1
|
Goshi N, Lam D, Bogguri C, George VK, Sebastian A, Cadena J, Leon NF, Hum NR, Weilhammer DR, Fischer NO, Enright HA. Direct effects of prolonged TNF-α and IL-6 exposure on neural activity in human iPSC-derived neuron-astrocyte co-cultures. Front Cell Neurosci 2025; 19:1512591. [PMID: 40012566 PMCID: PMC11860967 DOI: 10.3389/fncel.2025.1512591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Cognitive impairment is one of the many symptoms reported by individuals suffering from long-COVID and other post-viral infection disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A common factor among these conditions is a sustained immune response and increased levels of inflammatory cytokines. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) are two such cytokines that are elevated in patients diagnosed with long-COVID and ME/CFS. In this study, we characterized the changes in neural functionality, secreted cytokine profiles, and gene expression in co-cultures of human iPSC-derived neurons and primary astrocytes in response to prolonged exposure to TNF-α and IL-6. We found that exposure to TNF-α produced both a concentration-independent and concentration-dependent response in neural activity. Burst duration was significantly reduced within a few days of exposure regardless of concentration (1 pg/mL - 100 ng/mL) but returned to baseline after 7 days. Treatment with low concentrations of TNF-α (e.g., 1 and 25 pg/mL) did not lead to changes in the secreted cytokine profile or gene expression but still resulted in significant changes to electrophysiological features such as interspike interval and burst duration. Conversely, treatment with high concentrations of TNF-α (e.g., 10 and 100 ng/mL) led to reduced spiking activity, which may be correlated to changes in neural health, gene expression, and increases in inflammatory cytokine secretion (e.g., IL-1β, IL-4, and CXCL-10) that were observed at higher TNF-α concentrations. Prolonged exposure to IL-6 led to changes in bursting features, with significant reduction in the number of spikes in bursts across a wide range of treatment concentrations (i.e., 1 pg/mL-10 ng/mL). In combination, the addition of IL-6 appears to counteract the changes to neural function induced by low concentrations of TNF-α, while at high concentrations of TNF-α the addition of IL-6 had little to no effect. Conversely, the changes to electrophysiological features induced by IL-6 were lost when the cultures were co-stimulated with TNF-α regardless of the concentration, suggesting that TNF-α may play a more pronounced role in altering neural function. These results indicate that increased concentrations of key inflammatory cytokines associated with long-COVID can directly impact neural function and may be a component of the cognitive impairment associated with long-COVID and other post-viral infection disorders.
Collapse
Affiliation(s)
- Noah Goshi
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Chandrakumar Bogguri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Vivek Kurien George
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicole F. Leon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Dina R. Weilhammer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O. Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Heather A. Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
2
|
Sun X, Wu S, Mao C, Qu Y, Xu Z, Xie Y, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules 2024; 14:740. [PMID: 39062455 PMCID: PMC11274451 DOI: 10.3390/biom14070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury, a prevalent pathological condition in medical practice, presents significant treatment challenges. Hydrogen sulfide (H2S), acknowledged as the third gas signaling molecule, profoundly impacts various physiological and pathophysiological processes. Extensive research has demonstrated that H2S can mitigate I/R damage across multiple organs and tissues. This review investigates the protective effects of H2S in preventing I/R damage in the heart, brain, liver, kidney, intestines, lungs, stomach, spinal cord, testes, eyes, and other tissues. H2S provides protection against I/R damage by alleviating inflammation and endoplasmic reticulum stress; inhibiting apoptosis, oxidative stress, and mitochondrial autophagy and dysfunction; and regulating microRNAs. Significant advancements in understanding the mechanisms by which H2S reduces I/R damage have led to the development and synthesis of H2S-releasing agents such as diallyl trisulfide-loaded mesoporous silica nanoparticles (DATS-MSN), AP39, zofenopril, and ATB-344, offering a new therapeutic avenue for I/R injury.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| |
Collapse
|
3
|
Saadh MJ, Kazemi K, Khorramdelazad H, Mousavi MJ, Noroozi N, Masoumi M, Karami J. Role of T cells in the pathogenesis of systemic lupus erythematous: Focus on immunometabolism dysfunctions. Int Immunopharmacol 2023; 119:110246. [PMID: 37148769 DOI: 10.1016/j.intimp.2023.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Private University, Amman, Jordan
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negar Noroozi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran.
| | - Jafar Karami
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
4
|
Baratta AM, Mangieri RA, Aziz HC, Lopez MF, Farris SP, Homanics GE. Effect of chronic intermittent ethanol vapor exposure on RNA content of brain-derived extracellular vesicles. Alcohol 2022; 105:9-24. [PMID: 36055466 PMCID: PMC10173183 DOI: 10.1016/j.alcohol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are important players in normal biological function and disease pathogenesis. Of the many biomolecules packaged into EVs, coding and noncoding RNA transcripts are of particular interest for their ability to significantly alter cellular and molecular processes. Here we investigate how chronic ethanol exposure impacts EV RNA cargo and the functional outcomes of these changes. Following chronic intermittent ethanol (CIE) vapor exposure, EVs were isolated from male and female C57BL/6J mouse brain. Total RNA from EVs was analyzed by lncRNA/mRNA microarray to survey changes in RNA cargo following vapor exposure. Differential expression analysis of microarray data revealed a number of lncRNA and mRNA types differentially expressed in CIE compared to control EVs. Weighted gene co-expression network analysis identified multiple male and female specific modules related to neuroinflammation, cell death, demyelination, and synapse organization. To functionally test these changes, whole-cell voltage-clamp recordings were used to assess synaptic transmission. Incubation of nucleus accumbens brain slices with EVs led to a reduction in spontaneous excitatory postsynaptic current amplitude, although no changes in synaptic transmission were observed between control and CIE EV administration. These results indicate that CIE vapor exposure significantly changes the RNA cargo of brain-derived EVs, which have the ability to impact neuronal function.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Regina A Mangieri
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Heather C Aziz
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Science, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sean P Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
5
|
Hung H, Tsai S, Sie S, Kuo Y. High glucose enhances lipopolysaccharide‐induced inflammation in cultured BV2 microglial cell line. Immun Inflamm Dis 2022; 10:e610. [PMID: 35478445 PMCID: PMC9017628 DOI: 10.1002/iid3.610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hao‐Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - Sheng‐Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine National Cheng Kung University Tainan Taiwan
- Department of Cell Biology and Anatomy, College of Medicine National Cheng Kung University Tainan Taiwan
| | - Shih‐Ren Sie
- Department of Anesthesiology Ditmanson Medical Foundation Chia‐Yi Christian Hospital Chiayi Taiwan
| | - Yu‐Min Kuo
- Institute of Basic Medical Sciences, College of Medicine National Cheng Kung University Tainan Taiwan
- Department of Cell Biology and Anatomy, College of Medicine National Cheng Kung University Tainan Taiwan
| |
Collapse
|
6
|
Scassellati C, Galoforo AC, Esposito C, Ciani M, Ricevuti G, Bonvicini C. Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer's Disease and Its Neuropsychiatric Symptoms. Aging Dis 2021; 12:1337-1357. [PMID: 34341712 PMCID: PMC8279527 DOI: 10.14336/ad.2021.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a biological process by which the central nervous system responds to stimuli/injuries affecting its homeostasis. So far as this reactive response becomes exacerbated and uncontrolled, it can lead to neurodegeneration, compromising the cognitive and neuropsychiatric domains. Parallelly, modifications in the hypothalamic signaling of neuroprotective hormones linked also to the inflammatory responses of microglia and astrocytes can exacerbate these processes. To complicate the picture, modulations in the gut microbiota (GM) can induce changes in neuroinflammation, altering cognitive and neuropsychiatric functioning. We conducted a web-based search on PubMed. We described studies regarding the cross-talk among microglia and astrocytes in the neuroinflammation processes, along with the role played by the steroid hormones, and how this can reflect on cognitive decline/neurodegeneration, in particular on Alzheimer's Disease (AD) and its neuropsychiatric manifestations. We propose and support the huge literature showing the potentiality of complementary/alternative therapeutic approaches (nutraceuticals) targeting the sustained inflammatory response, the dysregulation of hypothalamic system and the GM composition. NF-κB and Keap1/Nrf2 are the main molecular targets on which a list of nutraceuticals can modulate the altered processes. Since there are some limitations, we propose a new intervention natural treatment in terms of Oxygen-ozone (O2-O3) therapy that could be potentially used for AD pathology. Through a meta-analytic approach, we found a significant modulation of O3 on inflammation-NF-κB/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling, reducing mRNA (p<0.00001 Odd Ratio (OR)=-5.25 95% CI:-7.04/-3.46) and protein (p<0.00001 OR=-4.85 95%CI:-6.89/-2.81) levels, as well as on Keap1/Nrf2 pathway. Through anti-inflammatory, immune, and steroid hormones modulation and anti-microbial activities, O3 at mild therapeutic concentrations potentiated with nutraceuticals and GM regulators could determine combinatorial effects impacting on cognitive and neurodegenerative domains, neuroinflammation and neuroendocrine signalling, directly or indirectly through the mediation of GM.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy.
- University of Pavia, Pavia, Italy.
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy.
- Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy.
- P.D. High School in Geriatrics, University of Pavia, Italy.
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Giovanni Ricevuti
- P.D. High School in Geriatrics, University of Pavia, Italy.
- Department of Drug Sciences, University of Pavia, Italy.
- St. Camillus Medical University, Rome, Italy.
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
7
|
Williams ME, Fielding BC. Insult to Injury-Potential Contribution of Coronavirus Disease-19 to Neuroinflammation and the Development of HIV-Associated Neurocognitive Disorders. AIDS Res Hum Retroviruses 2021; 37:601-609. [PMID: 32993321 DOI: 10.1089/aid.2020.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 is responsible for a new coronavirus disease known as coronavirus disease-19 (COVID-19). SARS-CoV-2 reports neurotropic properties and may have neurological implications, and this creates another health burden for people living with HIV. As yet, the impact of COVID-19 on (neuro)inflammation and the development of HIV-associated neurocognitive disorders (HAND) is not fully known. Here, we reviewed preliminary evidence that provides clues that COVID-19 may exacerbate inflammatory mechanisms related to the development of HAND.
Collapse
Affiliation(s)
| | - Burtram Clinton Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
8
|
Dukay B, Walter FR, Vigh JP, Barabási B, Hajdu P, Balassa T, Migh E, Kincses A, Hoyk Z, Szögi T, Borbély E, Csoboz B, Horváth P, Fülöp L, Penke B, Vígh L, Deli MA, Sántha M, Tóth ME. Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury. J Neuroinflammation 2021; 18:22. [PMID: 33423680 PMCID: PMC7798334 DOI: 10.1186/s12974-020-02070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. Conclusions Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02070-2.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary. .,Doctoral School in Biology, University of Szeged, Szeged, Hungary.
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Judit P Vigh
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Beáta Barabási
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School in Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Hajdu
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Tamás Balassa
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Doctoral School of Informatics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ede Migh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Titanilla Szögi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Emőke Borbély
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Péter Horváth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Lívia Fülöp
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.
| |
Collapse
|
9
|
Exploring the extensive crosstalk between the antagonistic cytokines- TGF-β and TNF-α in regulating cancer pathogenesis. Cytokine 2020; 138:155348. [PMID: 33153895 DOI: 10.1016/j.cyto.2020.155348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
A plethora of cytokines are produced in the tumor microenvironment (TME) those play a vital role in cancer prognosis. Though it is completely contextual, cytokines produced from an inflammatory micro-environment can either modulate cancer progression at early stages of tumor development or in later stages cytokine derived cues can in turn control tumor cell invasion and metastasis. Therefore, understanding the crosstalk between the key cytokines regulating cancer prognosis is critical for the development of an effective therapy. In this regard, the role of transforming growth factor-beta (TGF-β) in cancer is controversially discussed in general inhibition of TGF-β promotes de novo tumorigenesis whereas paradoxically, TGF-β can promote malignancy in already established tumors. Another important cytokine, TNF-α have intense crosstalk with TGF-β from the fact that in a non-cancer context, TGF-β promotes fibrosis whereas TNF-α has anti-fibrotic activity. We have recently reported that TGF-β-induced differentiation of epithelial cells to mesenchymal type is suppressed by TNF-α through regulation of cellular homeostatic machinery- autophagy. Moreover, there are also rare reports of synergy between these two cytokines as well. The crosstalk between TGF-β and TNF-α is not only limited to regulating cancer cell differentiation and proliferation but also includes involvement in cell death. In this review, we hence summarize the molecular mechanisms by which these two important cytokines, TGF-β and TNF-α control cancer prognosis.
Collapse
|
10
|
Deng D, Wang W, Bao S. Diffusible Tumor Necrosis Factor-Alpha (TNF-α) Promotes Noise-Induced Parvalbumin-Positive (PV+) Neuron Loss and Auditory Processing Impairments. Front Neurosci 2020; 14:573047. [PMID: 33154715 PMCID: PMC7590827 DOI: 10.3389/fnins.2020.573047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been implicated in noise-induced auditory processing disorder and tinnitus. Certain non-auditory neurological disorders can also increase the levels of proinflammatory cytokines in the brain. To investigate the impact of increased brain proinflammatory cytokine levels on the central auditory pathway, we infused recombinant TNF-α into the right lateral cerebral ventricle, and examined auditory processing and cytoarchitecture of the auditory cortex. Microglial deramification was observed in the auditory cortex of mice that had received both TNF-α infusion and exposure to an 86-dB noise, but not in mice that had received either TNF-α infusion or noise exposure alone. In addition, we observed reduced cortical PV+ neuron density and impaired performances in gap detection and prepulse inhibition (PPI) only in mice that received both TNF-α infusion and the noise exposure. These results suggest that disease-related increase in brain proinflammatory cytokine release could be a risk factor for noise-induced auditory processing disorder and tinnitus.
Collapse
Affiliation(s)
- Di Deng
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Weihua Wang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Shaowen Bao
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Benson CA, Powell HR, Liput M, Dinham S, Freedman DA, Ignatowski TA, Stachowiak EK, Stachowiak MK. Immune Factor, TNFα, Disrupts Human Brain Organoid Development Similar to Schizophrenia-Schizophrenia Increases Developmental Vulnerability to TNFα. Front Cell Neurosci 2020; 14:233. [PMID: 33005129 PMCID: PMC7484483 DOI: 10.3389/fncel.2020.00233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental genetic disorder in which maternal immune activation (MIA) and increased tumor necrosis factor-α (TNF-α) may contribute. Previous studies using iPSC-derived cerebral organoids and neuronal cells demonstrated developmental malformation and transcriptional dysregulations, including TNF receptors and their signaling genes, common to SZ patients with diverse genetic backgrounds. In the present study, we examined the significance of the common TNF receptor dysregulations by transiently exposing cerebral organoids from embryonic stem cells (ESC) and from representative control and SZ patient iPSCs to TNF. In control iPSC organoids, TNF produced malformations qualitatively similar in, but generally less pronounced than, the malformations of the SZ iPSC-derived organoids. TNF and SZ alone disrupted subcortical rosettes and dispersed proliferating Ki67+ neural progenitor cells (NPC) from the organoid ventricular zone (VZ) into the cortical zone (CZ). In the CZ, the absence of large ramified pan-Neu+ neurons coincided with loss of myelinated neurites despite increased cortical accumulation of O4+ oligodendrocytes. The number of calretinin+ interneurons increased; however, they lacked the preferential parallel orientation to the organoid surface. SZ and SZ+TNF affected fine cortical and subcortical organoid structure by replacing cells with extracellular matrix (ECM)-like fibers The SZ condition increased developmental vulnerability to TNF, leading to more pronounced changes in NPC, pan-Neu+ neurons, and interneurons. Both SZ- and TNF-induced malformations were associated with the loss of nuclear (n)FGFR1 form in the CZ and its upregulation in deep IZ regions, while in earlier studies blocking nFGFR1 reproduced cortical malformations observed in SZ. Computational analysis of ChiPseq and RNAseq datasets shows that nFGFR1 directly targets neurogenic, oligodendrogenic, cell migration, and ECM genes, and that the FGFR1-targeted TNF receptor and signaling genes are overexpressed in SZ NPC. Through these changes, the developing brain with the inherited SZ genome dysregulation may suffer increased vulnerability to TNF and thus, MIA.
Collapse
Affiliation(s)
- Courtney A Benson
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hana R Powell
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michal Liput
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Stem Cells Bioengineering, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Siddhartha Dinham
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - David A Freedman
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Benhar M. Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants (Basel) 2020; 9:antiox9040309. [PMID: 32290499 PMCID: PMC7222211 DOI: 10.3390/antiox9040309] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
It is well appreciated that biological reactive oxygen and nitrogen species such as hydrogen peroxide, superoxide and nitric oxide, as well as endogenous antioxidant systems, are important modulators of cell survival and death in diverse organisms and cell types. In addition, oxidative stress, nitrosative stress and dysregulated cell death are implicated in a wide variety of pathological conditions, including cancer, cardiovascular and neurological diseases. Therefore, much effort is devoted to elucidate the molecular mechanisms linking oxidant/antioxidant systems and cell death pathways. This review is focused on thiol redox modifications as a major mechanism by which oxidants and antioxidants influence specific regulated cell death pathways in mammalian cells. Growing evidence indicates that redox modifications of cysteine residues in proteins are involved in the regulation of multiple cell death modalities, including apoptosis, necroptosis and pyroptosis. In addition, recent research suggests that thiol redox switches play a role in the crosstalk between apoptotic and necrotic forms of regulated cell death. Thus, thiol-based redox circuits provide an additional layer of control that determines when and how cells die.
Collapse
Affiliation(s)
- Moran Benhar
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
13
|
Rabaça A, Ferreira C, Bernardino R, Alves M, Oliveira P, Viana P, Barros A, Sousa M, Sá R. Use of antioxidant could ameliorate the negative impact of etoposide on human sperm DNA during chemotherapy. Reprod Biomed Online 2020; 40:856-866. [PMID: 32376314 DOI: 10.1016/j.rbmo.2020.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
RESEARCH QUESTION A previous study showed that N-acetylcysteine (NAC), used after in-vitro exposure to the gonadotoxic chemotherapeutic drug etoposide, has the ability to decrease DNA damage in human spermatozoa; however, it showed no benefit when used before exposure. This study aimed to evaluate the impact of the NAC on the preservation of sperm quality during in-vitro exposure to etoposide. DESIGN Twenty semen samples were submitted to four experimental conditions: control, NAC-only incubation, etoposide-only incubation, and concomitant etoposide and NAC incubation. After in-vitro incubation, semen parameters, sperm chromatin condensation, sperm DNA fragmentation, sperm oxidative stress and sperm metabolism were used to evaluate the role of NAC in protecting human spermatozoa from etoposide. RESULTS Etoposide did not affect semen parameters, nor did it cause sperm oxidative damage or alterations in glycolytic profile. However, it induced chromatin decondensation and DNA fragmentation, which were fully prevented by NAC. CONCLUSIONS NAC was able to protect sperm DNA integrity during etoposide treatment in vitro, suggesting that NAC may be useful as an adjuvant agent in preserving male fertility during chemotherapy treatments.
Collapse
Affiliation(s)
- Ana Rabaça
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal
| | - Carolina Ferreira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal
| | - Raquel Bernardino
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Marco Alves
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Pedro Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; Health Institute of Research and Innovation (IPATIMUP/i3S), University of Porto, Porto, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros (CGR), Porto, Portugal
| | - Alberto Barros
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; Health Institute of Research and Innovation (IPATIMUP/i3S), University of Porto, Porto, Portugal; Centre for Reproductive Genetics A. Barros (CGR), Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
15
|
Pido-Lopez J, Tanudjojo B, Farag S, Bondulich MK, Andre R, Tabrizi SJ, Bates GP. Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington's disease by etanercept treatment. Sci Rep 2019; 9:7202. [PMID: 31076648 PMCID: PMC6510744 DOI: 10.1038/s41598-019-43627-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the huntingtin (HTT) gene, which results in a mutant protein with an extended polyglutamine tract. Inflammation occurs in both the brain and the periphery of HD patients and mouse models, with increases in brain and/or plasma levels of neurotoxic TNFα and several other proinflammatory cytokines. TNFα promotes the generation of many of these cytokines, such as IL6, which raises the possibility that TNFα is central to the inflammatory milieu associated with HD. A number of mouse studies have reported that the suppression of chronic immune activation during HD has beneficial consequences. Here, we investigated whether TNFα contributes to the peripheral inflammation that occurs in the R6/2 mouse model, and whether the in vivo blockade of TNFα, via etanercept treatment, can modify disease progression. We found that etanercept treatment normalised the elevated plasma levels of some cytokines. This did not modify the progression of certain behavioural measures, but slightly ameliorated brain weight loss, possibly related to a reduction in the elevated striatal level of soluble TNFα.
Collapse
Affiliation(s)
- Jeffrey Pido-Lopez
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Benedict Tanudjojo
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Sahar Farag
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Marie-Katrin Bondulich
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ralph Andre
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
16
|
Nakiboneka R, Mugaba S, Auma BO, Kintu C, Lindan C, Nanteza MB, Kaleebu P, Serwanga J. Interferon gamma (IFN-γ) negative CD4+ and CD8+ T-cells can produce immune mediators in response to viral antigens. Vaccine 2019; 37:113-122. [PMID: 30459072 PMCID: PMC6290111 DOI: 10.1016/j.vaccine.2018.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
Abstract
Evaluation of antigen-specific T-cell responses to viral antigens is frequently performed on IFN-γ secreting cells. However, T-cells are capable of producing many more functions than just IFN-γ, some of which, like Perforin, are associated with immune protection in HIV-1 disease elite controllers. We evaluated the extent of missed T-cell functions when IFN-γ secretion is used as a surrogate marker for further evaluation of T-cell functions. Intracellular cytokine staining assay and flow cytometry were used to assess peripheral blood mononuclear cells (PBMCs) from 31 HIV-infected ART-naive individuals for the extent to which gated CD4+ and CD8+ IFN-γ producing and non-producing T-cells also secreted IL-2, Perforin, and TNF-α functions. Similarly, the extent of missed virus-specific responses in IFN-γ ELISpot assay negative T-cells from 5 HIV-1 uninfected individuals was evaluated. Cells from HIV-infected individuals were stimulated with pooled consensus group M (Con M) peptides; and those from healthy individuals were stimulated with pooled adenovirus (Ad) peptides. Overall, frequencies of virus-specific IFN-γ secreting CD4+ and CD8+ cells were low. Proportions of IFN-γ negative CD4+ expressing IL-2, Perforin, or TNF-α to Con M were significantly higher (5 of 7 functional profiles) than the corresponding IFN-γ positive CD4+ (0 of 7) T-cell phenotype, p = 0.02; Fisher's Exact test. Likewise, proportions of CD8+ T-cells expressing other functions were significantly higher in 4 of the 7 IFN-γ negative CD8+ T-cells. Notably, newly stimulated Perforin, identified as Perforin co-expression with IL-2 or TNF-α, was significantly higher in IFN-γ negative CD8+ T-cell than in the positive CD8+ T-cells. Using SEB, lower responses in IFN-γ positive cells were most associated with CD4+ than CD8+ T-cells. These findings suggest that studies evaluating immunogenicity in response to HIV and Adenovirus viral antigens should not only evaluate T-cell responsiveness among IFN-γ producing cells but also among those T-cells that do not express IFN-γ.
Collapse
Affiliation(s)
- Ritah Nakiboneka
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit (MRC/UVRI & LSHTM Uganda Research Unit), Entebbe, Uganda
| | - Susan Mugaba
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit (MRC/UVRI & LSHTM Uganda Research Unit), Entebbe, Uganda
| | - Betty O. Auma
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit (MRC/UVRI & LSHTM Uganda Research Unit), Entebbe, Uganda
| | - Christopher Kintu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit (MRC/UVRI & LSHTM Uganda Research Unit), Entebbe, Uganda
| | - Christina Lindan
- Department of Epidemiology & Biostatistics, and Global Health Sciences, University of California, San Francisco (UCSF), United States
| | - Mary Bridget Nanteza
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit (MRC/UVRI & LSHTM Uganda Research Unit), Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit (MRC/UVRI & LSHTM Uganda Research Unit), Entebbe, Uganda
| | - Jennifer Serwanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit (MRC/UVRI & LSHTM Uganda Research Unit), Entebbe, Uganda.
| |
Collapse
|
17
|
Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules 2018; 23:molecules23123305. [PMID: 30551603 PMCID: PMC6320789 DOI: 10.3390/molecules23123305] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), which is an acetylated cysteine compound, has aroused scientific interest for decades due to its important medical applications. It also represents a nutritional supplement in the human diet. NAC is a glutathione precursor and shows antioxidant and anti-inflammatory activities. In addition to the uses quoted in the literature, NAC may be considered helpful in therapies to counteract neurodegenerative and mental health diseases. Furthermore, this compound has been evaluated for its neuroprotective potential in the prevention of cognitive aging dementia. NAC is inexpensive, commercially available and no relevant side effects were observed after its administration. The purpose of this paper is to give an overview on the effects and applications of NAC in Parkinson's and Alzheimer's disorders and in neuropathic pain and stroke.
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
18
|
Buranasin P, Mizutani K, Iwasaki K, Pawaputanon Na Mahasarakham C, Kido D, Takeda K, Izumi Y. High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS One 2018; 13:e0201855. [PMID: 30092096 PMCID: PMC6084939 DOI: 10.1371/journal.pone.0201855] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022] Open
Abstract
Delayed gingival wound healing is widely observed in periodontal patients with diabetes. However, the molecular mechanisms of the impaired function of gingival fibroblasts in diabetes remain unclear. The purpose of this study was to investigate changes in the properties of human gingival fibroblasts (HGFs) under high-glucose conditions. Primary HGFs were isolated from healthy gingiva and cultured with 5.5, 25, 50, and 75 mM glucose for 72 h. In vitro wound healing, 5-ethynyl-2′-deoxyuridine (EdU), and water-soluble tetrazolium salt (WST-8) assays were performed to examine cell migration and proliferation. Lactase dehydrogenase (LDH) levels were measured to determine cytotoxicity. The mRNA expression levels of oxidative stress markers were quantified by real-time PCR. Intracellular reactive oxygen species (ROS) were also measured in live cells. The antioxidant N-acetyl-l-cysteine (NAC, 1 mM) was added to evaluate the involvement of ROS in the glucose effect on HGFs. As a result, the in vitro wound healing assay showed that high glucose levels significantly reduced fibroblast migration and proliferation at 6, 12, 24, 36, and 48 h. The numbers of cells positive for EdU staining were decreased, as was cell viability, at 50 and 75 mM glucose. A significant increase in LDH was proportional to the glucose concentration. The mRNA levels of heme oxygenase-1 and superoxide dismutase-1 and ROS levels were significantly increased in HGFs after 72 h of exposure to 50 mM glucose concentration. The addition of NAC diminished the inhibitory effect of high glucose in the in vitro wound healing assay. The results of the present study show that high glucose impairs the proliferation and migration of HGFs. Fibroblast dysfunction may therefore be caused by high glucose-induced oxidative stress and may explain the delayed gingival wound healing in diabetic patients.
Collapse
Affiliation(s)
- Prima Buranasin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- * E-mail:
| | - Kengo Iwasaki
- Department of Nanomedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Daisuke Kido
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
19
|
In vivo neutralization of the protagonist role of macrophages during the chronic inflammatory stage of Huntington's disease. Sci Rep 2018; 8:11447. [PMID: 30061661 PMCID: PMC6065433 DOI: 10.1038/s41598-018-29792-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases, characterised by the progressive and selective neuronal death in the central nervous system, are frequently accompanied by an activated immune system. In Huntington’s disease (HD), clinical and animal studies show evidence of immune activity, along with hyper-reactive monocyte/macrophage responses, while application of immunosuppressive regimens have imparted beneficial effects to HD mice. These findings suggest a contributory role of the immune system in HD pathology, with immune-based interventions offering a potential therapeutic strategy. Herein, we show that peripheral and CNS immune system activity increased with disease progression in HD mouse models and defined the phenotype of the immune response. Additionally, the depletion of monocytes and macrophages in vivo, via clodronate liposome treatment, revealed a major contributory role of these innate immune cells to the chronic inflammatory milieu observed during the course of the disease. This suggests that peripheral immunomodulatory strategies targeting monocytes and macrophages could be relevant for HD.
Collapse
|
20
|
Santos-Junior NN, Catalão CH, Costa LH, Rossignoli BB, Dos-Santos RC, Malvar D, Mecawi AS, Rocha MJ. Alterations in hypothalamic synaptophysin and death markers may be associated with vasopressin impairment in sepsis survivor rats. J Neuroendocrinol 2018; 30:e12604. [PMID: 29717520 DOI: 10.1111/jne.12604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
The impairment in arginine vasopressin (AVP) secretion during sepsis is described in clinical and experimental studies and has been associated with oxidative stress, apoptosis, and diminished activation of hypothalamic neurons. Few studies have, however, assessed these abnormalities in sepsis survivors. Here we performed two sets of experiments on Wistar rats that had been subjected to sepsis by cecal ligation and puncture (CLP) or nonmanipulated (naive) as control. In the first set, tissues and blood were collected from survivor rats 10 days after CLP to quantify hypothalamic Bcl-2, cleaved caspase- 3 and synaptophysin content, and bacterial load. In the second set, survivor rats were submitted to an acute osmotic stimulus (hypertonic saline), and after 30 minutes the water intake and AVP secretion were analyzed. The sepsis-surviving rats did not show bacterial load in tissues, but their hypothalamic synaptophysin and Bcl-2 levels were decreased, and the cleaved caspase- 3 level was increased when compared with the control group. However, AVP secretion was significantly attenuated in the CLP survivor animals submitted to an acute osmotic stimulus. These results suggest that the persistent AVP impairment in sepsis survivor animals may be due to a hypothalamic dysfunction associated with a synaptic deficit and decreased anti-apoptotic protein expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- N N Santos-Junior
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - C H Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - L H Costa
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - B B Rossignoli
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - R C Dos-Santos
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, 23890-000, Brazil
| | - D Malvar
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, 23890-000, Brazil
| | - A S Mecawi
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, 23890-000, Brazil
| | - M J Rocha
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
21
|
Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond) 2017; 131:2865-2883. [DOI: 10.1042/cs20171246] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
For many years, oxidative stress arising from the ubiquitous production of reactive oxygen species (ROS) has been implicated in the pathogenesis of various eye diseases. While emerging research has provided some evidence of the important physiological role of ROS in normal cell function, disease may arise where the concentration of ROS exceeds and overwhelms the body’s natural defence against them. Additionally, ROS may induce genomic aberrations which affect cellular homoeostasis and may result in disease. This literature review examines the current evidence for the role of oxidative stress in important ocular diseases with a view to identifying potential therapeutic targets for future study. The need is particularly pressing in developing treatments for conditions which remain notoriously difficult to treat, including glaucoma, diabetic retinopathy and age-related macular degeneration.
Collapse
|
22
|
Arjinajarn P, Chueakula N, Pongchaidecha A, Jaikumkao K, Chatsudthipong V, Mahatheeranont S, Norkaew O, Chattipakorn N, Lungkaphin A. Anthocyanin-rich Riceberry bran extract attenuates gentamicin-induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Biomed Pharmacother 2017; 92:412-420. [PMID: 28558354 DOI: 10.1016/j.biopha.2017.05.100] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022] Open
Abstract
Liver plays an important role in the detoxification and metabolic elimination of various drugs and harmful substances. The damaging effects on the liver tissue treated with gentamicin are multi-factorial and their mechanisms remain unclear. This study aimed to investigate the possible protective effects of anthocyanin-rich Riceberry bran extract on gentamicin-induced hepatotoxicity in rats. Riceberry bran extract was given by oral administration 30min before gentamicin injection for 15 consecutive days. Serum levels of liver marker enzymes, AST and ALT, were significantly elevated and the total serum protein level was markedly reduced in gentamicin-treated rats. Gentamicin injection led to the significant increase in hepatic MDA level and decrease SOD expression. Liver inflammation and apoptosis were observed in gentamicin-treated rats as indicated by the increases in NF-κB, TNF-αR1, COX2, and iNOS, caspase-3, Bax, and decrease in Bcl-XL expressions. Riceberry bran extract significantly prevented gentamicin-induced the elevations of serum AST, ALT and the reduction of serum total protein. These were related to the inhibition of oxidative stress, inflammation and apoptosis in Riceberry bran extract treatment. These findings suggest that anthocyanin-rich Riceberry bran extract can prevent liver dysfunction and damage induced by gentamicin, possibly through its antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Orranuch Norkaew
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
23
|
Megra BW, Eugenin EA, Berman JW. The Role of Shed PrP c in the Neuropathogenesis of HIV Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:224-232. [PMID: 28533442 DOI: 10.4049/jimmunol.1601041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/21/2017] [Indexed: 01/02/2023]
Abstract
HIV-1 enters the CNS soon after peripheral infection and causes chronic neuroinflammation and neuronal damage that leads to cognitive impairment in 40-70% of HIV-infected people. The nonpathogenic cellular isoform of the human prion protein (PrPc) is an adhesion molecule constitutively expressed in the CNS. Previously, our laboratory showed that shed PrPc (sPrPc) is increased in the cerebrospinal fluid of HIV-infected people with cognitive deficits as compared with infected people with no impairment. In this article, we demonstrate that CCL2 and TNF-α, inflammatory mediators that are elevated in the CNS of HIV-infected people, increase shedding of PrPc from human astrocytes by increasing the active form of the metalloprotease ADAM10. We show that the consequence of this shedding can be the production of inflammatory mediators, because treatment of astrocytes with rPrPc increased secretion of CCL2, CXCL-12, and IL-8. Supernatants from rPrPc-treated astrocytes containing factors produced in response to this treatment, but not rPrPc by itself, cause increased chemotaxis of both uninfected and HIV-infected human monocytes, suggesting a role for sPrPc in monocyte recruitment into the brain. Furthermore, we examined whether PrPc participates in glutamate uptake and found that rPrPc decreased uptake of this metabolite in astrocytes, which could lead to neurotoxicity and neuronal loss. Collectively, our data characterize mediators involved in PrPc shedding and the effect of this sPrPc on monocyte chemotaxis and glutamate uptake from astrocytes. We propose that shedding of PrPc could be a potential target for therapeutics to limit the cognitive impairment characteristic of neuroAIDS.
Collapse
Affiliation(s)
- Bezawit W Megra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A Eugenin
- Public Health Research Institute, Newark, NJ 07103.,Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Department of Microbiology, Albert Einstein College of Medicine, Bronx, NY 10461; and.,Department of Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
24
|
Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice. J Virol 2017; 91:JVI.01983-16. [PMID: 28122986 PMCID: PMC5375689 DOI: 10.1128/jvi.01983-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a significant cause of abnormal neurodevelopment and long-term neurological sequelae in infants and children. Resident cell populations of the developing brain have been suggested to be more susceptible to virus-induced cytopathology, a pathway thought to contribute to the clinical outcomes following intrauterine HCMV infection. However, recent findings in a newborn mouse model of the infection in the developing brain have indicated that elevated levels of proinflammatory mediators leading to mononuclear cell activation and recruitment could underlie the abnormal neurodevelopment. In this study, we demonstrate that treatment with tumor necrosis factor alpha (TNF-α)-neutralizing antibodies decreased the frequency of CD45+ Ly6Chi CD11b+ CCR2+ activated myeloid mononuclear cells (MMCs) and the levels of proinflammatory cytokines in the blood and the brains of murine CMV-infected mice. This treatment also normalized neurodevelopment in infected mice without significantly impacting the level of virus replication. These results indicate that TNF-α is a major component of the inflammatory response associated with altered neurodevelopment that follows murine CMV infection of the developing brain and that a subset of peripheral blood myeloid mononuclear cells represent a key effector cell population in this model of virus-induced inflammatory disease of the developing brain.IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the most common viral infection of the developing human fetus and can result in neurodevelopmental sequelae. Mechanisms of disease leading to neurodevelopmental deficits in infected infants remain undefined, but postulated pathways include loss of neuronal progenitor cells, damage to the developing vascular system of the brain, and altered cellular positioning. Direct virus-mediated cytopathic effects cannot explain the phenotypes of brain damage in most infected infants. Using a mouse model that recapitulates characteristics of the brain infection described in human infants, we have shown that TNF-α plays a key role in brain inflammation, including recruitment of inflammatory mononuclear cells. Neutralization of TNF-α normalized neurodevelopmental abnormalities in infected mice, providing evidence that virus-induced inflammation is a major component of disease in the developing brain. These results suggest that interventions limiting inflammation associated with the infection could potentially improve the neurologic outcome of infants infected in utero with HCMV.
Collapse
|
25
|
Ow SH, Chua PJ, Bay BH. Epigenetic regulation of peroxiredoxins: Implications in the pathogenesis of cancer. Exp Biol Med (Maywood) 2016; 242:140-147. [PMID: 27633575 DOI: 10.1177/1535370216669834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peroxiredoxin I to VI (PRX I-VI), a family of highly conserved antioxidants, has been implicated in numerous diseases. There have been reports that PRXs are expressed aberrantly in a variety of tumors, implying that they could play an important role in carcinogenesis. Epigenetic mechanisms such as DNA methylation, histone modifications, and microRNAs have been reported to modulate expression of PRXs. In addition, the use of epigenetic regulators, such as histone deacetylases, has been demonstrated to restore PRX to normal levels, indicating that the reversible nature of epigenetics can be exploited for future treatments.
Collapse
Affiliation(s)
- Suet-Hui Ow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Pei-Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
26
|
Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling. Biochem Biophys Res Commun 2016; 478:1304-9. [PMID: 27562714 DOI: 10.1016/j.bbrc.2016.08.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Increasing studies suggest that miRNAs are served as responders and regulators for pathological change in human. miR-485-5p is such a miRNA that has been proved to be affected by spinal cord I/R injury. This study was to investigate the functional involvement and mechanism of miR-485-5p in sulfuretted hydrogen (H2S) protecting neural cell from injury. METHODS In this study, serum tumor necrosis factor (TNF-α) and miR-485-5p were detected in 20 patients with spinal cord ischemia/reperfusion (I/R) injury and in 20 healthy control. H2S was administered by GYY4137 treatment. Two TNF-α-stimulated neural human cell lines, AGE1.HN and SY-SH-5Y, were used for in vitro I/R experiments. Quantitative RT-PCR was performed to determine miR-485-5p expression. QRT-PCR and western blot were respectively performed to evaluate expression of tumor necrosis factor receptor type 1-associated DEATH domain protein (TRADD). RESULTS The result showed that serum TNF-α was significantly reduced in patients compared with healthy control. In vitro TNF-α treatment dose dependently caused GE1.HN and SY-SH-5Y apoptosis, whereas this promotion action was reversed by CYY4137. Moreover, we found that H2S protected neuronal cell against apoptosis via TRADD dependent. By luciferase reporting gene assay, western blot and qRT-PCR, we confirmed that TRADD expression was regulated by miR-485-5p. Such miR-485-5p/TRADD axis was proved to be involved in GE1.HN and SY-SH-5Y neural cell-protective process of H2S. CONCLUSION In summary, our data for the first time identifies miR-485-5p/TRADD axis in hydrogen sulfide protecting against TNF-α-induced neuronal cell apoptosis.
Collapse
|
27
|
Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions. Chem Biol Interact 2016; 254:34-44. [PMID: 27216632 DOI: 10.1016/j.cbi.2016.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Although, titanium dioxide nanoparticles (TiO2NPs) are nanomaterials commonly used in consumer products, little is known about their hazardous effects, especially on central nervous systems. To examine this issue, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were exposed to 6 nm of 100% anatase TiO2NPs. A lipopolysaccharide (LPS) was pre-treated to activate glial cells before NP treatment for mimicking NP exposure under brain injury. We found that ALT and BV-2 cells took up more NPs than N2a cells and caused lower cell viability. TiO2NPs induced IL-1β in the three cell lines and IL-6 in N2a. LPS-activated BV-2 took up more TiO2NPs than normal BV-2 and released more intra/extracellular reactive oxygen species (ROS), IL-1β, IL-6 and MCP-1 than did activated BV-2. Involvement of clathrin- and caveolae-dependent endocytosis in ALT and clathrin-dependent endocytosis and phagocytosis in BV-2 both had a slow NP translocation rate to lysosome, which may cause slow ROS production (after 24 h). Although TiO2NPs did not directly cause N2a viability loss, by indirect NP exposure to the bottom chamber of LPS-activated BV-2 in the Transwell system, they caused late apoptosis and loss of cell viability in the upper N2a chamber due to H2O2 and/or TNF-α release from BV-2. However, none of the adverse effects in N2a or BV-2 cells was observed when TiO2NPs were exposed to ALT-N2a or ALT-BV-2 co-culture. These results demonstrate that neuron damage can result from TiO2NP-mediated ROS and/or cytokines release from microglia, but not from astrocytes.
Collapse
|
28
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem 2015; 48:1200-8. [DOI: 10.1016/j.clinbiochem.2015.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
|
29
|
Liechti FD, Grandgirard D, Leib SL. Bacterial meningitis: insights into pathogenesis and evaluation of new treatment options: a perspective from experimental studies. Future Microbiol 2015; 10:1195-213. [PMID: 26119836 DOI: 10.2217/fmb.15.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial meningitis is associated with high mortality and morbidity rates. Bacterial components induce an overshooting inflammatory reaction, eventually leading to brain damage. Pathological correlates of neurofunctional deficits include cortical necrosis, damage of the inner ear and hippocampal apoptosis. The hippocampal dentate gyrus is important for memory acquisition and harbors a neuronal stem cell niche, thus being potentially well equipped for regeneration. Adjuvant therapies aimed at decreasing the inflammatory reaction, for example, dexamethasone, and those protecting the brain from injury have been evaluated in animal models of the disease. They include nonbacteriolytic antibiotics (e.g., daptomycin), metalloproteinase inhibitors and modulators of the immunological response, for example, granulocyte colony-stimulating factor. Increasing research interest has recently been focused on interventions aimed at supporting regenerative processes.
Collapse
Affiliation(s)
- Fabian D Liechti
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstr. 51, CH-3010 Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstr. 51, CH-3010 Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstr. 51, CH-3010 Bern, Switzerland.,Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Austrasse, CH-3700 Spiez, Switzerland
| |
Collapse
|
30
|
Guest J, Grant R, Garg M, Mori TA, Croft KD, Bilgin A. Cerebrospinal fluid levels of inflammation, oxidative stress and NAD+ are linked to differences in plasma carotenoid concentrations. J Neuroinflammation 2014; 11:117. [PMID: 24985027 PMCID: PMC4096526 DOI: 10.1186/1742-2094-11-117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/27/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The consumption of foods rich in carotenoids that possess significant antioxidant and inflammatory modulating properties has been linked to reduced risk of neuropathology. The objective of this study was to evaluate the relationship between plasma carotenoid concentrations and plasma and cerebrospinal fluid (CSF) markers of inflammation, oxidative stress and nicotinamide adenine dinucleotide (NAD+) in an essentially healthy human cohort. METHODS Thirty-eight matched CSF and plasma samples were collected from consenting participants who required a spinal tap for the administration of anaesthetic. Plasma concentrations of carotenoids and both plasma and cerebrospinal fluid (CSF) levels of NAD(H) and markers of inflammation (IL-6, TNF-α) and oxidative stress (F2-isoprostanes, 8-OHdG and total antioxidant capacity) were quantified. RESULTS The average age of participants was 53 years (SD=20, interquartile range=38). Both α-carotene (P=0.01) and β-carotene (P<0.001) correlated positively with plasma total antioxidant capacity. A positive correlation was observed between α-carotene and CSF TNF-α levels (P=0.02). β-cryptoxanthin (P=0.04) and lycopene (P=0.02) inversely correlated with CSF and plasma IL-6 respectively. A positive correlation was also observed between lycopene and both plasma (P<0.001) and CSF (P<0.01) [NAD(H)]. Surprisingly no statistically significant associations were found between the most abundant carotenoids, lutein and zeaxanthin and either plasma or CSF markers of oxidative stress. CONCLUSION Together these findings suggest that consumption of carotenoids may modulate inflammation and enhance antioxidant defences within both the central nervous system (CNS) and systemic circulation. Increased levels of lycopene also appear to moderate decline in the essential pyridine nucleotide [NAD(H)] in both the plasma and the CSF.
Collapse
Affiliation(s)
- Jade Guest
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Wallace Wurth Building, office #203, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Wallace Wurth Building, office #203, Sydney, NSW 2052, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Manohar Garg
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Trevor A Mori
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Kevin D Croft
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Ayse Bilgin
- Faculty of Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
31
|
Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 2014; 4:108-22. [PMID: 24683506 PMCID: PMC3967529 DOI: 10.1002/brb3.208] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND There is an expanding field of research investigating the benefits of medicines with multiple mechanisms of action across neurological disorders. N-acetylcysteine (NAC), widely known as an antidote to acetaminophen overdose, is now emerging as treatment of vascular and nonvascular neurological disorders. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. AIM AND DISCUSSION Most NAC studies up to date have been carried out in animal models of various neurological disorders with only a few studies completed in humans. In psychiatry, NAC has been tested in over 20 clinical trials as an adjunctive treatment; however, this topic is beyond the scope of this review. Herein, we discuss NAC molecular, intracellular, and systemic effects, focusing on its potential applications in neurodegenerative diseases including spinocerebellar ataxia, Parkinson's disease, tardive dyskinesia, myoclonus epilepsy of the Unverricht-Lundbor type as well as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. CONCLUSION Finally, we review the potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage.
Collapse
Affiliation(s)
| | - Mark R Harrigan
- Department of Surgery, Division of Neurosurgery, University of Alabama Birmingham, Alabama
| | - Andrei V Alexandrov
- Department of Neurology, Comprehensive Stroke Center, University of Alabama Birmingham, Alabama
| |
Collapse
|
32
|
Kam A, Li KM, Razmovski-Naumovski V, Nammi S, Chan K, Li GQ. Gallic acid protects against endothelial injury by restoring the depletion of DNA methyltransferase 1 and inhibiting proteasome activities. Int J Cardiol 2014; 171:231-42. [DOI: 10.1016/j.ijcard.2013.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/02/2013] [Accepted: 12/12/2013] [Indexed: 11/27/2022]
|
33
|
Liposomal cholesterol delivery activates the macrophage innate immune arm to facilitate intracellular Leishmania donovani killing. Infect Immun 2013; 82:607-17. [PMID: 24478076 DOI: 10.1128/iai.00583-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL) by infecting the monocyte/macrophage lineage and residing inside specialized structures known as parasitophorous vacuoles. The protozoan parasite has adopted several means of escaping the host immune response, with one of the major methods being deactivation of host macrophages. Previous reports highlight dampened macrophage signaling, defective antigen presentation due to increased membrane fluidity, and the downregulation of several genes associated with L. donovani infection. We have reported previously that the defective antigen presentation in infected hamsters could be corrected by a single injection of a cholesterol-containing liposome. Here we show that cholesterol in the form of a liposomal formulation can stimulate the innate immune arm and reactivate macrophage function. Augmented levels of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI), along with proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), corroborate intracellular parasite killing. Cholesterol incorporation kinetics is favored in infected macrophages more than in normal macrophages. Such an enhanced cholesterol uptake is associated with preferential apoptosis of infected macrophages in an endoplasmic reticulum (ER) stress-dependent manner. All these events are coupled with mitogen-activated protein (MAP) kinase activation, while inhibition of such pathways resulted in increased parasite loads. Hence, liposomal cholesterol is a potential facilitator of the macrophage effector function in favor of the host, independently of the T-cell arm.
Collapse
|
34
|
Seo JB, Gowda GAN, Koh DS. Apoptotic damage of pancreatic ductal epithelia by alcohol and its rescue by an antioxidant. PLoS One 2013; 8:e81893. [PMID: 24244749 PMCID: PMC3828411 DOI: 10.1371/journal.pone.0081893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022] Open
Abstract
Alcohol abuse is a major cause of pancreatitis. However alcohol toxicity has not been fully elucidated in the pancreas and little is known about the effect of alcohol on pancreatic ducts. We report the molecular mechanisms of ethanol-induced damage of pancreatic duct epithelial cells (PDEC). Ethanol treatment for 1, 4, and 24 h resulted in cell death in a dose-dependent manner. The ethanol-induced cell damage was mainly apoptosis due to generation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP), and activation of caspase-3 enzyme. The antioxidant N-acetylcysteine (NAC) attenuated these cellular responses and reduced cell death significantly, suggesting a critical role for ROS. Acetaldehyde, a metabolic product of alcohol dehydrogenase, induced significant cell death, depolarization of MMP, and caspase-3 activation as ethanol and this damage was also averted by NAC. Reverse transcription-polymerase chain reaction revealed the expression of several subtypes of alcohol dehydrogenase and acetaldehyde dehydrogenase. Nuclear magnetic resonance spectroscopy data confirmed the accumulation of acetaldehyde in ethanol-treated cells, suggesting that acetaldehyde formation can contribute to alcohol toxicity in PDEC. Finally, ethanol increased the leakage of PDEC monolayer which was again attenuated by NAC. In conclusion, ethanol induces apoptosis of PDEC and thereby may contribute to the development of alcohol-induced pancreatitis.
Collapse
Affiliation(s)
- Jong Bae Seo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
- Department of Physics, POSTECH, Pohang, Kyungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility. Inflamm Bowel Dis 2013; 19:2535-46. [PMID: 24108115 PMCID: PMC4180268 DOI: 10.1097/01.mib.0000437042.59208.9f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuro-immune interactions play a significant role in regulating the severity of inflammation. Our previous work demonstrated that neuropeptide Y (NPY) is upregulated in the enteric nervous system during murine colitis and that NPY knockout mice exhibit reduced inflammation. Here, we investigated if NPY expression during inflammation is induced by tumor necrosis factor (TNF), the main proinflammatory cytokine. METHODS Using primary enteric neurons and colon explant cultures from wild type and NPY knockout (NPY(-/-)) mice, we determined if NPY knockdown modulates TNF release and epithelial permeability. Further, we assessed if NPY expression is inducible by TNF in enteric neuronal cells and mouse model of experimental colitis, using the TNF inhibitors-etanercept (blocks transmembrane and soluble TNF) and XPro1595 (blocks soluble TNF only). RESULTS We found that enteric neurons express TNF receptors (TNFR1 and R2). Primary enteric neurons from NPY(-/-) mice produced less TNF compared with wild type. Further, TNF activated NPY promoter in enteric neurons through phospho-c-Jun. NPY(-/-) mice had decreased intestinal permeability. In vitro, NPY increased epithelial permeability through phosphatidyl inositol-3-kinase (PI3-K)-induced pore-forming claudin-2. TNF inhibitors attenuated NPY expression in vitro and in vivo. TNF inhibitor-treated colitic mice exhibited reduced NPY expression and inflammation, reduced oxidative stress, enhanced neuronal survival, and improved colonic motility. XPro1595 had more protective effects on neuronal survival and motility compared with etanercept. CONCLUSIONS We demonstrate a novel TNF-NPY cross talk that modulates inflammation, barrier functions, and colonic motility during inflammation. It is also suggested that selective blocking of soluble TNF may be a better therapeutic option than using anti-TNF antibodies.
Collapse
|
36
|
Álvarez S, Muñoz-Fernández MÁ. TNF-Α may mediate inflammasome activation in the absence of bacterial infection in more than one way. PLoS One 2013; 8:e71477. [PMID: 23940760 PMCID: PMC3737100 DOI: 10.1371/journal.pone.0071477] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/29/2013] [Indexed: 01/27/2023] Open
Abstract
Members of the mammalian nucleotide binding domain, leucine-rich repeat (LRR)-containing receptor family of proteins are key modulators of innate immunity regulating inflammation. To date, microbial pathogen-associated molecules and toxins have been identified as key triggers of activation of inflammasomes. However, recently, environmental, and neurodegenerative stimuli have been identified that lead to IL-1β release by means of inflammasomes. IL-1β plays a crucial role during brain inflammation, and caspase-1 appears to be a key modulator of IL-1β bioactivity and the consequent transcriptional regulation of gene expression within the brain during inflammation. We show here that exposure of a human neuroblastoma cell line (SK-N-MC cells) to TNF-α promotes ROS-mediated caspase-1 activation and IL-1β secretion. The involvement of NF-κB in the regulation of IL-1β synthesis is investigated through specific inhibition of this transcription factor. The effect of TNF-α was abolished in the presence of ROS inhibitors as NAC, or DPI. Remarkably, SK-N-MC cells do not respond to ATP stimulation in spite of P2X7R expression. These results provide a mechanism by which danger signals and particulate matter mediate inflammation via the inflammasome in the absence of microbial infection.
Collapse
Affiliation(s)
- Susana Álvarez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| |
Collapse
|
37
|
Abstract
Human immunodeficiency virus type 1 is associated with the development of neurocognitive disorders in many infected individuals, including a broad spectrum of motor impairments and cognitive deficits. Despite extensive research, the pathogenesis of HIV-associated neurocognitive disorders (HAND) is still not clear. This review provides a comprehensive view of HAND, including HIV neuroinvasion, HAND diagnosis and different level of disturbances, influence of highly-active antiretroviral therapy to HIV-associated dementia (HAD), possible pathogenesis of HAD, etc. Together, this review will give a thorough and clear understanding of HAND, especially HAD, which will be vital for future research, diagnosis and treatment.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| |
Collapse
|
38
|
Ma Q, Gelbard HA, Maggirwar SB, Dewhurst S, Gendelman HE, Peterson DR, DiFrancesco R, Hochreiter JS, Morse GD, Schifitto G. Pharmacokinetic interactions of CEP-1347 and atazanavir in HIV-infected patients. J Neurovirol 2013; 19:254-60. [PMID: 23737347 DOI: 10.1007/s13365-013-0172-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/01/2022]
Abstract
CEP-1347 is a potent inhibitor of mixed lineage kinase (MLK), which was investigated for ameliorating HIV-associated neurocognitive disorders. CEP-1347 and atazanavir pharmacokinetics were determined when CEP-1347 50 mg twice daily was administered to HIV-infected patients (n = 20) receiving combination antiretroviral therapy including atazanavir and ritonavir (ATV/RTV, 300/100 mg) once daily continuously. Co-administration of CEP-1347 and ATV/RTV resulted with significant changes in pharmacokinetics of ATV but not RTV. Specifically, an increase in ATV accumulation ratio of 15 % (p = 0.007) and a prolongation of T(½) from 12.7 to 15.9 h (p = 0.002) were observed. The results suggested that co-administration of CEP-1347 with ATV/RTV in HIV-infected patients might result in limited impact on ATV but not on RTV pharmacokinetics.
Collapse
Affiliation(s)
- Qing Ma
- Center for Human Experimental Therapeutics, Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Singh PK, Doley J, Kumar GR, Sahoo A, Tiwari AK. Oncolytic viruses & their specific targeting to tumour cells. Indian J Med Res 2012; 136:571-84. [PMID: 23168697 PMCID: PMC3516024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Indexed: 10/25/2022] Open
Abstract
Cancer is one of the major causes of death worldwide. In spite of achieving significant successes in medical sciences in the past few decades, the number of deaths due to cancer remains unchecked. The conventional chemotherapy and radiotherapy have limited therapeutic index and a plethora of treatment related side effects. This situation has provided an impetus for search of novel therapeutic strategies that can selectively destroy the tumour cells, leaving the normal cells unharmed. Viral oncotherapy is such a promising treatment modality that offers unique opportunity for tumour targeting. Numerous viruses with inherent anti-cancer activity have been identified and are in different phases of clinical trials. In the era of modern biotechnology and with better understanding of cancer biology and virology, it has become feasible to engineer the oncolytic viruses (OVs) to increase their tumour selectivity and enhance their oncolytic activity. In this review, the mechanisms by which oncolytic viruses kill the tumour cells have been discussed as also the development made in virotherapy for cancer treatment with emphasis on their tumour specific targeting.
Collapse
Affiliation(s)
- Prafull K. Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - Juwar Doley
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - G. Ravi Kumar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - A.P. Sahoo
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| | - Ashok K. Tiwari
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute (ICAR), Bareilly, India
| |
Collapse
|
40
|
Protective effect of low-molecular-weight heparin on pancreatic encephalopathy in severe acute pancreatic rats. Inflamm Res 2012; 61:1203-9. [PMID: 22806506 DOI: 10.1007/s00011-012-0517-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND AND AIMS Pancreatic encephalopathy (PE) is a severe complication and significant cause of death in patients with severe acute pancreatitis (SAP). We have reported previously that low-molecular-weight heparin (LMWH) treatment could reduce incidence of PE in SAP patients. Our objective here was to investigate the protective effect of LMWH and its mechanism on PE in SAP rats. METHODS SD rats were randomly divided into three groups: (1) Sham-operation (S) group, (2) SAP group, and (3) LMWH treatment (LMWH) group. LMWH was administrated 4 h after the SAP model conducted. The levels of serum amylase, myelin basic protein (MBP), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), brain water content, occurrence of apoptosis, and pathological changes of pancreas and brain were measured at 1 day after models were set up in the SAP and S groups, and 1 day after LMWH treatment was administrated in the LMWH group. RESULTS (1) The levels of serum amylase, TNF-α, and IL-6 in the SAP group were increased significantly more than those in the S and LMWH groups (all P < 0.001), as were the levels of serum MBP in the SAP group compared to those in the S and LMWH groups (P < 0.01, <0.05 respectively). However, while the level of serum amylase and IL-6 in the LMWH group were significantly increased compared to those in the S group (P < 0.05, <0.001 respectively), the levels of TNF-α and MBP showed no significant difference between the LMWH and S groups (all P > 0.05). (2) The brain water content in the SAP group was significantly increased compared to the S group and LMWH group (P < 0.01, <0.05 respectively). (3) Neuronal apoptosis, demyelination, and mitochondrial vacuolation in neuronal cells were observed in the SAP group; in contrast, in the LMWH group, significantly lower rates of neuronal apoptosis, demyelination and mitochondrial edema were observed in neuronal cells. CONCLUSIONS The protective effect of LMWH on PE progression in SAP rats might result from inhibition of inflammatory activation and reduction of the occurrence of neuronal apoptosis.
Collapse
|
41
|
N-acetyl-cysteine in the treatment of Parkinson's disease. What are we waiting for? Med Hypotheses 2012; 79:8-12. [PMID: 22546753 DOI: 10.1016/j.mehy.2012.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 11/23/2022]
Abstract
Parkinson's disease is an age-related neurodegenerative disorder that is ameliorated with levodopa. However, long-term use of this drug is limited by motor complications, postural instability and dementia resulting in the progression of the disease. Insights into the organization of the basal ganglia and knowledge of the mechanisms responsible for cell death in Parkinson's disease has permitted the development of putative neuro-protective drugs that might slow the disease progression. Although no drug has yet been established to alter the rate of disease progression, recent publications have confirmed previous results and hypotheses about the probable role of thiolic antioxidants on Parkinson's disease, demonstrating a significant reduction of dopaminergic neuronal degeneration in α-synuclein over expressing mice treated with oral N-acetyl-cysteine. This thiolic antioxidant is a modified form of the natural amino acid cysteine, which is the precursor of the most potent intracellular antioxidant glutathione. Besides, increasing evidence has been accumulated in the last 10years about the beneficial effects of this thiolic antioxidant in experimental and pathologic states of the nervous system, including against neurotoxic substances. The present paper put forward the existing rationale evidence for the use of N-acetyl-cysteine alone or in combination with levodopa in the clinical management of this neurodegenerative disorder.
Collapse
|
42
|
Meléndez LM, Colon K, Rivera L, Rodriguez-Franco E, Toro-Nieves D. Proteomic analysis of HIV-infected macrophages. J Neuroimmune Pharmacol 2011; 6:89-106. [PMID: 21153888 PMCID: PMC3028070 DOI: 10.1007/s11481-010-9253-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/23/2010] [Indexed: 12/21/2022]
Abstract
Mononuclear phagocytes (monocytes, macrophages, and microglia) play an important role in innate immunity against pathogens including HIV. These cells are also important viral reservoirs in the central nervous system and secrete inflammatory mediators and toxins that affect the tissue environment and function of surrounding cells. In the era of antiretroviral therapy, there are fewer of these inflammatory mediators. Proteomic approaches including surface enhancement laser desorption ionization, one- and two-dimensional difference in gel electrophoresis, and liquid chromatography tandem mass spectrometry have been used to uncover the proteins produced by in vitro HIV-infected monocytes, macrophages, and microglia. These approaches have advanced the understanding of novel mechanisms for HIV replication and neuronal damage. They have also been used in tissue macrophages that restrict HIV replication to understand the mechanisms of restriction for future therapies. In this review, we summarize the proteomic studies on HIV-infected mononuclear phagocytes and discuss other recent proteomic approaches that are starting to be applied to this field. As proteomic instruments and methods evolve to become more sensitive and quantitative, future studies are likely to identify more proteins that can be targeted for diagnosis or therapy and to uncover novel disease mechanisms.
Collapse
Affiliation(s)
- Loyda M Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan 00935, Puerto Rico.
| | | | | | | | | |
Collapse
|
43
|
Liu JQ, Lee TF, Chen C, Bagim DL, Cheung PY. N-acetylcysteine improves hemodynamics and reduces oxidative stress in the brains of newborn piglets with hypoxia-reoxygenation injury. J Neurotrauma 2011; 27:1865-73. [PMID: 20649480 DOI: 10.1089/neu.2010.1325] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species have been implicated in the pathogenesis of hypoxic-ischemic injury. It has been shown previously that treating an animal with N-acetyl-L-cysteine (NAC), a scavenger of free radicals, significantly minimizes hypoxic-ischemic-induced brain injury in various acute models. Using a subacute swine model of neonatal hypoxia-reoxygenation (H-R), we evaluated the long-term beneficial effect of NAC against oxidative stress-induced brain injury. Newborn piglets were randomly assigned to a sham-operated group (without H-R, n = 6), and two H-R experimental groups (n = 8 each), with 2 h normocapnic alveolar hypoxia and 1 h of 100% oxygen reoxygenation followed by 21% oxygen for 47 h. Five minutes after reoxygenation, the H-R piglets received either normal saline (H-R controls) or NAC (150 mg/kg bolus and 20 mg/kg/h IV for 24 h) in a blinded randomized fashion. Treating the piglets with NAC significantly increased both common carotid arterial flow (CCAF) and oxygen delivery during the early phase of rexoygenation, while both CCAF and carotid oxygen delivery of the H-R group remained lower than the sham-operated groups throughout the experimental period. Compared with H-R controls, significantly higher amounts of anesthetic and sedative medications were required to maintain the NAC-treated piglets in stable condition throughout the experimental period, indicating a stronger recovery. Post-resuscitation NAC treatment also significantly attenuated the increase in cortical caspase-3 and lipid hydroperoxide concentrations. Our findings suggest that post-resuscitation administration of NAC reduces cerebral oxidative stress with improved cerebral oxygen delivery, and probably attenuates apoptosis in newborn piglets with H-R insults.
Collapse
Affiliation(s)
- Jiang-Qin Liu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
44
|
Effects of post-resuscitation treatment with N-acetylcysteine on cardiac recovery in hypoxic newborn piglets. PLoS One 2010; 5:e15322. [PMID: 21203535 PMCID: PMC3006425 DOI: 10.1371/journal.pone.0015322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/06/2010] [Indexed: 12/02/2022] Open
Abstract
Aims Although N-acetylcysteine (NAC) can decrease reactive oxygen species and improve myocardial recovery after ischemia/hypoxia in various acute animal models, little is known regarding its long-term effect in neonatal subjects. We investigated whether NAC provides prolonged protective effect on hemodynamics and oxidative stress using a surviving swine model of neonatal asphyxia. Methods and Results Newborn piglets were anesthetized and acutely instrumented for measurement of systemic hemodynamics and oxygen transport. Animals were block-randomized into a sham-operated group (without hypoxia-reoxygenation [H–R, n = 6]) and two H-R groups (2 h normocapnic alveolar hypoxia followed by 48 h reoxygenation, n = 8/group). All piglets were acidotic and in cardiogenic shock after hypoxia. At 5 min after reoxygenation, piglets were given either saline or NAC (intravenous 150 mg/kg bolus + 20 mg/kg/h infusion) via for 24 h in a blinded, randomized fashion. Both cardiac index and stroke volume of H-R controls remained lower than the pre-hypoxic values throughout recovery. Treating the piglets with NAC significantly improved cardiac index, stroke volume and systemic oxygen delivery to levels not different from those of sham-operated piglets. Accompanied with the hemodynamic improvement, NAC-treated piglets had significantly lower plasma cardiac troponin-I, myocardial lipid hydroperoxides, activated caspase-3 and lactate levels (vs. H-R controls). The change in cardiac index after H-R correlated with myocardial lipid hydroperoxides, caspase-3 and lactate levels (all p<0.05). Conclusions Post-resuscitation administration of NAC reduces myocardial oxidative stress and caused a prolonged improvement in cardiac function and in newborn piglets with H-R insults.
Collapse
|
45
|
Guo LL, Pan Y, Zhu XJ, Tan LY, Xu QJ, Jin HM. Conventional, but not high-purity, dialysate-induced monocyte apoptosis is mediated by activation of PKC-delta and inflammatory factors release. Nephrol Dial Transplant 2010; 26:1516-22. [PMID: 20923925 DOI: 10.1093/ndt/gfq620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Use of conventional dialysate (CD) (powdered sodium bicarbonate dissolved manually with reverse osmosis water before dialysis) is common in Chinese haemodialysis (HD) centres. However, this preparation carries the risk of degradation and contamination, potentially negatively impacting host defense. Commercially available high-purity dialysate (HPD) may decrease inflammation and improve nutritional status in HD patients. However, whether HPD affects immune cells is unclear. The purpose of this study was to investigate the in vitro effect of these dialysates on apoptosis in U937 monocytes and its possible mechanism. METHODS Following incubation with two different types of dialysate, U937 cell apoptosis was measured by flow cytometry. Cell morphological changes were observed by Hoechst 33258 fluorescence staining. The expression of protein kinase C-δ (PKC-δ) was assayed by RT-polymerase chain reaction and western blot. Cytokine levels in U937 cells after exposure to CD or HPD for an indicated time were assayed by commercial enzyme-linked immunosorbent assay. RESULTS CD contained more bacteria (66 ± 6 CFU/mL) than HPD (7 ± 3 CFU/mL) while there was no difference in endotoxin levels. Compared with cells exposed to HPD and phosphate-buffered saline (PBS), U937 monocytes experienced more apoptosis when exposed to CD for 24 and 48 h, while there was no significant difference between HPD and PBS. Expressions of PKC-δ mRNA and protein in U937 cells were enhanced following exposure to CD for 24 and 48 h, with increased proteolytic cleavage of PKC-δ which could be inhibited by rottlerin, a specific inhibitor of PKC-δ. Moreover, the cultured supernatant in CD-exposed cells contained significantly higher levels of interleukin-6 (4.09 ± 0.36 vs 2.73 ± 0.38 pg/mL, P < 0.01, 24 h; 4.28 ± 0.32 vs 2.83 ± 0.32 pg/mL, P < 0.01, 48 h) and tumour necrosis factor α (3.45 ± 0.79 vs 2.44 ± 0.39 pg/mL, P < 0.05, 24 h; 4.60 ± 0.57 vs 2.50 ± 0.37 pg/mL, P < 0.01, 48 h) than those of HPD. CONCLUSION CD, but not HPD, contained more bacterial contamination, increased monocyte apoptosis in a PKC-δ-dependent manner and induced more cell inflammation. These findings suggest that impurity of dialysis fluid may be an important determinant of the elevated inflammation seen in CD-treated patients.
Collapse
Affiliation(s)
- Li Li Guo
- Division of Nephrology, No 3 People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
46
|
Clark US, Cohen RA. Brain dysfunction in the era of combination antiretroviral therapy: implications for the treatment of the aging population of HIV-infected individuals. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2010; 11:884-900. [PMID: 20721831 PMCID: PMC4021717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Improvements in the treatment of HIV infection and in the advancement of combination antiretroviral therapy (cART) have led to an increase in the number of individuals with HIV who are surviving to an older age. Preventing the development of neurocognitive abnormalities has become an increasingly important issue in this aging patient population, which is already at risk for cognitive impairment as a result of the neuropathological effects of HIV. cART has been critical in reducing the overall severity of HIV-associated neurocognitive disorders (HAND), but numerous challenges remain, as the prevalence of HAND continues to be high. There are several key areas in which treatment could be improved to reduce the incidence and severity of HAND. The use of well-tolerated cART medications that are able to penetrate the blood-brain barrier hold particular promise, as these agents may enable increased viral suppression in the parenchyma and may reduce neurocognitive dysfunction. In addition, the improved treatment of comorbid medical conditions that are common in patient populations with HIV (eg, HCV, liver failure and metabolic syndrome) is critical, as several of these conditions are known to have a significant effect on neural functions. Various research approaches indicate that the development of agents that control free radicals, neurotoxicity, proinflammatory processes and apoptosis may also have substantial potential in this field.
Collapse
Affiliation(s)
- Uraina S Clark
- Brown University, Department of Community Health, Box G-S121-2, 121 South Main Street, Providence, RI 02912, USA.
| | | |
Collapse
|
47
|
Chandler D, Woldu A, Rahmadi A, Shanmugam K, Steiner N, Wright E, Benavente-García O, Schulz O, Castillo J, Münch G. Effects of plant-derived polyphenols on TNF-α and nitric oxide production induced by advanced glycation endproducts. Mol Nutr Food Res 2010; 54 Suppl 2:S141-50. [DOI: 10.1002/mnfr.200900504] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Lau F, Joseph J, Shukitt-Hale B. Age-Related Neuronal and Behavioral Deficits are Improved by Polyphenol-Rich Blueberry Supplementation. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420026559.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
49
|
Effects of N-acetylcysteine and ebselen on arachidonic acid release from astrocytes and neurons cultured in normoxic or simulated ischemic conditions. Pharmacol Rep 2009; 61:941-6. [DOI: 10.1016/s1734-1140(09)70153-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 09/25/2009] [Indexed: 11/24/2022]
|
50
|
Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-κB activation. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|