1
|
Kociemba J, Jørgensen ACS, Tadić N, Harris A, Sideri T, Chan WY, Ibrahim F, Ünal E, Skehel M, Shahrezaei V, Argüello-Miranda O, van Werven FJ. Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 2024; 43:3256-3286. [PMID: 38886580 PMCID: PMC11294583 DOI: 10.1038/s44318-024-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.
Collapse
Affiliation(s)
- Johanna Kociemba
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Christ Sølvsten Jørgensen
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK
- I-X Centre for AI In Science, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Nika Tadić
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Theodora Sideri
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Wei Yee Chan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK.
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | | |
Collapse
|
2
|
Su AJ, Yendluri SC, Ünal E. Control of meiotic entry by dual inhibition of a key mitotic transcription factor. eLife 2024; 12:RP90425. [PMID: 38411169 PMCID: PMC10939502 DOI: 10.7554/elife.90425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a functional homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.
Collapse
Affiliation(s)
- Amanda J Su
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Siri C Yendluri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
3
|
Su AJ, Yendluri SC, Ünal E. Control of meiotic entry by dual inhibition of a key mitotic transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533246. [PMID: 36993411 PMCID: PMC10055192 DOI: 10.1101/2023.03.17.533246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.
Collapse
|
4
|
Harris A, Ünal E. The transcriptional regulator Ume6 is a major driver of early gene expression during gametogenesis. Genetics 2023; 225:iyad123. [PMID: 37431893 PMCID: PMC10550318 DOI: 10.1093/genetics/iyad123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The process of gametogenesis is orchestrated by a dynamic gene expression program, where a vital subset constitutes the early meiotic genes. In budding yeast, the transcription factor Ume6 represses early meiotic gene expression during mitotic growth. However, during the transition from mitotic to meiotic cell fate, early meiotic genes are activated in response to the transcriptional regulator Ime1 through its interaction with Ume6. While it is known that binding of Ime1 to Ume6 promotes early meiotic gene expression, the mechanism of early meiotic gene activation remains elusive. Two competing models have been proposed whereby Ime1 either forms an activator complex with Ume6 or promotes Ume6 degradation. Here, we resolve this controversy. First, we identify the set of genes that are directly regulated by Ume6, including UME6 itself. While Ume6 protein levels increase in response to Ime1, Ume6 degradation occurs much later in meiosis. Importantly, we found that depletion of Ume6 shortly before meiotic entry is detrimental to early meiotic gene activation and gamete formation, whereas tethering of Ume6 to a heterologous activation domain is sufficient to trigger early meiotic gene expression and produce viable gametes in the absence of Ime1. We conclude that Ime1 and Ume6 form an activator complex. While Ume6 is indispensable for early meiotic gene expression, Ime1 primarily serves as a transactivator for Ume6.
Collapse
Affiliation(s)
- Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Sahu RK, Singh S, Tomar RS. The ATP-dependent SWI/SNF and RSC chromatin remodelers cooperatively induce unfolded protein response genes during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194748. [PMID: 34454103 DOI: 10.1016/j.bbagrm.2021.194748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023]
Abstract
The SWI/SNF subfamily remodelers (SWI/SNF and RSC) generally promote gene expression by displacing or evicting nucleosomes at the promoter regions. Their action creates a nucleosome-depleted region where transcription machinery accesses the DNA. Their function has been shown critical for inducing stress-responsive transcription programs. Although the role of SWI/SNF and RSC complexes in transcription regulation of heat shock responsive genes is well studied, their involvement in other pathways such as unfolded protein response (UPR) and protein quality control (PQC) is less known. This study shows that SWI/SNF occupies the promoters of UPR, HSP and PQC genes in response to unfolded protein stress, and its recruitment at UPR promoters depends on Hac1 transcription factor and other epigenetic factors like Ada2 and Ume6. Disruption of SWI/SNF's activity does not affect the remodeling of these promoters or gene expression. However, inactivation of RSC and SWI/SNF together diminishes induction of most of the UPR, HSP and PQC genes tested. Furthermore, RSC and SWI/SNF colocalize at these promoters, suggesting that these two remodelers functionally cooperate to induce stress-responsive genes under proteotoxic conditions.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Sakshi Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
6
|
Ume6 Acts as a Stable Platform To Coordinate Repression and Activation of Early Meiosis-Specific Genes in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0037820. [PMID: 33941619 PMCID: PMC8224235 DOI: 10.1128/mcb.00378-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In response to nutrient starvation, the budding yeast Saccharomyces cerevisiae abandons mitotic proliferation and embarks on a differentiation process that leads through meiosis to the formation of haploid spores. This process is driven by cascading waves of meiosis-specific-gene expression. The early meiosis-specific genes are repressed during mitotic proliferation by the DNA-binding protein Ume6 in combination with repressors Rpd3 and Sin3. The expression of meiosis-specific transcription factor Ime1 leads to activation of the early meiosis-specific genes. We investigated the stability and promoter occupancy of Ume6 in sporulating cells and determined that it remains bound to early meiosis-specific gene promoters when those genes are activated. Furthermore, we find that the repressor Rpd3 remains associated with Ume6 after the transactivator Ime1 has joined the complex and that the Gcn5 and Tra1 components of the SAGA complex bind to the promoter of IME2 in an Ime1-dependent fashion to induce transcription of the early meiosis-specific genes. Our investigation supports a model whereby Ume6 provides a platform allowing recruitment of both activating and repressing factors to coordinate the expression of the early meiosis-specific genes in Saccharomyces cerevisiae.
Collapse
|
7
|
Integrated genomic analysis reveals key features of long undecoded transcript isoform-based gene repression. Mol Cell 2021; 81:2231-2245.e11. [PMID: 33826921 PMCID: PMC8153250 DOI: 10.1016/j.molcel.2021.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022]
Abstract
Long undecoded transcript isoforms (LUTIs) represent a class of non-canonical mRNAs that downregulate gene expression through the combined act of transcriptional and translational repression. While single gene studies revealed important aspects of LUTI-based repression, how these features affect gene regulation on a global scale is unknown. Using transcript leader and direct RNA sequencing, here, we identify 74 LUTI candidates that are specifically induced in meiotic prophase. Translational repression of these candidates appears to be ubiquitous and is dependent on upstream open reading frames. However, LUTI-based transcriptional repression is variable. In only 50% of the cases, LUTI transcription causes downregulation of the protein-coding transcript isoform. Higher LUTI expression, enrichment of histone 3 lysine 36 trimethylation, and changes in nucleosome position are the strongest predictors of LUTI-based transcriptional repression. We conclude that LUTIs downregulate gene expression in a manner that integrates translational repression, chromatin state changes, and the magnitude of LUTI expression.
Collapse
|
8
|
Usher J. The Mechanisms of Mating in Pathogenic Fungi-A Plastic Trait. Genes (Basel) 2019; 10:E831. [PMID: 31640207 PMCID: PMC6826560 DOI: 10.3390/genes10100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
The impact of fungi on human and plant health is an ever-increasing issue. Recent studies have estimated that human fungal infections result in an excess of one million deaths per year and plant fungal infections resulting in the loss of crop yields worth approximately 200 million per annum. Sexual reproduction in these economically important fungi has evolved in response to the environmental stresses encountered by the pathogens as a method to target DNA damage. Meiosis is integral to this process, through increasing diversity through recombination. Mating and meiosis have been extensively studied in the model yeast Saccharomyces cerevisiae, highlighting that these mechanisms have diverged even between apparently closely related species. To further examine this, this review will inspect these mechanisms in emerging important fungal pathogens, such as Candida, Aspergillus, and Cryptococcus. It shows that both sexual and asexual reproduction in these fungi demonstrate a high degree of plasticity.
Collapse
Affiliation(s)
- Jane Usher
- Medical Research Council Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK.
| |
Collapse
|
9
|
Moretto F, Wood NE, Kelly G, Doncic A, van Werven FJ. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. Nat Commun 2018; 9:780. [PMID: 29472539 PMCID: PMC5823921 DOI: 10.1038/s41467-018-03213-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription of long noncoding RNAs (lncRNAs) regulates local gene expression in eukaryotes. Many examples of how a single lncRNA controls the expression of an adjacent or nearby protein-coding gene have been described. Here we examine the regulation of a locus consisting of two contiguous lncRNAs and the master regulator for entry into yeast meiosis, IME1. We find that the cluster of two lncRNAs together with several transcription factors form a regulatory circuit by which IME1 controls its own promoter and thereby promotes its own expression. Inhibition or stimulation of this unusual feedback circuit affects timing and rate of IME1 accumulation, and hence the ability for cells to enter meiosis. Our data demonstrate that orchestrated transcription through two contiguous lncRNAs promotes local gene expression and determines a critical cell fate decision.
Collapse
Affiliation(s)
- Fabien Moretto
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - N Ezgi Wood
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Doncic
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Green Center for Systems Biology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | | |
Collapse
|
10
|
One-two punch mechanism of gene repression: a fresh perspective on gene regulation. Curr Genet 2017; 64:581-588. [PMID: 29218463 PMCID: PMC5948300 DOI: 10.1007/s00294-017-0793-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 02/04/2023]
Abstract
Cellular differentiation depends on temporally controlled waves of gene activation and inactivation that ultimately transform one cell type into another. It is well established that transcription factor cascades coordinate the timely activation of gene expression clusters during development. In comparison, much less is understood about how gene repression events are coordinated with the transcription factor-driven waves of gene activation and how this repression is achieved at a mechanistic level. Using budding yeast as a model, we recently discovered a new gene regulatory event, whereby a central meiotic transcription factor induces the expression of an mRNA isoform to repress gene expression through an integrated transcriptional and translational mechanism. This new model could explain how gene activation and inactivation waves can be temporally coordinated. In this review, we discuss our findings and their potential implications.
Collapse
|
11
|
Zhou S, Sternglanz R, Neiman AM. Developmentally regulated internal transcription initiation during meiosis in budding yeast. PLoS One 2017; 12:e0188001. [PMID: 29136644 PMCID: PMC5685637 DOI: 10.1371/journal.pone.0188001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Sporulation of budding yeast is a developmental process in which cells undergo meiosis to generate stress-resistant progeny. The dynamic nature of the budding yeast meiotic transcriptome has been well established by a number of genome-wide studies. Here we develop an analysis pipeline to systematically identify novel transcription start sites that reside internal to a gene. Application of this pipeline to data from a synchronized meiotic time course reveals over 40 genes that display specific internal initiations in mid-sporulation. Consistent with the time of induction, motif analysis on upstream sequences of these internal transcription start sites reveals a significant enrichment for the binding site of Ndt80, the transcriptional activator of middle sporulation genes. Further examination of one gene, MRK1, demonstrates the Ndt80 binding site is necessary for internal initiation and results in the expression of an N-terminally truncated protein isoform. When the MRK1 paralog RIM11 is downregulated, the MRK1 internal transcript promotes efficient sporulation, indicating functional significance of the internal initiation. Our findings suggest internal transcriptional initiation to be a dynamic, regulated process with potential functional impacts on development.
Collapse
Affiliation(s)
- Sai Zhou
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, United States of America
| | - Rolf Sternglanz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Chen J, Tresenrider A, Chia M, McSwiggen DT, Spedale G, Jorgensen V, Liao H, van Werven FJ, Ünal E. Kinetochore inactivation by expression of a repressive mRNA. eLife 2017; 6:e27417. [PMID: 28906249 PMCID: PMC5655150 DOI: 10.7554/elife.27417] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Differentiation programs such as meiosis depend on extensive gene regulation to mediate cellular morphogenesis. Meiosis requires transient removal of the outer kinetochore, the complex that connects microtubules to chromosomes. How the meiotic gene expression program temporally restricts kinetochore function is unknown. We discovered that in budding yeast, kinetochore inactivation occurs by reducing the abundance of a limiting subunit, Ndc80. Furthermore, we uncovered an integrated mechanism that acts at the transcriptional and translational level to repress NDC80 expression. Central to this mechanism is the developmentally controlled transcription of an alternate NDC80 mRNA isoform, which itself cannot produce protein due to regulatory upstream ORFs in its extended 5' leader. Instead, transcription of this isoform represses the canonical NDC80 mRNA expression in cis, thereby inhibiting Ndc80 protein synthesis. This model of gene regulation raises the intriguing notion that transcription of an mRNA, despite carrying a canonical coding sequence, can directly cause gene repression.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Amy Tresenrider
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - David T McSwiggen
- Department of Molecular and Cell Biology, Li Ka Shing CenterUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Victoria Jorgensen
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Hanna Liao
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Elçin Ünal
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- The Paul F. Glenn Center for Aging ResearchUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
13
|
Chia M, van Werven FJ. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast. G3 (BETHESDA, MD.) 2016; 6:3553-3560. [PMID: 27605516 PMCID: PMC5100854 DOI: 10.1534/g3.116.034983] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation, IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here, we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for 2 hr, the vast majority of cells exhibit synchrony during premeiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate-containing medium, but can be achieved in cells grown in rich medium until saturation. Our system requires solely IME1, because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be combined easily with other stage-specific synchronization methods, and thereby applied to study specific stages of sporulation, or the complete sporulation program.
Collapse
Affiliation(s)
- Minghao Chia
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| |
Collapse
|
14
|
Weidberg H, Moretto F, Spedale G, Amon A, van Werven FJ. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability. PLoS Genet 2016; 12:e1006075. [PMID: 27272508 PMCID: PMC4894626 DOI: 10.1371/journal.pgen.1006075] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.
Collapse
Affiliation(s)
- Hilla Weidberg
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gianpiero Spedale
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Folkert J. van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
15
|
Ichikawa Y, Morohashi N, Tomita N, Mitchell AP, Kurumizaka H, Shimizu M. Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo. Biochem Biophys Res Commun 2016; 476:57-62. [PMID: 27208777 DOI: 10.1016/j.bbrc.2016.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome-depleted regions (NDRs) (also called nucleosome-free regions or NFRs) are often found in the promoter regions of many yeast genes, and are formed by multiple mechanisms, including the binding of activators and enhancers, the actions of chromatin remodeling complexes, and the specific DNA sequences themselves. However, it remains unclear whether NDR formation per se is essential for transcriptional activation. Here, we examined the relationship between nucleosome organization and gene expression using a defined yeast reporter system, consisting of the CYC1 minimal core promoter and the lacZ gene. We introduced simple repeated sequences that should be either incorporated in nucleosomes or excluded from nucleosomes in the site upstream of the TATA boxes. The (CTG)12, (GAA)12 and (TGTAGG)6 inserts were incorporated into a positioned nucleosome in the core promoter region, and did not affect the reporter gene expression. In contrast, the insertion of (CGG)12, (TTAGGG)6, (A)34 or (CG)8 induced lacZ expression by 10-20 fold. Nucleosome mapping analyses revealed that the inserts that induced the reporter gene expression prevented nucleosome formation, and created an NDR upstream of the TATA boxes. Thus, our results demonstrated that NDR formation dictated by DNA sequences is sufficient for transcriptional activation from the core promoter in vivo.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nobuyuki Morohashi
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Nobuyuki Tomita
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mitsuhiro Shimizu
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan.
| |
Collapse
|
16
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
17
|
Sarkar S, Dalgaard JZ, Millar JBA, Arumugam P. The Rim15-endosulfine-PP2ACdc55 signalling module regulates entry into gametogenesis and quiescence via distinct mechanisms in budding yeast. PLoS Genet 2014; 10:e1004456. [PMID: 24968058 PMCID: PMC4072559 DOI: 10.1371/journal.pgen.1004456] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/09/2014] [Indexed: 01/31/2023] Open
Abstract
Quiescence and gametogenesis represent two distinct survival strategies in response to nutrient starvation in budding yeast. Precisely how environmental signals are sensed by yeast cells to trigger quiescence and gametogenesis is not fully understood. A conserved signalling module consisting of Greatwall kinase, Endosulfine and Protein Phosphatase PP2ACdc55 proteins regulates entry into mitosis in Xenopus egg extracts and meiotic maturation in flies. We report here that an analogous signalling module consisting of the serine-threonine kinase Rim15, the Endosulfines Igo1 and Igo2 and the Protein Phosphatase PP2ACdc55, regulates entry into both quiescence and gametogenesis in budding yeast. PP2ACdc55 inhibits entry into gametogenesis and quiescence. Rim15 promotes entry into gametogenesis and quiescence by converting Igo1 into an inhibitor of PP2ACdc55 by phosphorylating at a conserved serine residue. Moreover, we show that the Rim15-Endosulfine-PP2ACdc55 pathway regulates entry into quiescence and gametogenesis by distinct mechanisms. In addition, we show that Igo1 and Igo2 are required for pre-meiotic autophagy but the lack of pre-meiotic autophagy is insufficient to explain the sporulation defect of igo1Δ igo2Δ cells. We propose that the Rim15-Endosulfine-PP2ACdc55 signalling module triggers entry into quiescence and gametogenesis by regulating dephosphorylation of distinct substrates. The fundamental property of a cell is to sense changes in the environment and then respond in a way that maximizes its chances of survival. When diploid budding yeast cells are subjected to complete nutrient starvation they have two possible fates, namely quiescence and gametogenesis. Quiescent cells have reduced rates of transcription and translation and increased stress tolerance. Gametogenesis results in production of haploid spores that can survive for long periods of time. In this paper, we report a signalling module that regulates entry into both quiescence and gametogenesis in budding yeast. The module consists of three molecular components namely a serine-threonine kinase Rim15, a phosphatase PP2ACdc55 and a conserved protein called as endosulfine. PP2ACdc55 negatively regulates entry into gametogenesis and quiescence. Upon nutrient starvation, Rim15 becomes active and phosphorylates endosulfine. This converts endosulfine to an inhibitor of PP2ACdc55 and thereby leading to entry into quiescence and gametogenesis. Remarkably, an analogous module consisting of Greatwall kinase, PP2A-B55δ and endosulfine regulates entry into mitosis in frog egg extracts and meiotic maturation in flies suggesting that this signalling module is highly conserved and co-opted during evolution to control distinct biological processes in different organisms.
Collapse
Affiliation(s)
- Sourav Sarkar
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jacob Z. Dalgaard
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jonathan B. A. Millar
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Prakash Arumugam
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Mol Cell Biol 2010; 30:5514-30. [PMID: 20876298 DOI: 10.1128/mcb.00390-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudohyphal growth and meiosis are two differentiation responses to nitrogen starvation of diploid Saccharomyces cerevisiae. Nitrogen starvation in the presence of fermentable carbon sources is thought to induce pseudohyphal growth, whereas nitrogen and sugar starvation induces meiosis. In contrast to the genetic background routinely used to study pseudohyphal growth (Σ1278b), nonfermentable carbon sources stimulate pseudohyphal growth in the efficiently sporulating strain SK1. Pseudohyphal SK1 cells can exit pseudohyphal growth to complete meiosis. Two stimulators of meiosis, Ime1 and Ime2, are required for pseudohyphal growth of SK1 cells in the presence of nonfermentable carbon sources. Epistasis analysis suggests that Ime1 and Ime2 act in the same order in pseudohyphal growth as in meiosis. The different behaviors of strains SK1 and Σ1278b are in part attributable to differences in cyclic AMP (cAMP) signaling. In contrast to Σ1278b cells, hyperactivation of cAMP signaling using constitutively active Ras2(G19V) inhibited pseudohyphal growth in SK1 cells. Our data identify the SK1 genetic background as an alternative genetic background for the study of pseudohyphal growth and suggest an overlap between signaling pathways controlling pseudohyphal growth and meiosis. Based on these findings, we propose to include exit from pseudohyphal growth and entry into meiosis in the life cycle of S. cerevisiae.
Collapse
|
20
|
Fungal meiosis and parasexual reproduction--lessons from pathogenic yeast. Curr Opin Microbiol 2009; 12:599-607. [PMID: 19892588 DOI: 10.1016/j.mib.2009.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/09/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
Meiosis is an integral part of sexual reproduction in eukaryotic species. It performs the dual functions of halving the genetic content in the cell, as well as increasing genetic diversity by promoting recombination between chromosome homologs. Despite extensive studies of meiosis in model yeast, it is now apparent that both the regulation of meiosis and the machinery mediating recombination have significantly diverged, even between closely related species. To highlight this, we discuss new studies on sex in Candida species, a diverse collection of hemiascomycetes that are related to Saccharomyces cerevisiae and are important human pathogens. These provide new insights into the most conserved, as well as the most plastic, aspects of meiosis, meiotic recombination, and related parasexual processes.
Collapse
|
21
|
Govin J, Berger SL. Genome reprogramming during sporulation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:425-32. [PMID: 19412896 DOI: 10.1387/ijdb.082687jg] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When environmental conditions compromise survival, single celled organisms, such as the budding yeast S. cerevisiae, induce and complete a differentiation program called sporulation. The first step consists of meiosis, which generates genetic diversity within the eventual haploid cells. The post-meiotic maturation stage reinforces protective barriers, such as the spore wall, against deleterious external conditions. In later stages of sporulation, the spore nucleus becomes highly compacted, likely sharing certain characteristics with the metazoan male gamete, the spermatozoon. The sporulation differentiation program involves many chromatin-related events, including execution of a precise transcription program involving more than one thousand genes. Here, we review how chromatin structure and genome reprogramming regulate the sporulation transcription program, and how post-meiotic events reorganize spore chromatin.
Collapse
Affiliation(s)
- Jerome Govin
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA19104, USA
| | | |
Collapse
|
22
|
Goemann B, Wingender E, Potapov AP. An approach to evaluate the topological significance of motifs and other patterns in regulatory networks. BMC SYSTEMS BIOLOGY 2009; 3:53. [PMID: 19454001 PMCID: PMC2694767 DOI: 10.1186/1752-0509-3-53] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 05/19/2009] [Indexed: 01/07/2023]
Abstract
BACKGROUND The identification of network motifs as statistically over-represented topological patterns has become one of the most promising topics in the analysis of complex networks. The main focus is commonly made on how they operate by means of their internal organization. Yet, their contribution to a network's global architecture is poorly understood. However, this requires switching from the abstract view of a topological pattern to the level of its instances. Here, we show how a recently proposed metric, the pairwise disconnectivity index, can be adapted to survey if and which kind of topological patterns and their instances are most important for sustaining the connectivity within a network. RESULTS The pairwise disconnectivity index of a pattern instance quantifies the dependency of the pairwise connections between vertices in a network on the presence of this pattern instance. Thereby, it particularly considers how the coherence between the unique constituents of a pattern instance relates to the rest of a network. We have applied the method exemplarily to the analysis of 3-vertex topological pattern instances in the transcription networks of a bacteria (E. coli), a unicellular eukaryote (S. cerevisiae) and higher eukaryotes (human, mouse, rat). We found that in these networks only very few pattern instances break lots of the pairwise connections between vertices upon the removal of an instance. Among them network motifs do not prevail. Rather, those patterns that are shared by the three networks exhibit a conspicuously enhanced pairwise disconnectivity index. Additionally, these are often located in close vicinity to each other or are even overlapping, since only a small number of genes are repeatedly present in most of them. Moreover, evidence has gathered that the importance of these pattern instances is due to synergistic rather than merely additive effects between their constituents. CONCLUSION A new method has been proposed that enables to evaluate the topological significance of various connected patterns in a regulatory network. Applying this method onto transcriptional networks of three largely distinct organisms we could prove that it is highly suitable to identify most important pattern instances, but that neither motifs nor any pattern in general appear to play a particularly important role per se. From the results obtained so far, we conclude that the pairwise disconnectivity index will most likely prove useful as well in identifying other (higher-order) pattern instances in transcriptional and other networks.
Collapse
Affiliation(s)
- Björn Goemann
- Department of Bioinformatics, Medical School, Georg August University of Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany
| | - Edgar Wingender
- Department of Bioinformatics, Medical School, Georg August University of Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany
- BIOBASE GmbH, Halchtersche Strasse 33, D-38304 Wolfenbüttel, Germany
| | - Anatolij P Potapov
- Department of Bioinformatics, Medical School, Georg August University of Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany
| |
Collapse
|
23
|
The Rpd3/HDAC complex is present at the URS1 cis-element with hyperacetylated histone H3. Biosci Biotechnol Biochem 2009; 73:378-84. [PMID: 19202282 DOI: 10.1271/bbb.80621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In eukaryotes, the hypoacetylated state of histone N-terminal lysines at many gene-promoters, which is created by histone deacetylases (HDACs), is changed to the hyperacetylated state by the function of histone acetyltransferases (HATs) upon transcription activation. Although much insight has been obtained to date as to how modification of the histone tail regulates gene expression, little is known about how the transition between the unmodified and modified states takes place. In Saccharomyces cerevisiae, the HDAC complex containing Rpd3 (Rpd3L) represses the transcription of several sets of genes through the URS1 cis-element. We found that the histone H3 acetylation level at the URS1 of seven genes (INO1, CAT2, ACS1, YAT1, RIM4, CRC1, and SIP4) was elevated in the presence of Rpd3/HDAC in growth in acetate-containing medium (YPA), suggesting that a mechanism that regulates HDAC activity is present in this organism. The biological significance of this phenomenon is discussed below.
Collapse
|
24
|
Jani NM, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PIS1 gene by inositol and the pleiotropic regulator, Ume6p. Mol Microbiol 2008; 70:1529-39. [PMID: 19019152 DOI: 10.1111/j.1365-2958.2008.06506.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, transcription of most of the phospholipid biosynthetic genes (e.g. INO1, CHO1, CHO2 and OPI3) is repressed by growth in the presence of inositol and choline and derepressed in their absence. This regulation requires the Ino2p and Ino4p activators and the Opi1p repressor. The PIS1 structural gene is required for the synthesis of the essential lipid phosphatidylinositol. Previous reports show that PIS1 expression is uncoupled from inositol/choline regulation, but is regulated by carbon source, hypoxia and zinc. However, in this study we found that the expression of PIS1 is induced twofold by inositol. This regulation did not require Ino2p and Ino4p, although Ino4p was required for full expression. Ino4p is a basic helix-loop-helix protein that requires a binding partner. Curiously, none of the other basic helix-loop-helix proteins affected PIS1 expression. Inositol induction did require another general regulator of phospholipid biosynthesis, Ume6p. Ume6p was found to be a positive regulator of PIS1 gene expression. Ume6p, and several associated factors, were required for inositol-mediated induction and chromatin immunoprecipitation analysis showed that Ume6p directly regulates PIS1 expression. Thus, we demonstrate novel regulation of the PIS1 gene by Ume6p.
Collapse
Affiliation(s)
- Niketa M Jani
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
25
|
Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae. Biochem J 2008; 414:177-87. [PMID: 18687061 DOI: 10.1042/bj20080923] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The comparatively simple eukaryote Saccharomyces cerevisiae is composed of some 6000 individual genes. Specific sets of these genes can be transcribed co-ordinately in response to particular metabolic signals. The resultant integrated response to nutrient challenge allows the organism to survive and flourish in a variety of environmental conditions while minimal energy is expended upon the production of unnecessary proteins. The Zn(II)2Cys6 family of transcriptional regulators is composed of some 46 members in S. cerevisiae and many of these have been implicated in mediating transcriptional responses to specific nutrients. Gal4p, the archetypical member of this family, is responsible for the expression of the GAL genes when galactose is utilized as a carbon source. The regulation of Gal4p activity has been studied for many years, but we are still uncovering both nuances and fundamental control mechanisms that impinge on its function. In the present review, we describe the latest developments in the regulation of GAL gene expression and compare the mechanisms employed here with the molecular control of other Zn(II)2Cys6 transcriptional regulators. This reveals a wide array of protein-protein, protein-DNA and protein-nutrient interactions that are employed by this family of regulators.
Collapse
|
26
|
Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, López-Ribot JL, Kadosh D. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 2008; 19:1354-65. [PMID: 18216277 PMCID: PMC2291399 DOI: 10.1091/mbc.e07-11-1110] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/03/2008] [Accepted: 01/10/2008] [Indexed: 11/11/2022] Open
Abstract
The specific ability of the major human fungal pathogen Candida albicans, as well as many other pathogenic fungi, to extend initial short filaments (germ tubes) into elongated hyphal filaments is important for a variety of virulence-related processes. However, the molecular mechanisms that control hyphal extension have remained poorly understood for many years. We report the identification of a novel C. albicans transcriptional regulator, UME6, which is induced in response to multiple host environmental cues and is specifically important for hyphal extension. Although capable of forming germ tubes, the ume6Delta/ume6Delta mutant exhibits a clear defect in hyphal extension both in vitro and during infection in vivo and is attenuated for virulence in a mouse model of systemic candidiasis. We also show that UME6 is an important downstream component of both the RFG1-TUP1 and NRG1-TUP1 filamentous growth regulatory pathways, and we provide evidence to suggest that Nrg1 and Ume6 function together by a negative feedback loop to control the level and duration of filament-specific gene expression in response to inducing conditions. Our results suggest that hyphal extension is controlled by a specific transcriptional regulatory mechanism and is correlated with the maintenance of high-level expression of genes in the C. albicans filamentous growth program.
Collapse
Affiliation(s)
- Mohua Banerjee
- *Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Delma S. Thompson
- *Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Anna Lazzell
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Patricia L. Carlisle
- *Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Christopher Pierce
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Carlos Monteagudo
- Department of Pathology, Universidad de Valencia, 46010 Valencia, Spain
| | - José L. López-Ribot
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - David Kadosh
- *Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| |
Collapse
|
27
|
Ramírez M, Ambrona J. Construction of sterile ime1Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature. Appl Environ Microbiol 2008; 74:2129-34. [PMID: 18245242 PMCID: PMC2292588 DOI: 10.1128/aem.01840-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/24/2008] [Indexed: 11/20/2022] Open
Abstract
The use of new transgenic yeasts in industry carries a potential environmental risk because their dispersal, introducing new artificial genetic combinations into nature, could have unpredictable consequences. This risk could be avoided by using sterile transgenic yeasts that are unable to sporulate and mate with wild yeasts. These sterile yeasts would not survive the annual cyclic harvesting periods, being condemned to disappear in the wineries and vineyards in less than a year. We have constructed new ime1Delta wine yeasts that are unable to sporulate and mate, bear easy-to-detect genetic markers, and quickly disappear in grape must fermentation immediately after sporulation of the yeast population. These sterile yeasts maintained the same biotechnological properties as their parent yeasts without any detectable deleterious effect of the ime1Delta mutation. These yeasts are therefore interesting biotechnologically for food industry applications and for genetically modified microorganism environmental monitoring studies.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Microbiología (Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | | |
Collapse
|
28
|
Mallory MJ, Cooper KF, Strich R. Meiosis-specific destruction of the Ume6p repressor by the Cdc20-directed APC/C. Mol Cell 2007; 27:951-61. [PMID: 17889668 PMCID: PMC2034308 DOI: 10.1016/j.molcel.2007.08.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 07/09/2007] [Accepted: 08/24/2007] [Indexed: 11/22/2022]
Abstract
Meiotic development in yeast requires the coordinated induction of transient waves of gene transcription. The present study investigates the regulation of Ume6p, a mitotic repressor of the "early" class of meiosis-specific genes. Western blot analysis revealed that Ume6p is destroyed early in meiosis by Cdc20p, an activator of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. This control appears direct as Cdc20p and Ume6p associate in vivo and APC/C(Cdc20) ubiquitylates Ume6p in vitro. Inactivating Cdc20p, or stabilizing Ume6p through mutation, prevented meiotic gene transcription and meiotic progression. During mitotic cell division, Ume6p is protected from destruction by protein kinase A phosphorylation of Cdc20p. Complete elimination of Ume6p in meiotic cells requires association with the meiotic inducer Ime1p. These results indicate that Ume6p degradation is required for normal meiotic gene induction and meiotic progression. These findings demonstrate a direct connection between the transcription machinery and ubiquitin-mediated proteolysis that is developmentally regulated.
Collapse
Affiliation(s)
- Michael J. Mallory
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Katrina F. Cooper
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Randy Strich
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
- *To whom correspondence should be addressed. Two Medical Center Drive, UMDNJ-School of Osteopathic Medicine, Stratford, NJ 08084, Tel: 856 566-6043, FAX: 856 566-6366,
| |
Collapse
|
29
|
Tevzadze GG, Pierce JV, Esposito RE. Genetic evidence for a SPO1-dependent signaling pathway controlling meiotic progression in yeast. Genetics 2006; 175:1213-27. [PMID: 17179081 PMCID: PMC1840080 DOI: 10.1534/genetics.106.069252] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.
Collapse
Affiliation(s)
- Gela G Tevzadze
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
30
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
31
|
Chen M, Hancock LC, Lopes JM. Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:310-21. [PMID: 16854618 DOI: 10.1016/j.bbalip.2006.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 12/26/2022]
Abstract
The last several years have been witness to significant developments in understanding transcriptional regulation of the yeast phospholipid structural genes. The response of most phospholipid structural genes to inositol is now understood on a mechanistic level. The roles of specific activators and repressors are also well established. The knowledge of specific regulatory factors that bind the promoters of phospholipid structural genes serves as a foundation for understanding the role of chromatin modification complexes. Collectively, these findings present a complex picture for transcriptional regulation of the phospholipid biosynthetic genes. The INO1 gene is an ideal example of the complexity of transcriptional control and continues to serve as a model for studying transcription in general. Furthermore, transcription of the regulatory genes is also subject to complex and essential regulation. In addition, databases resulting from a plethora of genome-wide studies have identified regulatory signals that control one of the essential phospholipid biosynthetic genes, PIS1. These databases also provide significant clues for other regulatory signals that may affect phospholipid biosynthesis. Here, we have tried to present a complete summary of the transcription factors and mechanisms that regulate the phospholipid biosynthetic genes.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | |
Collapse
|
32
|
Carrozza MJ, Florens L, Swanson SK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL. Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. ACTA ACUST UNITED AC 2005; 1731:77-87; discussion 75-6. [PMID: 16314178 DOI: 10.1016/j.bbaexp.2005.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/21/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Histone deacetylation by Saccharomyces cerevisiae Rpd3 represses genes regulated by the Ash1 and Ume6 DNA-binding proteins. Rpd3 exists in a small 0.6 MDa (Rpd3S) and large 1.2 MDa (Rpd3L) corepressor complex. In this report, we identify by mass spectrometry and MudPIT the subunits of the Rpd3L complex. These included Rpd3, Sds3, Pho23, Dep1, Rxt2, Sin3, Ash1, Ume1, Sap30, Cti6, Rxt3 and Ume6. Dep1 and Sds3, unique components of Rpd3L, were required for Rpd3L integrity and HDAC activity. Similar to RPD3, deletion of DEP1 enhanced telomeric silencing and derepressed INO1. Two sequence-specific repressors, Ash1 and Ume6, were stably associated with Rpd3L. While both of these proteins localized to the INO1 and HO promoters, the repression of these genes were dependent only on Ume6 and Ash1, respectively. Thus, the Rpd3L complex is directly recruited to specific promoters through multiple integral DNA-binding proteins.
Collapse
Affiliation(s)
- Michael J Carrozza
- Stowers Institute for Medical Research1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Z, Reese JC. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 2005; 25:7399-411. [PMID: 16107689 PMCID: PMC1190298 DOI: 10.1128/mcb.25.17.7399-7411.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In Saccharomyces cerevisiae, the repressor Crt1 and the global corepressor Ssn6-Tup1 repress the DNA damage-inducible ribonucleotide reductase (RNR) genes. Initiation of DNA damage signals causes the release of Crt1 and Ssn6-Tup1 from the promoter, coactivator recruitment, and derepression of transcription, indicating that Crt1 plays a crucial role in the switch between gene repression and activation. Here we have mapped the functional domains of Crt1 and identified two independent repression domains and a region required for gene activation. The N terminus of Crt1 is the major repression domain, it directly binds to the Ssn6-Tup1 complex, and its repression activities are dependent upon Ssn6-Tup1 and histone deacetylases (HDACs). In addition, we identified a C-terminal repression domain, which is independent of Ssn6-Tup1 and HDACs and functions at native genes in vivo. Furthermore, we show that TFIID and SWI/SNF bind to a region within the N terminus of Crt1, overlapping with but distinct from the Ssn6-Tup1 binding and repression domain, suggesting that Crt1 may have activator functions. Crt1 mutants were constructed to dissect its activator and repressor functions. All of the mutants were competent for repression of the DNA damage-inducible genes, but a majority were "derepression-defective" mutants. Further characterization of these mutants indicated that they are capable of receiving DNA damage signals and releasing the Ssn6-Tup1 complex from the promoter but are selectively impaired for TFIID and SWI/SNF recruitment. These results imply a two-step activation model of the DNA damage-inducible genes and that Crt1 functions as a signal-dependent dual-transcription activator and repressor that acts in a transient manner.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | |
Collapse
|
34
|
Doniger SW, Huh J, Fay JC. Identification of functional transcription factor binding sites using closely related Saccharomyces species. Genome Res 2005; 15:701-9. [PMID: 15837806 PMCID: PMC1088298 DOI: 10.1101/gr.3578205] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Comparative genomics provides a rapid means of identifying functional DNA elements by their sequence conservation between species. Transcription factor binding sites (TFBSs) may constitute a significant fraction of these conserved sequences, but the annotation of specific TFBSs is complicated by the fact that these short, degenerate sequences may frequently be conserved by chance rather than functional constraint. To identify intergenic sequences that function as TFBSs, we calculated the probability of binding site conservation between Saccharomyces cerevisiae and its two closest relatives under a neutral model of evolution. We found that this probability is <5% for 134 of 163 transcription factor binding motifs, implying that we can reliably annotate binding sites for the majority of these transcription factors by conservation alone. Although our annotation relies on a number of assumptions, mutations in five of five conserved Ume6 binding sites and three of four conserved Ndt80 binding sites show Ume6- and Ndt80-dependent effects on gene expression. We also found that three of five unconserved Ndt80 binding sites show Ndt80-dependent effects on gene expression. Together these data imply that although sequence conservation can be reliably used to predict functional TFBSs, unconserved sequences might also make a significant contribution to a species' biology.
Collapse
Affiliation(s)
- Scott W Doniger
- Computational Biology Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
35
|
Rubin-Bejerano I, Sagee S, Friedman O, Pnueli L, Kassir Y. The in vivo activity of Ime1, the key transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae, is inhibited by the cyclic AMP/protein kinase A signal pathway through the glycogen synthase kinase 3-beta homolog Rim11. Mol Cell Biol 2004; 24:6967-79. [PMID: 15282298 PMCID: PMC479714 DOI: 10.1128/mcb.24.16.6967-6979.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phosphorylation is the main mode by which signals are transmitted to key regulators of developmental pathways. The glycogen synthase kinase 3 family plays pivotal roles in the development and well-being of all eukaryotic organisms. Similarly, the budding yeast homolog Rim11 is essential for the exit of diploid cells from the cell cycle and for entry into the meiotic developmental pathway. In this report we show that in vivo, in cells grown in a medium promoting vegetative growth with acetate as the sole carbon source (SA medium), Rim11 phosphorylates Ime1, the master transcriptional activator required for entry into the meiotic cycle and for the transcription of early meiosis-specific genes. We demonstrate that in the presence of glucose, the kinase activity of Rim11 is inhibited. This inhibition could be due to phosphorylation on Ser-5, Ser-8, and/or Ser-12 because in the rim11S5AS8AS12A mutant, Ime1 is incorrectly phosphorylated in the presence of glucose and cells undergo sporulation. We further show that this nutrient signal is transmitted to Rim11 and consequently to Ime1 by the cyclic AMP/protein kinase A signal transduction pathway. Ime1 is phosphorylated in SA medium on at least two residues, Tyr-359 and Ser-302 and/or Ser-306. Ser-302 and Ser-306 are part of a consensus site for the mammalian homolog of Rim11, glycogen synthase kinase 3-beta. Phosphorylation on Tyr-359 but not Ser-302 or Ser-306 is essential for the transcription of early meiosis-specific genes and sporulation. We show that Tyr-359 is phosphorylated by Rim11.
Collapse
Affiliation(s)
- Ifat Rubin-Bejerano
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | | | |
Collapse
|
36
|
Schröder M, Clark R, Liu CY, Kaufman RJ. The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase. EMBO J 2004; 23:2281-92. [PMID: 15141165 PMCID: PMC419911 DOI: 10.1038/sj.emboj.7600233] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 04/19/2004] [Indexed: 01/08/2023] Open
Abstract
In Saccharomyces cerevisiae, splicing of HAC1 mRNA is initiated in response to the accumulation of unfolded proteins in the endoplasmic reticulum by the transmembrane kinase-endoribonuclease Ire1p. Spliced Hac1p (Hac1ip) is a negative regulator of differentiation responses to nitrogen starvation, pseudohyphal growth, and meiosis. Here we show that the RPD3-SIN3 histone deacetylase complex (HDAC), its catalytic activity, recruitment of the HDAC to the promoters of early meiotic genes (EMGs) by Ume6p, and the Ume6p DNA-binding site URS1 in the promoters of EMGs are required for nitrogen-mediated negative regulation of EMGs and meiosis by Hac1ip. Co-immunoprecipitation experiments demonstrated that Hac1ip can interact with the HDAC in vivo. Systematic analysis of double deletion strains revealed that HAC1 is a peripheral component of the HDAC. In summary, nitrogen-induced synthesis of Hac1ip and association of Hac1ip with the HDAC are physiological events in the regulation of EMGs by nutrients. These data also define for the first time a gene class that is under negative control by the UPR, and provide the framework for a novel mechanism through which bZIP proteins repress transcription.
Collapse
Affiliation(s)
- Martin Schröder
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Robert Clark
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Chuan Yin Liu
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Randal J Kaufman
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G. Transcriptional regulation of meiosis in budding yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:111-71. [PMID: 12722950 DOI: 10.1016/s0074-7696(05)24004-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.
Collapse
Affiliation(s)
- Yona Kassir
- Department of Biology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Shimizu M, Takahashi K, Lamb TM, Shindo H, Mitchell AP. Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Res 2003; 31:3033-7. [PMID: 12799429 PMCID: PMC162329 DOI: 10.1093/nar/gkg425] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ume6p plays essential roles in the regulation of early meiotic genes in Saccharomyces cerevisiae. Ume6p exerts repression via recruitment of the Sin3p-Rpd3p histone deacetylase and Isw2p chromatin remodeling complexes. The transcriptional step that is ultimately inhibited by Ume6p is unknown. Here, in vivo footprinting shows that transcriptional activators Hap1p and Abf1p occupy upstream sites in repressed and derepressed promoters. In contrast, chromatin immunoprecipitation shows that TATA box-binding protein (TBP)- promoter binding is reduced upon repression of HOP1. Fusion of TBP to a zinc cluster DNA binding domain relieves repression at a HOP1 promoter modified to include the zinc cluster target site. We suggest that TBP binding is inhibited through chromatin modification by the Sin3p-Rpd3p and Isw2p complexes recruited by Ume6p.
Collapse
Affiliation(s)
- Mitsuhiro Shimizu
- Department of Chemistry, Meisei University, Hino, Tokyo 191-8506, Japan.
| | | | | | | | | |
Collapse
|
39
|
Honigberg SM, Purnapatre K. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 2003; 116:2137-47. [PMID: 12730290 DOI: 10.1242/jcs.00460] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Diploid yeast, like most eukaryotes, can undergo meiotic differentiation to form haploid gametes. Meiotic differentiation and cell growth (proliferation) are mutually exclusive programs, and in yeast the switch between growth and meiosis is controlled by nutritional signals. The signaling pathways that mediate nutritional controls on meiotic initiation fall into three broad classes: those that respond to nutrient starvation, those that respond to non-fermentable carbon sources, and those that respond to glucose. At the onset of meiosis, nutritional signaling pathways converge on transcriptional regulation of two genes: IME1, which encodes a transcription factor; and IME2, which encodes a protein kinase. Transcription of IME1 and IME2 trigger initiation of meiosis, and the expression of these two genes is linked with one other, with expression of later meiotic genes and with early meiotic events such as DNA replication. In addition, the signaling pathways that control IME1 and IME2 expression are themselves integrated through a variety of mechanisms. Thus the signal network that controls the switch from growth to meiotic differentiation provides a signaling code that translates different combinations of extracellular signals into appropriate cellular responses.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO 64112, USA.
| | | |
Collapse
|
40
|
Kaadige MR, Lopes JM. Opi1p, Ume6p and Sin3p control expression from the promoter of the INO2 regulatory gene via a novel regulatory cascade. Mol Microbiol 2003; 48:823-32. [PMID: 12694624 DOI: 10.1046/j.1365-2958.2003.03472.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The INO2 gene of Saccharomyces cerevisiae is required for expression of most of the phospholipid biosynthetic genes. INO2 expression is regulated by a complex cascade that includes autoregulation, Opi1p-mediated repression and Ume6p-mediated activation. To screen for mutants with altered INO2 expression directly, we constructed an INO2-HIS3 reporter that provides a plate assay for INO2 promoter activity. This reporter was used to isolate mutants (dim1) that fail to repress expression of the INO2 gene in an otherwise wild-type strain. The dim1 mutants contain mutations in the OPI1 gene. To define further the mechanism for Ume6p regulation of INO2 expression, we isolated suppressors (rum1, 2, 3) of the ume6Delta mutation that overexpress the INO2-HIS3 gene. Two of the rum mutant groups contain mutations in the OPI1 and SIN3 genes showing that opi1 and sin3 mutations are epistatic to the ume6Delta mutation. These results are surprising given that Ume6p, Sin3p and Rpd3p are known to form a complex that represses the expression of a diverse set of yeast genes. This prompted us to examine the effect of sin3Delta and rpd3Delta mutants on INO2-cat expression. Surprisingly, the sin3Delta allele overexpressed INO2-cat, whereas the rpd3Delta mutant had no effect. We also show that the UME6 gene does not affect the expression of an OPI1-cat reporter. This suggests that Ume6p does not regulate INO2 expression indirectly by regulating OPI1 expression.
Collapse
Affiliation(s)
- Mohan R Kaadige
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
41
|
Mosley AL, Lakshmanan J, Aryal BK, Ozcan S. Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J Biol Chem 2003; 278:10322-7. [PMID: 12527758 DOI: 10.1074/jbc.m212802200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose, the most abundant carbon and energy source, regulates the expression of genes required for its own efficient metabolism. In the yeast Saccharomyces cerevisiae, glucose induces the expression of the hexose transporter (HXT) genes by modulating the activity of the transcription factor Rgt1 that functions as a repressor when glucose is absent. However, in the presence of high concentrations of glucose, Rgt1 is converted from a repressor to an activator and is required for maximal induction of HXT1 gene expression. We report that Rgt1 binds to the HXT1 promoter only in the absence of glucose, suggesting that Rgt1 increases HXT1 gene expression at high levels of glucose by an indirect mechanism. It is likely that Rgt1 stimulates the expression of an activator of the HXT1 gene at high concentrations of glucose. In addition, we demonstrate that Rgt1 becomes hyperphosphorylated in response to high glucose levels and that this phosphorylation event is required for Rgt1 to activate transcription. Furthermore, Rgt1 lacks the glucose-mediated phosphorylation in the snf3 rgt2 and grr1 mutants, which are defective in glucose induction of HXT gene expression. In these mutants, Rgt1 behaves as a constitutive repressor independent of the carbon source. We conclude that phosphorylation of Rgt1 in response to glucose is required to abolish the Rgt1-mediated repression of the HXT genes and to convert Rgt1 from a transcriptional repressor to an activator.
Collapse
Affiliation(s)
- Amber L Mosley
- Department of Molecular & Cellular Biochemistry, Chandler Medical Center, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
42
|
Williams RM, Primig M, Washburn BK, Winzeler EA, Bellis M, Sarrauste de Menthiere C, Davis RW, Esposito RE. The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc Natl Acad Sci U S A 2002; 99:13431-6. [PMID: 12370439 PMCID: PMC129690 DOI: 10.1073/pnas.202495299] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ume6 transcription factor in yeast is known to both repress and activate expression of diverse genes during growth and meiotic development. To obtain a more complete profile of the functions regulated by this protein, microarray analysis was used to examine transcription in wild-type and ume6Delta diploids during vegetative growth in glucose and acetate. Two different genetic backgrounds (W303 and SK1) were examined to identify a core set of strain-independent Ume6-regulated genes. Among genes whose expression is controlled by Ume6 in both backgrounds, 82 contain homologies to the Ume6-binding site (URS1) and are expected to be directly regulated by Ume6. The vast majority of those whose functions are known participate in carbon/nitrogen metabolism and/or meiosis. Approximately half of the Ume6 direct targets are induced during meiosis, with most falling into the early meiotic expression class (cluster 4), and a smaller subset in the middle and later classes (clusters 5-7). Based on these data, we propose that Ume6 serves a unique role in diploid cells, coupling metabolic responses to nutritional cues with the initiation and progression of meiosis. Finally, expression patterns in the two genetic backgrounds suggest that SK1 is better adapted to respiration and W303 to fermentation, which may in part account for the more efficient and synchronous sporulation of SK1.
Collapse
Affiliation(s)
- Roy M Williams
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Blumental-Perry A, Li W, Simchen G, Mitchell AP. Repression and activation domains of RME1p structurally overlap, but differ in genetic requirements. Mol Biol Cell 2002; 13:1709-21. [PMID: 12006664 PMCID: PMC111138 DOI: 10.1091/mbc.01-09-0468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rme1p, a repressor of meiosis in the yeast Saccharomyces cerevisiae, acts as both a transcriptional repressor and activator. Rme1p is a zinc-finger protein with no other homology to any protein of known function. The C-terminal DNA binding domain of Rme1p is essential for function. We find that mutations and progressive deletions in all three zinc fingers can be rescued by fusion of RME1 to the DNA binding domain of another protein. Thus, structural integrity of the zinc fingers is not required for the Rme1p-mediated effects on transcription. Using a series of mutant Rme1 proteins, we have characterized domains responsible for repression and activation. We find that the minimal transcriptional repression and activation domains completely overlap and lie in an 88-amino-acid N-terminal segment (aa 61-148). An additional transcriptional effector determinant lies in the first 31 amino acids of the protein. Notwithstanding the complete overlap between repression and activation domains of Rme1p, we demonstrated a functional difference between repression and activation: Rgr1p and Sin4p are absolutely required for repression but dispensable for activation.
Collapse
|
44
|
Cooper KF, Strich R. Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p is required for efficient induction and execution of meiotic development. EUKARYOTIC CELL 2002; 1:66-74. [PMID: 12455972 PMCID: PMC118056 DOI: 10.1128/ec.01.1.66-74.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast C-type cyclin Ume3p/Srb11p and its cyclin-dependent kinase partner Ume5p/Srb10p repress the transcription of several genes required for meiotic recombination or meiosis I nuclear division. To relieve this repression, Srbllp is destroyed early in meiosis, prior to the first meiotic division. This report identifies two roles for Srb11p in regulating meiotic development. First, SRB11 is required for the normal exit from the mitotic cell cycle prior to meiotic induction. Specifically, mutants lacking SRB11 (srb11delta) uncouple bud growth from chromosome segregation, producing small buds with nuclei. The bud growth defect is most likely due to the failure of srb11delta mutants to reestablish polarized actin fibers at the bud tip following exposure to sporulation medium. Second, Srb11p is required for the efficient execution of meiosis I. srb11delta mutants either exhibited a delay in performing meiosis I and meiosis II or skipped meiosis I entirely. This meiotic defect is not due to the activation of the recombination or spindle assembly checkpoint pathways. However, the expression of several meiotic genes is delayed and reduced in the mutant strains. These results suggest a positive role for Srb10-Srb11p in regulating the transcription program. This model is supported by the finding that overexpression of the meiotic inducer IME2 partially restored the ability of srb11 mutants to perform meiosis I. In conclusion, these findings indicate that Srb11p is required for both entry into and execution of the meiotic program, thus describing multiple roles for a C-type cyclin in the regulation of a developmental pathway.
Collapse
Affiliation(s)
- Katrina F Cooper
- Program for Cell and Developmental Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
45
|
Washburn BK, Esposito RE. Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 2001; 21:2057-69. [PMID: 11238941 PMCID: PMC86811 DOI: 10.1128/mcb.21.6.2057-2069.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The DNA-binding protein Ume6 is required for both repression and activation of meiosis-specific genes, through interaction with the Sin3 corepressor and Rpd3 histone deacetylase and the meiotic activator Ime1. Here we show that fusion of a heterologous activation domain to Ume6 is unable to convert it into a constitutive activator of early meiotic gene transcription, indicating that an additional function is needed to overcome repression at these promoters. Mutations in UME6 allowing the fusion to activate lie in a predicted amphipathic alpha helix and specifically disrupt interaction with Sin3 but not with Teal, an activator of Ty transcription also found to interact with Ume6 in a two-hybrid screen. The mutations cause a loss of repression by Ume6 and precisely identify the Ume6 Sin3-binding domain, which we show interacts with the paired amphipathic helix 2 region of Sin3. Analysis of these mutants indicates that conversion of Ume6 to an activator involves two genetically distinct steps that act to relieve Sin3-mediated repression and provide an activation domain to Ume6. The mutants further demonstrate that premature expression and lack of subsequent rerepression of Ume6-Sin3-regulated genes are not deleterious to meiotic progression and suggest that the essential role of Sin3 in meiosis is independent of Ume6. The model for Ume6 function arising from these studies indicates that Ume6 is similar in many respects to metazoan regulators that utilize Sin3, such as the Myc-Mad-Max system and nuclear hormone receptors, and provides new insights into the control of transcriptional repression and activation by the Ume6-URS1 regulatory complex in yeast.
Collapse
Affiliation(s)
- B K Washburn
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
46
|
Lamb TM, Mitchell AP. Coupling of Saccharomyces cerevisiae early meiotic gene expression to DNA replication depends upon RPD3 and SIN3. Genetics 2001; 157:545-56. [PMID: 11156977 PMCID: PMC1461525 DOI: 10.1093/genetics/157.2.545] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been established that meiotic recombination and chromosome segregation are inhibited when meiotic DNA replication is blocked. Here we demonstrate that early meiotic gene (EMG) expression is also inhibited by a block in replication. Since early meiotic genes are required to promote meiotic recombination and DNA division, the low expression of these genes may contribute to the block in meiotic progression. We have identified three Hur- (HU reduced recombination) mutants that fail to couple meiotic recombination and gene expression with replication. One of these mutations is in RPD3, a gene required to maintain meiotic gene repression in mitotic cells. Complete deletions of RPD3 and the repression adapter SIN3 permitted recombination and early meiotic gene expression when replication was inhibited with hydroxyurea (HU). Biochemical analysis showed that the Rpd3p-Sin3p-Ume6p repression complex does exist in meiotic cells. These observations suggest that repression of early meiotic genes by SIN3 and RPD3 is critical for the normal response to inhibited replication. A second response to inhibited replication has also been discovered. HU-inhibited replication reduced the accumulation of phospho-Ume6p in meiotic cells. Phosphorylation of Ume6p normally promotes interaction with the meiotic activator Ime1p, thereby activating EMG expression. Thus, inhibited replication may also reduce the Ume6p-dependent activation of EMGs. Taken together, our data suggest that both active repression and reduced activation combine to inhibit EMG expression when replication is inhibited.
Collapse
Affiliation(s)
- T M Lamb
- Department of Microbiology and Institute of Cancer Research, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
47
|
Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, Davis RW, Esposito RE. The core meiotic transcriptome in budding yeasts. Nat Genet 2000; 26:415-23. [PMID: 11101837 DOI: 10.1038/82539] [Citation(s) in RCA: 343] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We used high-density oligonucleotide microarrays to analyse the genomes and meiotic expression patterns of two yeast strains, SK1 and W303, that display distinct kinetics and efficiencies of sporulation. Hybridization of genomic DNA to arrays revealed numerous gene deletions and polymorphisms in both backgrounds. The expression analysis yielded approximately 1,600 meiotically regulated genes in each strain, with a core set of approximately 60% displaying similar patterns in both strains. Most of these (95%) are MATa/MATalpha-dependent and are not similarly expressed in near-isogenic meiosis-deficient controls. The transcript profiles correlate with the distribution of defined meiotic promoter elements and with the time of known gene function.
Collapse
Affiliation(s)
- M Primig
- The University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 2000; 103:423-33. [PMID: 11081629 DOI: 10.1016/s0092-8674(00)00134-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ISWI class of chromatin remodeling factors exhibits potent chromatin remodeling activities in vitro. However, the in vivo functions of this class of factors are unknown at a molecular level. We have found that S. cerevisiae Isw2 complex represses transcription of early meiotic genes during mitotic growth in a parallel pathway to Rpd3-Sin3 histone deacetylase complex. This repressor function of lsw2 complex is largely dependent upon Ume6p, which recruits the complex to target genes. Nuclease digestion analyses revealed that lsw2 complex establishes nuclease-inaccessible chromatin structure near the Ume6p binding site in vivo. Based on these findings, we propose a model for the mechanism of transcriptional repression by two distinct chromatin remodeling complexes.
Collapse
MESH Headings
- Binding Sites
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epistasis, Genetic
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Macromolecular Substances
- Meiosis/genetics
- Mitosis/genetics
- Models, Genetic
- Molecular Conformation
- Mutation/genetics
- Nuclease Protection Assays
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Fungal/analysis
- RNA, Fungal/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Response Elements/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- J P Goldmark
- Division of Basic Sciences, Fred Hutchinson Cancer Research Institute, Fred Hutchinson Cancer Research Center and University of Washington, Seattle 98109, USA
| | | | | | | | | |
Collapse
|
49
|
Biggar SR, Crabtree GR. Chemically regulated transcription factors reveal the persistence of repressor-resistant transcription after disrupting activator function. J Biol Chem 2000; 275:25381-90. [PMID: 10801867 DOI: 10.1074/jbc.m002991200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of gene expression often requires that transcription terminates rapidly after destruction, inactivation, or nuclear export of transcription factors. However, the role of transcription factor inactivation in terminating transcription is unclear. We have developed a means of conducting order of addition and co-occupancy experiments in living cells by rapidly exchanging proteins bound to promoters. Using this approach, we found that, following specific disruption of activator function, transcription from active promoters decayed slowly, persisting through multiple cell divisions. This persistent transcriptional activity raised the question of what mechanisms return promoters to inactive states. By exchanging or directing co-occupancy of protein complexes bound to a promoter, we found that the transcriptional inhibitor, Ssn6-Tup1, lost its effectiveness as a repressor following activator dissociation. Similar experiments with another repressor, the histone deacetylase Sin3-Rpd3, reinforced this distinction between repression in the presence and absence of an activator. These results suggest that although repressors such as Ssn6-Tup1 and Sin3-Rpd3 prevent activation of gene expression, other mechanisms of repression return promoters to inactive states following the dissociation or inactivation of a transcriptional activator.
Collapse
Affiliation(s)
- S R Biggar
- Department of Developmental Biology, Stanford University Medical School, CA 94305, USA
| | | |
Collapse
|
50
|
Elkhaimi M, Kaadige MR, Kamath D, Jackson JC, Biliran H, Lopes JM. Combinatorial regulation of phospholipid biosynthetic gene expression by the UME6, SIN3 and RPD3 genes. Nucleic Acids Res 2000; 28:3160-7. [PMID: 10931932 PMCID: PMC108424 DOI: 10.1093/nar/28.16.3160] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Revised: 05/18/2000] [Accepted: 06/21/2000] [Indexed: 12/18/2022] Open
Abstract
The Ume6p-Sin3p-Rpd3p complex negatively regulates expression of genes containing a Ume6p binding site. However, these regulatory proteins also function independently to regulate gene expression both negatively and positively. The model system for this combinatorial regulation is the yeast phospholipid biosynthetic pathway. Sin3p negatively regulates the INO1, CHO1, CHO2 and OPI3 genes while Ume6p negatively regulates the INO1 gene and positively regulates the other genes. We have suggested that the positive regulation results from indirect effects on expression of the INO2 transcriptional activator gene. Here, we demonstrate that the effect of Ume6p on INO2 gene expression is also indirect. We also show that Rpd3p is a negative regulator of phospholipid biosynthetic gene expression. The ability of Ume6p, Sin3p and Rpd3p to differentially regulate expression of the phospholipid biosynthetic genes affects phospholipid composition. A sin3 mutant strain lacks detectable levels of phosphatidylethanolamine and elevated levels of phosphatidylcholine (PC) and a rpd3 mutant strain has reduced levels of PC. These alterations in membrane composition suggest that there may exist additional differences in regulation of phospholipid biosynthetic gene expression and that membrane compositions may be coordinated with other biological processes regulated by Ume6p, Sin3p and Rpd3p.
Collapse
Affiliation(s)
- M Elkhaimi
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|