Medical Faculty Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany.
| |
Collapse
|
41
|
Srivastava D, Mahony S. Sequence and chromatin determinants of transcription factor binding and the establishment of cell type-specific binding patterns. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194443. [PMID: 31639474 PMCID: PMC7166147 DOI: 10.1016/j.bbagrm.2019.194443] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) selectively bind distinct sets of sites in different cell types. Such cell type-specific binding specificity is expected to result from interplay between the TF's intrinsic sequence preferences, cooperative interactions with other regulatory proteins, and cell type-specific chromatin landscapes. Cell type-specific TF binding events are highly correlated with patterns of chromatin accessibility and active histone modifications in the same cell type. However, since concurrent chromatin may itself be a consequence of TF binding, chromatin landscapes measured prior to TF activation provide more useful insights into how cell type-specific TF binding events became established in the first place. Here, we review the various sequence and chromatin determinants of cell type-specific TF binding specificity. We identify the current challenges and opportunities associated with computational approaches to characterizing, imputing, and predicting cell type-specific TF binding patterns. We further focus on studies that characterize TF binding in dynamic regulatory settings, and we discuss how these studies are leading to a more complex and nuanced understanding of dynamic protein-DNA binding activities. We propose that TF binding activities at individual sites can be viewed along a two-dimensional continuum of local sequence and chromatin context. Under this view, cell type-specific TF binding activities may result from either strongly favorable sequence features or strongly favorable chromatin context.
Collapse
Affiliation(s)
- Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America.
| |
Collapse
|
42
|
Wang X, Cairns MJ, Yan J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res 2020; 47:11481-11496. [PMID: 31724731 PMCID: PMC7145697 DOI: 10.1093/nar/gkz1038] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Gene expression is precisely controlled in a stage and cell-type-specific manner, largely through the interaction between cis-regulatory elements and their associated trans-acting factors. Where these components aggregate in promoters and enhancers, they are able to cooperate to modulate chromatin structure and support the engagement in long-range 3D superstructures that shape the dynamics of a cell's genomic architecture. Recently, the term 'super-enhancer' has been introduced to describe a hyper-active regulatory domain comprising a complex array of sequence elements that work together to control the key gene networks involved in cell identity. Here, we survey the unique characteristics of super-enhancers compared to other enhancer types and summarize the recent advances in our understanding of their biological role in gene regulation. In particular, we discuss their capacity to attract the formation of phase-separated condensates, and capacity to generate three-dimensional genome structures that precisely activate their target genes. We also propose a multi-stage transition model to explain the evolutionary pressure driving the development of super-enhancers in complex organisms, and highlight the potential for involvement in tumorigenesis. Finally, we discuss more broadly the role of super-enhancers in human health disorders and related potential in therapeutic interventions.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Division of Theoretical Systems Biology, Germany Cancer Research Center, Heidelberg 69115, Germany.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute
| | - Jian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong S.A.R., China
| |
Collapse
|
43
|
Michael AK, Grand RS, Isbel L, Cavadini S, Kozicka Z, Kempf G, Bunker RD, Schenk AD, Graff-Meyer A, Pathare GR, Weiss J, Matsumoto S, Burger L, Schübeler D, Thomä NH. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science 2020; 368:1460-1465. [PMID: 32327602 DOI: 10.1126/science.abb0074] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors (TFs) regulate gene expression through chromatin where nucleosomes restrict DNA access. To study how TFs bind nucleosome-occupied motifs, we focused on the reprogramming factors OCT4 and SOX2 in mouse embryonic stem cells. We determined TF engagement throughout a nucleosome at base-pair resolution in vitro, enabling structure determination by cryo-electron microscopy at two preferred positions. Depending on motif location, OCT4 and SOX2 differentially distort nucleosomal DNA. At one position, OCT4-SOX2 removes DNA from histone H2A and histone H3; however, at an inverted motif, the TFs only induce local DNA distortions. OCT4 uses one of its two DNA-binding domains to engage DNA in both structures, reading out a partial motif. These findings explain site-specific nucleosome engagement by the pluripotency factors OCT4 and SOX2, and they reveal how TFs distort nucleosomes to access chromatinized motifs.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ganesh R Pathare
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Syota Matsumoto
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. .,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
44
|
Bozek M, Gompel N. Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity. Bioessays 2020; 42:e1900188. [PMID: 32142172 DOI: 10.1002/bies.201900188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Measurements of open chromatin in specific cell types are widely used to infer the spatiotemporal activity of transcriptional enhancers. How reliable are these predictions? In this review, it is argued that the relationship between the accessibility and activity of an enhancer is insufficiently described by simply considering open versus closed chromatin, or active versus inactive enhancers. Instead, recent studies focusing on the quantitative nature of accessibility signal reveal subtle differences between active enhancers and their different inactive counterparts: the closed silenced state and the accessible primed and repressed states. While the open structure as such is not a specific indicator of enhancer activity, active enhancers display a higher degree of accessibility than the primed and repressed states. Molecular mechanisms that may account for these quantitative differences are discussed. A model that relates molecular events at an enhancer to changes in its activity and accessibility in a developing tissue is also proposed.
Collapse
Affiliation(s)
- Marta Bozek
- Department Biochemie, Ludwig-Maximilians Universität München, Genzentrum, 81377, München, Germany
| | - Nicolas Gompel
- Fakultät für Biologie, Ludwig-Maximilians Universität München, Biozentrum, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
45
|
|
46
|
Makowski MM, Gaullier G, Luger K. Picking a nucleosome lock: Sequence- and structure-specific recognition of the nucleosome. J Biosci 2020; 45:13. [PMID: 31965991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nucleosome presents a formidable barrier to DNA-templated transcription by the RNA polymerase II machinery. Overcoming this transcriptional barrier in a locus-specific manner requires sequence-specific recognition of nucleosomal DNA by 'pioneer' transcription factors (TFs). Cell fate decisions, in turn, depend on the coordinated action of pioneer TFs at cell lineage-specific gene regulatory elements. Although it is already appreciated that pioneer factors play a critical role in cell differentiation, our understanding of the structural and biochemical mechanisms by which they act is still rapidly expanding. Recent research has revealed novel insight into modes of nucleosome-TF binding and uncovered kinetic principles by which nucleosomal DNA compaction affects both TF binding and residence time. Here, we review progress and argue that these structural and kinetic studies suggest new models of gene regulation by pioneer TFs.
Collapse
Affiliation(s)
- Matthew M Makowski
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | | |
Collapse
|
47
|
Du M, Kodner S, Bai L. Enhancement of LacI binding in vivo. Nucleic Acids Res 2019; 47:9609-9618. [PMID: 31396617 PMCID: PMC6765135 DOI: 10.1093/nar/gkz698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) bind to specific sequences in DNA to regulate transcription. Despite extensive measurements of TFs’ dissociation constant (Kd) in vitro, their apparent Kdin vivo are usually unknown. LacI, a bacterial TF, is often used to artificially recruit proteins onto eukaryotic genomes. As LacI binds tightly to its recognition site (LacO) in vitro with a Kd about 10 picomolar (pM), it is often assumed that LacI also has high affinity to LacO in vivo. In this work, we measured LacI binding in living yeast cells using a fluorescent repressor operator system and found an apparent Kd of ∼0.6 μM, four orders of magnitude higher than that in vitro. By genetically altering (i) GFP-LacI structure, (ii) GFP-LacI stability, (iii) chromosome accessibility and (iv) LacO sequence, we reduced the apparent Kd to <10 nM. It turns out that the GFP tagging location and the fusion protein stability have a large effect on LacI binding, but surprisingly, chromosome accessibility only plays a mild role. These findings contribute to our quantitative understanding of the features that affect the apparent Kd of TF in cells. They also provide guidance for future design of more specific chromosomal recruitment through high-affinity TFs.
Collapse
Affiliation(s)
- Manyu Du
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seth Kodner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
48
|
Mivelaz M, Cao AM, Kubik S, Zencir S, Hovius R, Boichenko I, Stachowicz AM, Kurat CF, Shore D, Fierz B. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor. Mol Cell 2019; 77:488-500.e9. [PMID: 31761495 PMCID: PMC7005674 DOI: 10.1016/j.molcel.2019.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 02/03/2023]
Abstract
Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression. The yeast transcription factor Rap1 can invade compact chromatin Rap1 directly opens chromatin structure by preventing nucleosome stacking Stable Rap1 binding requires collaboration with RSC to shift promoter nucleosomes
Collapse
Affiliation(s)
- Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anne-Marinette Cao
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Ruud Hovius
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Iuliia Boichenko
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anna Maria Stachowicz
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland.
| |
Collapse
|
49
|
7- O-methylpunctatin, a Novel Homoisoflavonoid, Inhibits Phenotypic Switch of Human Arteriolar Smooth Muscle Cells. Biomolecules 2019; 9:biom9110716. [PMID: 31717401 PMCID: PMC6920859 DOI: 10.3390/biom9110716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Remodeling of arterioles is a pivotal event in the manifestation of many inflammation-based cardio-vasculopathologies, such as hypertension. During these remodeling events, vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. The latter is characterized by increased proliferation, migration, and invasion. Compounds with anti-inflammatory actions have been successful in attenuating this phenotypic switch. While the vast majority of studies investigating phenotypic modulation were undertaken in VSMCs isolated from large vessels, little is known about the effect of such compounds on phenotypic switch in VSMCs of microvessels (microVSMCs). We have recently characterized a novel homoisoflavonoid that we called 7-O-methylpunctatin (MP). In this study, we show that MP decreased FBS-induced cell proliferation, migration, invasion, and adhesion. MP also attenuated adhesion of THP-1 monocytes to microVSMCs, abolished FBS-induced expression of MMP-2, MMP-9, and NF-κB, as well as reduced activation of ERK1/2 and FAK. Furthermore, MP-treated VSMCs showed an increase in early (myocardin, SM-22α, SM-α) and mid-term (calponin and caldesmon) differentiation markers and a decrease in osteopontin, a protein highly expressed in synthetic VSMCs. MP also reduced transcription of cyclin D1, CDK4 but increased protein levels of p21 and p27. Taken together, these results corroborate an anti-inflammatory action of MP on human microVSMCs. Therefore, by inhibiting the synthetic phenotype of microVSMCs, MP may be a promising modulator for inflammation-induced arteriolar pathophysiology.
Collapse
|
50
|
Chereji RV, Eriksson PR, Ocampo J, Prajapati HK, Clark DJ. Accessibility of promoter DNA is not the primary determinant of chromatin-mediated gene regulation. Genome Res 2019; 29:1985-1995. [PMID: 31511305 PMCID: PMC6886500 DOI: 10.1101/gr.249326.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
DNA accessibility is thought to be of major importance in regulating gene expression. We test this hypothesis using a restriction enzyme as a probe of chromatin structure and as a proxy for transcription factors. We measured the digestion rate and the fraction of accessible DNA at almost all genomic AluI sites in budding yeast and mouse liver nuclei. Hepatocyte DNA is more accessible than yeast DNA, consistent with longer linkers between nucleosomes, suggesting that nucleosome spacing is a major determinant of accessibility. DNA accessibility varies from cell to cell, such that essentially no sites are accessible or inaccessible in every cell. AluI sites in inactive mouse promoters are accessible in some cells, implying that transcription factors could bind without activating the gene. Euchromatin and heterochromatin have very similar accessibilities, suggesting that transcription factors can penetrate heterochromatin. Thus, DNA accessibility is not likely to be the primary determinant of gene regulation.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter R Eriksson
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Josefina Ocampo
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hemant K Prajapati
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|